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Abstract. The paper deals with the initial-boundary value problem for the nonlinear wave
equation
U — 2 (p (2, t) ug) + KlulP?u + Aue|* 2wy = F(z,t), 0<2 <1, 0<t<T,
2 (07 t) Uz (03 t) = 9o (t) + f(: ko (t - S) u (Ov 5) dS,
—p (L) ue (1,t) = g1 (t) + f(: ki (t—s)u(l,s)ds,

u (z,0) = o (x), us (x,0) = a1 (x),

(1)

where K > 0, A > 0 is given constants, p, ¢ > 2 and F, u,go,91,ko, ki,%0,01 are
given functions. In this paper, we consider two main parts. In Part 1, under conditions
(iio, @1, 9o, g1, ko, k1) € H? x H' x (H2(0,7))* x (W1 (0,T))°, u € C*(Qr), pu €
L' (0,T; L), p(z,t) > po > 0 ae. (z,t) € Qr, we prove a theorem of existence and
uniqueness of a weak solution u of (1). The proof is based on the Faedo-Galerkin method
associated with the weak compact method. In Part 2, we obtain an asymptotic expansion

of the solution u of (1) up to order N + 1 in two small parameters K, \.
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1. INTRODUCTION

In this paper, we consider the initial-boundary value problem for the non-
linear wave equation:

0
uy — — (p(z, ) ug) + f (u,u) = F(z,t), 0<z<l, 0<t<T, (1.1)

ox
100, 8) s (0,4) = go (t)+/0 ko (t — 8)u (0, 5) ds, (1.2)
(L) (1,8) = g1 (8) + /Ot Fa (t— ) u (1, s)ds, (1.3)
u(z,0) =19 (x), w(z,0) =1 (x), (1.4)

where f (u,u;) = K|u[P7?u + Mg %uy, with K > 0, A > 0, p, ¢ > 2 and
F, u, go, g1, ko, k1, @, w1 are given functions satisfying conditions specified
later.

In [1], An and Trieu studied a special case of problem (1.1) and (1.4) asso-
ciated with the following boundary conditions:

ug (0,t) = go (t) + hou (0,%) + /Ot ko (t — s)u (0, s)ds, (1.5)

u(1,t) =0, (1.6)

with pu =1, dg =11 =0, and f (u,uy) = Ku+ Aug with K > 0, A > 0 given
constants, and go, ko are given functions. In the latter case the problem (1.1),
(1.4), (1.5) and (1.6) is a mathematical model describing the shock of a rigid
body and a linear viscoelastic bar resting on a rigid base [1].

In [2], Bergounioux, Long and Dinh studied problem (1.1), (1.4) with the
mixed boundary conditions (1.2) and (1.3) stand for

ug (0,t) = g (t) + hu (0,t) — /0 kE(t—s)u(0,s)ds, (1.7)

ug (1,6) + Kqu (1,t) + Aug (1,8) = 0, (1.8)

where f (u,u) = Ku+ Auy, with K > 0,A >0, h >0, K; >0, \; > 0 are
given constants and g, k are given functions.

In [9], Long, Dinh and Diem studied problem (1.1), (1.4), (1.7) and (1.8)
for the case of f (u,u;) = K|u|P~2u + Mug|92us, where K, A > 0; p,q > 2
and (i, @1) € H? x H*.

In [12], Ngoc, Hang and Long gave the unique existence, stability and
asymptotic expansion of the problem (1.1)-(1.4) for the case of f(u,u;) =
F (u) + Aug, where X is a constant, F' € C! (R) satisfies the following condi-
tions fOZ F(s)ds > —C12% — C} for all z € R, C;, C] > 0 given constants.
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In this paper, we consider two main parts. In Part 1, under conditions
(@0, @1, 9o, 91, ko, k1) € H2 x HY x (H2(0,T))* x (W21 (0,7))%, p € C* (Qr),
pee € LY (0, T; L), p(z,t) > po > 0 ae. (x,t) € Qr, we prove a theorem
of existence and uniqueness of a weak solution u of problem (1.1)-(1.4) corre-
sponding to f (u,us) = K|u[P~2u + Mug|92uy, with K >0, A > 0, p, ¢ > 2.
The proof is based on the Faedo-Galerkin method associated with the weak
compact method. Finally, in Part 2 we obtain an asymptotic expansion of the
solution u of the problem (1.1)-(1.4) up to order N +1 in two small parameters
K, \. The result here may be considered as the generalizations of this in [1,

2, 7-12].
2. THE EXISTENCE AND UNIQUENESS THEOREM

Put 2 = (0,1), Qr =2 x (0,T), T > 0. We omit the definitions of usual
function spaces: C™ (Q), LP (), W™P ().

We denote
WmP = WmP(Q), LP=Wo(Q), H™=Wm(Q),
1<p<oo,m=0,1,---. The norm in L? is denoted by |[|-||. We also denote

by (-,-) the scalar product in L? or pair of dual scalar products of continuous
linear functionals with an element of a function space. The norm in L is
denoted by |||, - We denote by ||-||x the norm of a Banach space X and by
X' the dual space of X.

We denote by LP(0,7;X), 1 < p < oo, the Banach space of the real
functions u : (0,7') — X measurable such that

T 1/p
ooy = (/O la (D15 dt) <o for 1<p< oo
or
HUHLOO(O,T;X) =esssup ||u(t)||y for p=oo.
Let u(t), v (t) = ue(t), u”(t) = u(t), uz(t), uge (t) denote wu(x,t),

% (x,t), % (x,t), % (x,t), % (z,t), respectively.

On H' we will use the following norm
1/2
ol = (ol + losl?) (2.1)
Then we have the following lemma.
Lemma 2.1. The imbedding H* — C° ([0,1]) is compact and
vllgoqory < V210llg,  for allve H'. (2:2)

Proof. The proof of this lemma is straightforward, and we omit the details. [
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We make the following assumptions:

(Hy) ap€ H?, @, € H',

(HQ) go, g1 € H27

(Hs) ko, ki € W1,

(H4) IS Cl (QT) ) Mt € Ll (07T; Loo)’ :U’(:Eat) > Ho > O,
(H5) KZO))‘>07p22an2v

(He) F, F, € L*(Qr),

(H7) K (07 O) Uz (O) = go (0) ) TH (17 0) Uz (1) =9 (O) :

Then we have the following theorem.

Theorem 2.2. Let (Hy) — (H7) hold. Then, for every T > 0, there exists a
weak unique solution u of problem (1.1)—(1.4) such that

ue L™ (0,T;H?), weL>®(0,T;H"), uyelL™(0,T;L%). (2.3)
Proof. Step 1. The Faedo—Galerkin approximation.

Let {w; }j cn be a denumerable base of H 2. We find the approximation solution
of problem (1.1)—(1.4) in the form

U (t) = ZL Cmj (t) W), (2.4)

where the coefficient functions c,,; satisfy the system of ordinary differential
equations

(g, (8) s ws) + (i (8) U (8) , wie) + P (£) w5 (0) + Qun (£) wy (1)
+K <|um|p*2 um,wj> + A <‘u§n -2 u;n,wj> (2.5)
=(F(t),w;), 1<j<m,

P,(t) = go(t)+/0 ko (t — s) um (0, s) ds, (2.6)
Qm () = gl(t)+/0 kv (t — 8) um (1, 5) ds,

Um, (0) = ﬁo, u;n (O) = ’L~l,1. (2.7)

From the assumptions of Theorem 2.2, system (2.5)—(2.7) has a solution u,, on
an interval [0,T,,] C [0,7]. The following estimates allow one to take T,,, =T
for all m.

Step 2. A priori estimates 1.
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Substituting (2.6) into (2.5), then multiplying the j** equation of (2.5) by
c;nj (t) and summing with respect to j, and afterwards integrating with respect

to the time variable from 0 to ¢, we get after some rearrangements

S (1) = 50+/ds/ (2, 5) ma;sd:c—z/P ) ds
—2/ Qm (s 1s)ds+2/0<F(s, uy, (s)) ds
= So+zj:11j, (2.8)
where
Su(t) =, ()] +HFUW |+ 2 a1,

+2A fy [l ()14 ds, (2.9)

So = |wml|? +“F“Ox

We will estimate the following four integrals in the right-hand side of (2.8).

First integral I. By means of the following inequality from (2.9)
1
Humx (t)||2 < %Sm (t) 5 (2.10)

it follows that

t 1 1 t
I —/ds/ "(x,s u,znx x,s)de < — |||, /Sm s)ds. (2.11
1 . ) M ( ) ( ) 10 H:u HL (Qr) ) ( ) ( )

Second integral Is. By using integration by parts, it follows that
t
I, = —2/ Py, (s)ul, (0,s)ds (2.12)
0

= 290 (0)ag (0) — 290 () upm, (0,t) + 2/0 g5 (8) um (0, 5) ds

+2ko (0) /Ot u?, (0,5) ds — 2up, (O,t)/ ko (t — 8) um (0, 5) ds

0
t s
+2/ [/ ky (s — 1) upm (0,7) dr] U, (0, s) ds.
o LJo
By Lemma 2.1 and the following inequality

1
2ab < Ba’® + BbQ, foralla, be R, B> 0, (2.13)
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it follows from (2.12) that

L < m%mwmwﬂ+§ﬁu

4 t
+ (1 + 4 ’ko (O)| + B Hkﬂ”iﬂ(o’T) + HkE)HLI(O,T)> /0 ||um (S)H%ﬂ ds

)42l ab |20 + 26 lum (D3 (214)

t
< Cr o+ 28 um O+ Cr [ o (5) s s,
0
for all g > 0, where Cp always indicates a constant depending on 7.

Third integral Is. Similarly, we obtain

I = _2/ Qum (8) Uy, (1,8) < Cp + 28 [|um ()| 31
H%/WWMM@M& (2.15)
0

Fourth integral I4. By means of the inequality (2.13), we have

I = /(F (s))ds
2 ¢ / 2
< BAHFSNcB+BAH%AM}% (2.16)

1 t
< BHF|%Q(QT)+B/O S (s)ds

We will use the following inequalities from lemma 2.1 and (2.10)

i O < (I O + [ i Hds)

2 |Jio|? + Qt/ Sy (s) ds (2.17)
0

IN

t
< C’0—|—2t/ S (8)ds
0
and

wmam%—hmaw%wman\<%+%/s w+ms<>mzm>

where C always indicates a constant depending on @y. Combining (2.8),
(2.11), (2.14)-(2.16) and choose 3 = %o, we obtain after some rearrange-
ments

t
Sm (t) < Mp + 25y + NT/ Sm (s) ds, (2.19)
0
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where
Mp =2 (QCT +46Cy 4+ 2TCyCr + % ||FH%2(QT)) ) (2.20)
c .
Np =2 (5 + 86T +472Cr + 201 4 L HM’HLW(QT))

From assumptions (H1)-(H4), (Hs), (H7) and Lemma 2.1, there exist a positive
constant Mr depending on ug, @1, ko, k1, g0, 91, F, p such that

t
S (t)gMT+NT/ Sm (s)ds, Vm, Vtel0,T]. (2.21)
0

By Gronwall’s Lemma, we deduce from (2.21) that
Sm (t) < Mrexp (tNr) < Cp, Vtel0,T]. (2.22)

A priori estimates I1.
Now differentiating (2.5) with respect to ¢, we have
(um (8) ;w;) + (1 (8) Uy (8) s W) + (1 (£) i (£) , W)
Py () w3 (0) + Qpy (1) w05 (1) + K (p = 1) (fum P )
+A(g—1) <’u§n a2 ugL,wj>
= (F'(t),w;), 1<j<m. (2.23)
Multiplying the j** equation of (2.23) by c;’nj (t) and summing with respect to

j, and afterwards integrating with respect to the time variable from 0 to ¢, we
get after some rearrangements

X (1)
+/td8/1u’(w»8)|u'm(frf,8)\2dfﬂ
—2/ds/ xsum(xs)mxsdxm/w il (5)) ds
2K (p - >/0 (2 ds—2/ Pl (s)ul, (0,5) ds
-2 [ Qo) (1.5) s (2.24)

where

[, O] + 11V (e (1) 12

+2\ (q—l)/o ds/o ‘u/m(ﬂs,s)‘qd‘u%(az,s)ﬁdm. (2.25)
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Integrating by parts, we have

/ ds/ (2, 8) Uz, AT

( ) Umaz (t) 5 Uppy > <,u u0x7alx>

/(u” e (5) g (5)) ds

/ds/ (x,8) (U ws‘ dx, (2.26)

so we can rewrite (2.24) as follows

X (1)

t 1
= "(0) Gz, U1z s "z, s) |u! x,52$
= X 0+ 20 Oorsing) +3 [ ds [ @) o5)
=2 (1 (t) uma (t) s Upng (t)>+2/0 (1" (5) wma (5) s Upny (5)) ds
+2/ (F'(s),u )>ds—2K(p—1)/o <\um‘p*2 o m>ds
—2/ P (s)ul Osd8—2/ Q. (s)um (1,8)ds

= X, (0) 4 2 {1t/ (0) g, iry +Zi:1 J;. (2.27)

From the assumptions (H1), (Has), (He), (H7), (2.25) and the imbedding
H'(Q) — CY (Q) , there exists a positive constant Dy depending on g, 1,
w, F, such that

X (0) + 2 (' (0) tow, U1
= [[er, )] + 11/ 0o | * + 2 (1 (0) g ta) — (2:28)
= [112(0) Gz + t1z (0) g — f (dio, @) + F (0)]|?

V1 (0)aing| * 4 2 (1 (0) fiog, ti1a)

< Dy.
Using the lemma 2.1, (2.22) and (2.25). We have some inequalities
/ 2 1

fum (@, 6)] <t Ol () < V2 lltm Ol
< V2llumll ey < Crs (2:30)
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[t (O] < [l D)l o) < V2 [t B)]| 0
1/2 1/2
< \@(Sm (t)+%Xm (t)) g\fz(CH:OXm (t)>
< ix/Xm @ + Dr. (2.31)
0

We will estimate the following seven integrals in the right-hand side of (2.27).
First integral J;.

t 1
J1 = 3/ ds/ (2, 8) [ty (a:,s)|2da:
0 0

t
< suwum% | e 5 s

< \uHLoo QT)/ Xom ds<CT/ X (s)ds.  (2.32)
Second integral Jg.
To= =2 (i () uma (8) g (8)) < 21| e ) I1tme O [z @]
2 e 2/ Cr
= %HM/HL“’(QT) Sm (t)mg MOT H'U’,HL‘X’(QT) X (£)
C
< T/%H/A’Hiw(QT)JrﬁXm (t) < O+ BXm (t). (2.33)

Third integral Js.

J3 = 2/0 (W' (8) Uma (5) , Uy (5)) ds

< 2 / 11" ()| e ()1 [t (5)]| ds

< = [ )l VIRV s
< ”07 / I ] Vo s
C " C //
< fuﬂ laam) + / I s

IN

Cr+ CT/O H;// (S)HOO X (s)ds. (2.34)
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Fourth integral Jy.

Jy = 2/ <F’(s),u;’n(s)>ds<2/ | E" ()] ||um (s)]| ds

/HF’ \ds+/ (|, (s }ds<CT+/X . (2.35)

Fifth integral Js.

Js = —2K(p—1)/0t<|um|p 24! m>ds

IN

< 9K (p—1) OB / [t (5)]| [t (5)]| s
< 1) Ch? / V/Sm (8)/ X (s)ds
0
< CT+CT/ Xm (s)ds. (2.36)
0

Sixth integral Jg.

Jg = —2/ P! (s)ul, (0,s)ds

= 2P/ (0)@ (0)—2P’ (0)ul, (0,t)
—2u,, ((),t)/0 P} (s) ds+2/0 P’ (s)u,, (0,s)ds
_ Z; g8, (2.37)

We will estimate integrals in the right-hand side of (2.37) by means of (2.7),
(2.30), (2.31):

I < 2|PL(0) (0)] < Co, (2.38)
I < 2| P (0l (0,0)] = 2 g6 (0) + ko (0) 50 (O)] [t (8] oy
< 206, (\/Z\/Xm <t>+DT) < 68X, (1) + Dr. (2.39)

A

I8 < 2f2}|u;n(t)HH1/0 [P (s)| ds

IN

B |ty ()] 50 + ;t/ot P ()| ds, (2.40)
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we have
B < 6 O] + V2 ko Oy ()0 + VK5 (O)] s (1)1
V2 [k (= ) (9] s
< Cr+V2ko (0)] ||up, (8)|] 1 + V2Cr [k (0)]

+V2Cr /Ot kG ()| ds

< Cr+V2ko (0)] [fur, ()] 1 (241)
so it follows from (2.40) and (2.41) that

2 t
Jé3) < BHulm(t)HiIl—'_ﬁt/O (CT+\/§|I<:0(0)‘Hu;ﬂ(s)HHl)QdS
< Cpr+pXn (t)—i—CT/tXm (s)ds, (2.42)
0
Jé4) < Q/t‘PT/);(S)Hu;n(O,S)‘dS
0
t
< 22 [ (Cr+ Valk Ol i (5) ) i (9] s
0
¢
< C’T—l—CT/ Xm (s)ds. (2.43)
0

We deduce from (2.38), (2.39), (2.42) and (2.43) that
t
Js < Cpr+28X,, (t) -+ QCT/ Xm (S) ds. (2.44)
0

Seventh integral J7. Similarly, the last term in the right-hand side of (2.27) is
estimated

:_2/ Qm (1,8)ds < Cp + 28X, (1) +2CT/X s)ds. (2.45)

Combining (2.27), (2.28), (2.32)—(2.36), (2.44) and (2.45) we obtain after some
rearrangements

X (1)

IN

t
Do + 6Cr + 58X m (t) + (1 + 6C7) / X, (5) ds
0

+CT/0 H;// (S)HOO Xm (s)ds

IN

Cr + 58X (t) + CT/O (L[| (s)||..) Xim (5)ds, (2.46)
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where C'r is a positive constant depending on 7. Choosing 8 = 1—10, from

(2.46), we obtain that
t
X (t) <207 + QCT/ (L4 (9)]|) Xm (s) ds. (2.47)
0

Applying Gronwall’s inequality, it follows from (2.47) that

Xm(t) < 2C7exp <2CT /Ot (T4 (9)] ) ds>

IN

T
2CT exp (2CT/ (T+]e" ()] .) ds> <Cr, (248)
0

for all ¢ € [0,T].
On the other hand, from the assumptions (Hs), (Hs) and (2.6), (2.22),
(2.48) we deduce that

HPmHW2v<>O(0,T) < Cr, (2.49)

HQm”WQ»OO(O,T) < Cr, (2.50)
where C7r is a positive constant depending on 7'
Step 3. Limiting process.

From (2.22) and (2.48)—(2.50), we deduce the existence of a subsequence of
{(um, P, @m)} still also so denoted, such that

U —> U in L% (0, T, Hl) weak™,
ul, — u’ in L*(0,T;H') weak",
ul, — u’ in L7(Qr) weakly,
ul = u” in L (O,T; 2) weak™,

U (0,) = w(0,-) in Whe weak® (2.51)

(0,7)
U (1,-) = u(l,-) in WL (0,T)  weak",
P, —P in Wb (0,T)  weak",
Qm — Q in Wb (0,T)  weak*.

By the compactness Lemma of Lions [8, p.57], we can deduce from (2.51) the
existence of a subsequence still denoted by {(t,, P, @m)} such that

( U —> U strongly in L2 (Qr), and a.e. in Qr,

ul, — u’ strongly in L? (Qr), and a.e. in Qr,
Um (0,-) = u(0,-) strongly in  C°([0,T]), 9 59
Um (1,-) = u(1,-) strongly in C°([0,T]), (2.52)
P, —P strongly in  C1 ([0, T)
Qm — Q strongly in  C! ([0, T)
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From (2.6); and (2.52)3 we have
P, (t) — go (t) + /Ot ko (t —s)u(0,s)ds = P (t), (2.53)

strongly in C° ([0, T]) . Similarly, we have also

Qm (t) = g1 () + /Ot ki(t—s)u(l,s)ds=Q(t), (2.54)
strongly in C° ([0, 7). Using the inequality
2 ey 7y < (p - DR e —yl, Yayel-R R, (25)
for all R > 0 and all p > 2, it follows from (2.30) and (2.52); that
|t [P ey — [P 2w, (2.56)

strongly in L? (Qr) . Similarly, we can also obtain from (2.31), (2.48), (2.52)2
and inequality (2.55) that

‘u;n}qq T ‘u"q_Q o, (2.57)

strongly in L? (Qr) . Passing to the limit in (2.5), (2.7) by (2.51)1.2.4, (2.53),
(2.54) and (2.56), (2.57), we have u satisfying the problem

(" (t),0) + () uz (1) ,v2) + P () v (0) +Q (t) v (1)
+K<|u]p72 u,v> —l—)\<‘u"q_2u',v> (2.58)
= (F(t),v),
w(0) =g, W (0) = @, (2.59)

P(t) = go<t>+/0ko<t—s>u<o,s>ds,

t
Q) = g1(t) +/ ki(t—s)u(l,s)ds. (2.60)
0
On the other hand, we have from (2.51); 2.4, (2.58) and (Hy), (Hg) , that
_ 1 " p—2 1na=2
Upy = u' + K |ul u+)\‘u‘ U — fply — F
p(z,t)
e L>(0,T;L%). (2.61)

Sowu e L™ (O, T:H 2) and the existence is proved completely.
Step 4. Uniqueness of the solution.
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Let up, ug be two weak solutions of problem (1.1)—(1.4) such that
uj € L*(0,T;H?), v} € L*®(0,T;H"), uf € L* (0,T;L?),
for j = 1,2. Then u = uj; — ug verifies the variational problem
[ (W (1) ,v) + (1 () ua (8) ,ve) + P (H) v (0) +Q (1) v (1)
+K <|u1|p_2 uy — |ug|P? uz,v>

u(0) = (0) =0,

where
P(t):/o ko (t — ) u (0, 5) ds, Q(t):/o ky (t— ) u (1, 5)ds.

We take v =« in (2.63) and integrate with respect to ¢, we obtain

+)\<\u’1|q7 — |uh|* 2u2,v>:O for all v € H',

(2.62)

(2.63)

(2.64)

/0t<u'(s),ui(s)>ds—2/Otu’(0,s)ds/oskro(s—r)u(O,r)dr

t s
—2/ u'(l,s)ds/ ki (s—r)u(l,r)dr
0 0
t
—QK/ <\U1|p_2 up — |uafP ™ U2,U'> ds,
0
where
Z(t) = |u O+ Ve bu. (1) |7
+2)\/0 <‘u1’q 2 ’—‘ 2’q 2u’2,u/>d5.

Put
Np = 21| o gy + 207 ko] + 207 k] + 4K (p — 1) C7 2,

Crlio] = 10T + (41ko (0)] + 28 kol2a 0.1 + bl 0.1y ) (72 +

Crlin] = 2oT + (410 (0)] + 26 [ela oy + 14l oy ) (72 +

= JH:“%}; ||uj||Loo(0,T;H2) :

\

Then, it follows from that (2.65)—(2.67) that

t
Z ()< Np | Z(s)ds, Vtel0,T].
0

(2.65)

(2.66)

1
o )’
Mo)’

(2.67)

(2.68)
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Using Gronwall’s Lemma, we deduce that Z = 0, i.e., u; = us and Theorem
2.2 is completely proved. O

3. ASYMPTOTIC EXPANSION OF THE SOLUTION WITH RESPECT TO TWO
PARAMETERS (K, \)

In this part, we assume that p, ¢ > N+1, N > 2, and (4o, @1, go, 91, ko, k1,
F) satisfy the assumptions (H1)-(Ha), (Hg), (Hr). Let £= (K,\) € R%. By
Theorem 2.2, the problem (1.1)—(1.4) has a unique weak solution u = uz
depending on &= (K, ).

We consider the following perturbed problem, where K, A are small param-
eters such that 0 < K < K, 0 < A < A\

Lu = uy — %(,u (x,t) ug)
=—KV,(u) = A\V4(u) + F(x,t), 0<z<1l, 0<t<T,

(ﬁ)ﬂ) Lou = pu(0,t) ug (0,8) — [3 ko (t — ) u(0,5)ds = go (1),
Liu=—p(L,t)ug (L,t) — [3 ki (t—s)u(l,s)ds = g1 (t),
| u(7,0) =19 (), ut(x,0) =1 (),
where W,.(2) = |2]" "2z, r € {p,q}.
We shall study the asymptotic expansion of the solution of problem (Pg)

with respect to &€= (K, A). We use the following notations. For a multi-index
v =(m,2) €Z2 and &= (K, \) € R2, we put

=7 +72 A'=mnlhel

V=K, = VRTE R,

a, BEZ?, B<a+—= fi<w, Vi=1,2,

5
Ca = grra—py-

First, we shall need the following Lemma.

Lemma 3.1. Let m, N e N and v, € R, a € Zi, 1<|a| < N. Then

m
dowad | = > Tl (3.1)
1<|a|<N m<|a|<mN
where the coefficents T™ (0], m < |a| < mN, depending on v = (va), a € Z2,
1 <|a| < N, are defined by the recurrence formulas
TW[0)g =va, 1<]al <N,
TM o= Y vapT™ Volg, m<|al <mN, m>2, (3.2)
pell™ '
I™={BeZ?:B<a, 1<|a—B|<N, m—1<|B|<(m—1)N}.
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Proof. The proof of Lemma 3.1 can be found in [11]. O

Let up = up,0 be a unique weak solution of problem <]5070) (as in Theorem
2.2) corresponding to &€= (K, \) = (0, 0), i.e.,
Lug = Fpp = F(x,t), 0<z <1, 0<t<T,
Loug = go (t)

. Liuo = g1 (1),
( > ug (x,0) = g (x), uf (z,0) = a1 (),
ug € C° (0, T; H')nC* (0,T; L*) N L> (0, T; H?),
uy € L (0,T;H') , uj € L (0,T;L?) .

Let us consider the sequence of weak solutions u,, v € Zi, 1 <|y] <N,
are defined by the following problems:
Luy=F,, 0<z<1 0<t<T,

Louy = Liuy =0,

(py) uy(z,0) = u’y (2,0) =0, (3.4)
uy € C°(0,T; H') N C* (0,T;L*) N L> (0,T; H?),

u, € L (0,T; H'), ul € L™ (0,T;L?).

where F,, |y] < N, defined by the recurrence formulas
( F, 7| =0,
_\Ilp (UO), Y= (170)7

[v]—-1
- %\I’;(am) (uo) T[]y, 10, 2<71 <N, 72 =0,
m=1

P AT =00,
" ,
- E W\Pq (UO) T(m)[u}o,’yzflv 1= 07 2< 72 < N>
m=1
[v]—1

= 3 g [ 0) T, 1, ) TV 0]

v
71217 722172S‘7|SN7
(3.5)
and here we have used the notations @ = (u,), @' = (u), [y| < N.
Let u = uz be a unique weak solution of problem (Pg) . Then v, with
v=u— Z uy€7 =u— h, (3.6)

vl <N



A nonlinear wave equation associated with boundary conditions involving convolution 539

satisfies the problem

Lv=—K[U,(v+h) = Ty(h)] = A[We(v" + ') — ¥o(h)] + En(9),
0O<z<l1, 0<t<T,

LQU == le == 0,
v(x,0) =" (2,0) =0,

(3.7)
veC%(0,T;H) NnC (0,T; L%) N L™ (0,T; H?) ,
| v € L (0,T; HY), v € L (0,T; L?),
where
EN(8) = F(x,t) = KUp(h) = AT (W) = > Fe7. (3.8)

< N
Then, we have the following lemma.

Lemma 3.2. Letp, g > N+ 1, N > 2, and (Hy)-(Hy), (Hg) hold. Then

IEN () oo o.122) < Canv 1EIN T, (3.9)

foralle= (K, \) € R2, ||g]| < ||g] with & = (K., Ay), where Cyn is positive
constant depending only on the constants ||€4||, ||u,y||LOO(0 ToH1)

(vl < N).

ufYHLOO(O,T;Hl) ’

Proof. Put

h=up+hi, hi= Y ué”. (3.10)

Iyl N

By using Taylor’s expansion of the function W,(h) = ¥, (ug + h1) around
the point ug up to order N — 1, we obtain

N-1

1
Uy (h) = Wy(ug) + Y m@gm)(uo)h?l + mwgm(uo +01h)RY,  (3.11)

m=1

where 0 < #; < 1. By Lemma 3.1, we obtain from (3.14) after some rearrange-
ments in the order to of €7, that

1 m m) [ =
KUy(h) = K¥uo)+ > 3 0 (o) Ty, 10,87
2<y|<N, m>1m=1""

+RW(p, ), (3.12)
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where
1 m m)[=] =
Wpe) = K ¥ (w) > T,
m=1 N<[y|<mN
TN (ug + 01h ) KBY. (3.13)

Similarly, we use Taylor’s expansion of the function Wy(h') = ¥, (ug + h}),
up to order N — 1, we obtain

|1

AU (R) = APq(up) + Z Z ‘I’(m T @)y, 187

2<]y| < N, yoz1 m=1

+R(2) (q7 5‘), (314)
where
N-1 1
g8 = AP ) S T
m=1 N<[|y|<mN
1
+Aﬁ\pgN>(ug +0o15) ()Y (3.15)

and 0 < #2 < 1. Combining (3.5), (3.8), (3.12)-(3.15), we then obtain

En(E) = F(x,t) = K¥p(ug) — ATy(up)

1 m m) [ =~
- Y Y L emar, e

2<|y| < N, 1 >1 m=1

[v|—-1

N Z Z ml T (@] 2187

2<|y| < N, 72>1 m=1

- Z F R(l pva R (Qaa

[vI<N

= —RW(p,&) — RP(q,2). (3.16)

We shall estimate the following terms on the right-hand side of (3.16).
Estimating R (p, £).
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By the boundedness of the functions u., v € Z%r, |7] < N in the function
space L>(0,T; H'), we obtain from (3.13) that

|#0.9)

L°(0,T;L2)

< |K] mz:l]K; manz! H\p’(’m) (uO)HLoo(o,T;Hl) HT(m) [E]VHL‘X’(O,T;L?) 3

1 N
I K ACTRRCUR] R 3] rras (3.17)
Using the inequality
e < ||g™,  for all y € Z2, (3.18)
it follows from (3.17), (3.18), that
M H <C N+1 < 1
[RO®.9), . g pey <O Il <l (319)
where
~(1
Ciy
N- p—m—1 Il
(m)[5 = [v[=N
“Yop (V2 Holeor) D0 TR L ]
m=1 N<|y|<mN
p—1
+C 12NN YD V2 Il e IETT | (3.20)
[v] <N

and &, = (K., \), O | = (p=1)(p=2)...(p=m)

mi
Estimate R®)(q,&).

We obtain from (3.15) in a manner corresponding to the above part that

. j
IR (q, &)z~ orizzy < Con 18N, gl <&, (3.21)
where
=~ (2
N
N—
¢-m—1 [v|—N
T [ H = [h1=N
mZ (V2 lebliaan) 3 [T
q—1
O N Y0 VR e oy I1EIT] (3.22)

Iv] <N
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Therefore, it follows from (3.16), (3.19)-(3.22), that
~ 2
IEN@ll=oran < (Cin+CR) I8N = Cun 8™+,
G (3.23)

The proof of Lemma 3.2 is complete. O

Next, we obtain the following theorem.

Theorem 3.3. Let p, g > N+ 1, N > 2, and (Hy)-(Hs), (Hs), (H7) hold.
Then, for every & = (K,\) € R%, with 0 < K < K,, 0 < X < \,, problem

(Pg) has a unique weak solution u = ug satisfying the asymptotic estimations
up to order N + 1 as follows

V<N Le=(0,T3L?) <N Le=(0,T;HY)
) N+1
< Cy lleg™+, (3.24)

for all €€ R%, ||&]| < |l&l, 5;, is a positive constant independent of £, the
functions u~ is the weak solutions of problems (]57> ,YyEZ2, |y < N.
Proof. First, we note that, if the data &= (K, \) satisfy

0<K <K, 0<A<A, (3.25)

where K,, A\, are fixed positive constants, then, the a priori estimates of the
sequence {u,,} in the proof of Theorem 2.2 satisfy

[ O+ IV @ ()17 + 25 ) +2)\/ e ()], ds

<Cr, (3.26)

2 ¢ ! 2 2
[ ()| +H\/u(t)U’mx(t)|!2+2A(q—1)/ dS/ | (2, 8)| " | (2, 5) | dx
0 0
< Cp, (3.27)

for all ¢t € [0,T], where C7p is a constant depending only on T', @y, 41, go, 91,
ko, ki, F, p, q, K., A« (independent of £). Hence, the limit u in suitable
function spaces of the sequence {u,,} defined by (2.5)—(2.7) is a weak solution
of the problem (1.1)—(1.4) satisfying the a priori estimates (3.26), (3.27).



A nonlinear wave equation associated with boundary conditions involving convolution 543

By multiplying the two sides of (3.7); by ¢/, after integration in ¢, we find
without difficulty from Lemma 3.2 that

o(t) < 2Ciy HW\WH
¢
+2 ( H'“ HLOO )+ Cr(B, ko) + Cr (8, k1)> /0 o(s)ds
8K / 190+ h) — W) [2ds, (3.28)
0
where 3 = 2 and

(1) = [|o'®) |+ 1V B valt ||2+2>\/ W, + ) — Wy(h), o) ds. (3.29)

By using the same arguments as in the above part we can show that weak
solution u of problem (Pg) satisfies

o/ @)]|* + lua (1) < Cr, Ve[0T, (3.30)
where C7 is a constant independent of K, A. On the other hand,
. 1
ol ooz € Y Mtgll oo oy IEN = Zh (3.31)
v <N

We again use inequality (2.55) with R = Ry = max{Ry, /2 (1 +T?)Cr},
then, it follows from (3.29) to (3.31) that

t t
8K2/0 W, (v + h) — W, (h)|* ds < 8K2(p — 1)2R3p4/0 o(s)ds. (3.32)

Combining (3.28), (3.31) and (3.32), we then obtain

t
o(t) < KP4 k) [ otis, (3.33)
0
for all ¢ € [0, T, where
KW =202,
K =2 (24 & 11l @y + Cr(B, ko) + Cr(8, k1)) (3.34)

+8K2(p— 1)R3P .
By Gronwall’s lemma, we obtain from (3.33), that
o(t) < K 8PV P exp (TP ) = DY PN, vieeo,7],  (3.35)
for all £€ R2, [|€]| < [|€:| - It follows that

[/ O + o llox(8)|2 < o () < DY [182V+2. (3.36)
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Hence
o~ N+1
HUIHLOO(O,T;B) {0l oo oy < C NIEITT (3.37)
or

/ _ ! = _ =Y
U g U € + ||u E UyE
[y <N Lo°(0,T;L2) [yl <N Loo(0,T;H?Y)

< Cy e, (3.38)

for all &€ € R2, ||&]] < ||&], where CN'}*V is a constant independent of £. The
proof of Theorem 3.3 is complete. O

Remark 3.4. In [9], as a special case of problem (1.1) - (1.4), that isp = ¢ = 2,
the result about the assymptotic expansion of the solutions with respect to
two parameters (K, \) up to order N + 1 was obtained.
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