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Abstract. In this paper, we propose a viscosity iteration process for semigroup of asymp-

totically pseudocontractive mappings, and prove a strong convergence theorem in uniformly

convex Banach space for the proposed iteration process.

1. Introduction

Let E be a real Banach space, E∗ be its dual space, K a nonempty closed
convex subset of E and J : E → 2E

∗
the normalized duality mapping defined

by

Jx = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 =
∥∥f2∥∥ , ‖f‖ = ‖x‖}, for all x ∈ E,

where 〈·, ·〉 denote the duality pairing between E and E∗. The single-valued
normalized duality mapping is denoted by j.
A mapping T : K → K is said to be

0Received Received March 4, 2012. Revised May 25, 2012.
02000 Mathematics Subject Classification: 47H20, 47H06, 47H10.
0Keywords: Semigroup of asymptotically pseudocontractive mappings, strongly pseu-

docontractive mapping, viscosity iteration process, iterative approximation, variational
inequality.



214 Balwant Singh Thakur and Mohammad Saeed Khan

• nonexpansive, if

‖Tx− Ty‖ ≤ ‖x− y‖
for all x, y ∈ K,
• pseudocontractive, if there exists some j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2

for all x, y ∈ K,
• strongly pseudocontractive, if there exists a constant α ∈ (0, 1) such

that
〈Tx− Ty, j(x− y)〉 ≤ α ‖x− y‖2

for all x, y ∈ K,
• asymptotically nonexpansive [9], if there exists a sequence {kn} ⊂

[1,∞) with limn→∞ kn = 1 such that

‖Tnx− Tny‖ ≤ kn ‖x− y‖
for all x, y ∈ K and n ∈ N.
• asymptotically pseudocontractive [13], if there exists a sequence {kn} ⊂

[1,∞) with limn→∞ kn = 1 such that

〈Tnx− Tny, j(x− y)〉 ≤ kn ‖x− y‖2

for all x, y ∈ K, and n ∈ N.

It can be seen from the above definitions that every nonexpansive mapping
is asymptotically nonexpansive and every asymptotically nonexpansive map-
ping is asymptotically pseudocontractive. A mapping T is called uniformly
L− Lipschitzian, if there exists L > 0 such that ‖Tnx− Tny‖ ≤ L ‖x− y‖,
for all x, y ∈ K and for each integer n ≥ 1. Uniformly asymptotically regular
if
∥∥Tn+1x− Tnx

∥∥→ 0 as n→∞ for all x ∈ K.

Let K be a closed convex subset of a Banach space E and R+ the set
of nonnegative real numbers. T := {T (t) : t ∈ R+} is said to be strongly
continuous semigroup of asymptotically pseudocontractive mappings from K
in to K if the following conditions are satisfied [5]:

(1) T (0)x = x for all x ∈ K;
(2) T (s+ t) = T (s) ◦ T (t) for all s, t ∈ R+;
(3) there exist {kn} ⊂ [1,∞) with limn→∞ kn = 1 and j(x− y) ∈ J(x− y)

such that

〈(T (tn))n x− (T (tn))n y, j(x− y)〉 ≤ kn ‖x− y‖2 , ∀ tn > 0, x, y ∈ K ;

(4) for each x ∈ K, the mapping T (·)x from R+ into K is continuous.

If in the above definition, condition (3) is replaced by the following condi-
tion:
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(3)* there exist {kn} ⊂ [1,∞) with limn→∞ kn = 1 such that

‖(T (tn))n x− (T (tn))n y‖ ≤ kn ‖x− y‖ , ∀ tn > 0, x, y ∈ K

then T is called strongly continuous semi-group of asymptotically nonexpan-
sive mappings on K.

T is said to have a fixed point if there exists x0 ∈ K such that T (t)x0 = x0
for all t ≥ 0. We denote by F the set of fixed point of T , i.e. F :=⋂
t∈R+ F (T (t)).

Numerous problems in mathematics and physical sciences can be recast in
terms of a fixed point problem for nonexpansive mappings. Due to practical
importance of these problems, algorithms for finding fixed points of nonex-
pansive mappings continue to be a flourishing topic of interest in fixed point
theory.

The most straightforward attempt to solve the fixed point problem for non-
expansive mappings is by Picard iteration :

xn+1 = Txn , ∀n ≥ 0 (x0 ∈ K) (1.1)

Unfortunately, algorithm (1.1) may fail to produce a norm convergence se-
quence {xn}.

In view of celebrated Banach contraction principle, the attempt to approx-
imate fixed point of nonexpansive self mappings seems very promising :
For given u ∈ K and each t ∈ (0, 1) define a contraction Tt : K → K by

Ttx = tu+ (1− t)Tx ∀x ∈ K .

Clearly Tt is (1− t) contraction, so by Banach contraction principle, it has a
unique fixed point zt ∈ K, i.e. zt is the unique solution of equation

zt = tu+ (1− t)Tzt , (1.2)

here zt is defined implicitly.

In 1967, Browder [2] proved that zt defined by (1.2) converges strongly to
a fixed point of T as t→ 0. In the same year, Halpern [10] devised an explicit
iteration method which converges in norm to a fixed point of T , the iteration
process is known as Halpern iterative method and defined as below :
For a sequence {αn} in (0, 1), obtain the modified version of ( 1.1)

xn+1 = αnu+ (1− αn)Txn , n ≥ 0 (1.3)
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Further, it is proved that the sequence {xn} defined by (1.3) converges strongly
to a fixed point of T if {αn} satisfies certain conditions.

It is an interesting problem to extend results related to nonexpansive,
asymptotically nonexpansive, pseudocontractive, asymptotically pseudocon-
tractive mappings to semigroup of respective mappings.

Suzuki [14] proved the following result for strongly continuous semigroup of
nonexpansive mappings:

Theorem S. Let K be a closed convex subset of a Hilbert space H. Let
{T (t) : t ∈ R+} be a strongly continuous semigroup of nonexpansive mappings
on K such that F =

⋂
t∈R+ F (T (t)) 6= ∅. Let {αn} and {tn} be sequences of

real numbers satisfying 0 < αn < 1, tn > 0 and limn tn = limn αn/tn = 0. Fix
u ∈ K and define a sequence {un} in K by

un = αnu+ (1− αn)T (tn)un

for n ∈ N. Then {un} converges strongly to the element of F nearest to u.

Chidume [5] proved following result for strongly continuous semigroup of
asymptotically pseudocontractive mappings in the setting of Banach space:

Theorem C. Let K be a closed convex and bounded subset of a real uni-
formly convex Banach space E having uniformly Gâteaux differential norm,
L < N(E)1/2. Let T := {T (t) : t ∈ R+} be a strongly continuous uniformly
asymptotically regular and uniformly L−Lipschitzian semigroup of asymptot-
ically pseudocontractive mappings from K into K with a sequence {kn} ⊂
[1,∞). Then for u ∈ K, tn > 0 and sn ∈ (0, 1), there exists a sequence
{xn} ∈ K satisfying the following condition:

xn = αnu+ (1− αn) (T (t))n xn ,

where αn := (1− sn/kn). Moreover, if lim tn = lim(αn/tn) = 0, (kn−1)
kn−sn → 0 as

n→∞, and

‖xn − (T (t))m x‖2 ≤ 〈xn − (T (t))m x, j(xn − x)〉 ,
∀m,n ≥ 1, ∀x ∈ C, t ∈ R+, where C := {x ∈ K : Φ(y) = minz∈K Φ(z)}
where Φ(z) := LIM ‖xn − z‖2 for each z ∈ K. Then {xn} converges strongly
to a fixed point of T .

On the other hand viscosity method provide an efficient approach to a large
number of ill-posed problems (lack of existence, or uniqueness, or stability of
a solution) coming from different branches of mathematics. A major feature
of these methods is to provide as a limit of the solution of the approximate
problems, a particular (possibly relaxed or generalized) solution of the original
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problem.

First abstract formulation of the properties of the viscosity approximation
have been given by A.N.Tykhonov [15] in 1963 when studying ill-posed prob-
lems (see [8] for details).

Let us now make precise the mathematical abstract setting. Let X be a
abstract space, given f : X → R+ ∪ {+∞} an extended real valued function,
let us consider the minimization problem

min{f(x) : x ∈ X} (P)

which is assumed to be ill-posed.
For any ε > 0, let us consider the approximate minimization problem

min{f(x) + εg(x) : x ∈ X} (Pε)

which is well posed due to nice properties of a nonnegative real valued func-
tion g : X → R+ ∪ {+∞}. So, it is assumed that, for all ε > 0, there exists
a solution uε of (Pε). The central question is to study the convergence of the
sequence {uε; ε → 0} and the characterization of its limit. The function g is
called viscosity function.

Using contraction mapping as a viscosity function, Moudafi [12] introduced
viscosity approximation method of selecting a particular fixed point of a non-
expansive mapping. Given a real number t ∈ (0, 1) and a contraction map-
ping f : K → K with contraction constant α ∈ [0, 1). Define a mapping

Tt = T ft : K → K by

Ttx = tf(x) + (1− t)Tx, x ∈ K . (1.4)

Clearly Tt is a (1 − t(1 − α)) contraction, and so has a unique fixed point

xt = xft ∈ K. Thus xt is the unique solution of the fixed point equation

xt = tf(xt) + (1− t)Txt . (1.5)

Xu [16] studied the strong convergence of xt defined by (1.5) as t→ 0. He
also introduced the following iterative algorithm to approximate fixed points
of nonexpansive mappings: For arbitrary chosen xo ∈ K, construct a sequence
{xn} by

xn+1 = αnf(xn) + (1− αn)Txn , ∀n ≥ 0 . (1.6)

More recently Cho and Kang [6] proved following theorem for strongly con-
tinuous semigroup of nonexpansive mappings:

Theorem CK. Let K be a closed convex subset of a real uniformly convex Ba-
nach space E having uniformly Gâteaux differential norm. Let {T (t) : t ∈ R+}
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be a strongly continuous L− Lipschitz semigroup of pseudocontractive map-
pings on K such that F 6= ∅. Let f : K → K be a fixed bounded, contin-
uous and strong pseudocontraction with the coefficient α ∈ (0, 1). Let {αn}
and {tn} be sequences of real numbers satisfying 0 < αn < 1, tn > 0 and
limn→∞ tn = limn→∞

αn
tn

= 0. Let {xn} be a sequence generated in the follow-
ing manner :

xn = αnf(xn) + (1− αn) (T (t))xn , ∀n ≥ 1.

Assume that LIM ‖T (t)xn − T (t)x∗‖ ≤ LIM ‖xn − x∗‖, ∀x∗ ∈ C, t ≥ 0,

where C := {x∗ ∈ K : Φ(x∗) = minx∈K Φ(x)} where Φ(x) := LIM ‖xn − x‖2
for each x ∈ K. Then {xn} converges strongly to a fixed point of T , which
solves the following variational inequality

〈(I − f)x∗, j(x∗ − x)〉 ≤ 0 , ∀x ∈ F .

Motivated by the above results and a viscosity iteration defined by Ceng, Xu
and Yao [3], in this paper we propose a viscosity iteration method (VIM) for
strongly continuous semigroup of asymptotically pseudocontractive mappings
and prove a strong convergence theorem for proposed VIM.

2. Preliminaries

Let E be a real normed space of dimension ≥ 2. The norm of E is said to
be uniformly Gâteaux differentiable if for each y ∈ S1(0) := {x ∈ E : ‖x‖ = 1}
the limit limt→0

‖x+ty‖−‖x‖
t exist uniformly for x ∈ S1(0).

Let l∞ be the Banach space of all bounded real-valued sequences. A Banach
limit LIM is a bounded linear functional on l∞ such that

‖LIM‖ = 1 , lim inf
n→∞

tn ≤ LIMtn ≤ lim sup
n→∞

tn ,

and LIMtn = LIM tn+1 for all tn ∈ l∞.

We need following results to prove our main result:

Lemma 2.1. ([1]) Let K be a nonempty closed convex subset of a uniformly
convex Banach space E, {xn} a bounded sequence in K, LIM a Banach limit,

and Φ a real valued function on K defined by Φ(z) = LIM ‖xn − z‖2 , z ∈ K.
Then the set M defined by

M =

{
u ∈ K : LIM ‖xn − u‖2 = inf

z∈K
LIM ‖xn − z‖2

}
is a nonempty closed convex bounded set and has exactly one point.
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Lemma 2.2. ([7]) Let E be a Banach space, K be a nonempty closed convex
subset of E and T : K → K be a continuous and strong pseudocontraction.
Then T has a unique fixed point.

Lemma 2.3. ([4]) For any x, y ∈ E the following holds:

‖x+ y‖2 ≤ ‖x‖2 + 2 〈y, j(x+ y)〉 , ∀j(x+ y) ∈ J(x+ y).

3. Main Results

Theorem 3.1. Let K be a nonempty closed convex subset of a uniformly
convex Banach space E. Let T := {T (t) : t ∈ R+} be a strongly continuous
uniformly asymptotically regular and uniformly L− Lipschitzian semigroup of
asymptotically pseudocontractive mappings form K into K such that F :=⋂

R+ F (T (t)) 6= ∅. Let f : K → K be a fixed bounded, continuous strong
pseudocontraction with constant α ∈ (0, 1). Let {xn} be a sequence generated
by

xn =

(
1− 1

kn

)
xn +

1− αn
kn

fxn +
αn
kn

(T (tn))n xn (3.1)

where {αn} and {tn} are sequences of real numbers satisfying
0 < αn <

1− α
kn − α

and lim
n→∞

kn − 1

1− αn
= 0 ,

tn > 0 (∀n) and lim
n→∞

tn = 0 = lim
n→∞

1− αn
tn

.

(3.2)

Assume that LIM ‖xn − (T (t))mx∗‖ ≤ LIM ‖xn − x∗‖, for all x∗ ∈M , m ≥
1, t ∈ R+, where M := {x∗ ∈ K : Φ(x∗) = infx∈K Φ(x)} with Φ(x) := LIM

‖xn − x‖2, for all x ∈ K. Then {xn} converges to x∗ ∈ F which solves the
variational inequality:

〈(f − I)x∗, j(x− x∗)〉 ≤ 0 ∀ x ∈ F . (3.3)

Proof. First we show that the sequence {xn} generated by (3.1) is well defined.

For each n ∈ N, define a mapping T̃n as follows

T̃nx :=

(
1− 1

kn

)
x+

1− αn
kn

fx+
αn
kn

(T (tn))n x , for all x ∈ K,
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then〈
T̃nx− T̃ny, j(x− y)

〉
=

〈(
1− 1

kn

)
(x−y)+

1−αn
kn

(fxn−fy)+
αn
kn

((T (tn))nx−(T (tn))ny) , j(x−y)

〉
≤
(

1− 1

kn

)
‖x− y‖2 +

1− αn
kn

‖x− y‖2 + αn ‖x− y‖2

=

(
1− 1

kn
+
α(1− αn)

kn
+ αn

)
‖x− y‖2

and
(

1− 1
kn

+ α(1−αn)
kn

+ αn

)
< 1 by choice of αn. So T̃n is continuous and

strongly pseudocontractive mapping, therefore from Lemma 2.2, the mapping

T̃n has a unique fixed point say xn ∈ K, that is, the equation

xn =

(
1− 1

kn

)
xn +

1− αn
kn

fxn +
αn
kn

(T (tn))n xn

has a unique solution for each n ∈ N.
Next we show that {xn} is bounded. For any fixed p ∈ F , from Lemma 2.3,
we have

‖xn − p‖2

=

〈(
1− 1

kn

)
(xn−p) +

1− αn
kn

(fxn−p) +
αn
kn

((T (tn))n xn − p) , j(xn − p)
〉

=

(
1− 1

kn

)
〈xn − p, j(xn − p)〉+

1− αn
kn

〈fxn − fp, j(xn − p)〉

+
1− αn
kn

〈fp− p, j(xn − p)〉+
αn
kn
〈(T (tn))n xn − p, j(xn − p)〉

≤
(

1− 1

kn

)
‖xn − p‖2 +

(1− αn)α

kn
‖xn − p‖2

+
1− αn
kn

〈fp− p, j(xn − p)〉+ αn ‖xn − p‖2

=

[
1− 1

kn
+

(1− αn)α

kn
+ αn

]
‖xn − p‖2 +

1− αn
kn

〈fp− p, j(xn − p)〉

=

[
1− 1− α(1− αn)− αnkn

kn

]
‖xn − p‖2 +

1− αn
kn

〈fp− p, j(xn − p)〉

= (1− ηn) ‖xn − p‖2 +
1− αn
kn

〈fp− p, j(xn − p)〉 ,
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where ηn = 1−α(1−αn)−αnkn
kn

. Therefore,

‖xn − p‖2 ≤
1− αn
knηn

〈fp− p, j(xn − p)〉 , (3.4)

since using (3.2), we have

1− αn
knηn

=
1(

1− kn−1
1−αn

αn − α
) −→ 1

1− α
(3.5)

thus {xn} is bounded and so {f(xn)} and {(T (tn))n xn} are bounded.

Now for any given t > 0, we have

‖xn − (T (t))n xn‖ ≤

[
t
tn

]
−1∑

k=0

‖(T ((k + 1)tn))n xn − (T (ktn))n xn‖

+

∥∥∥∥(T ([ ttn
]
tn

))n
xn − (T (t))n xn

∥∥∥∥
≤
[
t

tn

]
L ‖(T (tn))n xn − xn‖

+ L

∥∥∥∥(T (t− [ ttn
]
tn

))n
xn − xn

∥∥∥∥
=

[
t

tn

]
(1− αn)L ‖(T (tn))n xn − f(xn)‖

+ Lmax {‖(T (s))n xn − xn‖ : 0 ≤ s ≤ tn}

≤ t
(

1− αn
tn

)
L ‖(T (tn))n xn − f(xn)‖

+ Lmax {‖(T (s))n xn − xn‖ : 0 ≤ s ≤ tn}
for n ∈ N, which gives that

‖xn − (T (t))n xn‖ → 0 as n→∞ . (3.6)

Thus,

‖xn − (T (t))xn‖ ≤ ‖xn − (T (t))n xn‖+
∥∥∥(T (t))n xn − (T (t))n+1 xn

∥∥∥
+
∥∥∥(T (t))n+1 xn − (T (t))xn

∥∥∥
≤ (1 + L) ‖xn − (T (t))n xn‖+

∥∥∥(T (t))n xn − (T (t))n+1 xn

∥∥∥
therefore, from (3.6) and uniform asymptotic regularity of T (t), we have

‖xn − (T (t))xn‖ → 0 as n→∞ . (3.7)
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On the other hand, since K is closed, we see from Lemma 2.1 that M is a
nonempty closed convex bounded subset of K and M is singleton. For any
t ≥ 0, x∗ ∈M , we obtain by assumption that

Φ ((T (t))m x∗) = LIM ‖xn − (T (t))m x∗‖ ≤ LIM ‖xn − x∗‖ = Φ(x∗) .

That is (T (t))mM ⊆ M , since M is singleton, we have (T (t))m x∗ = x∗, by
continuity of T (t) we have T (t)x∗ = x∗, i.e. there exists a unique x∗ ∈M such
that x∗ ∈ F .

Now, for any x ∈ F , from (3.1), we have

〈fxn − xn, j(xn − x)〉

=
1

1− αn
〈xn − (T (tn))n xn, j(xn − x)〉

=
1

1− αn
[〈xn − x, j(xn − x)〉 − 〈(T (t))n xn − x, j(xn − x)〉]

≥ 1

1− αn

(
‖xn − x‖2 − kn ‖xn − x‖2

)
= −

(
kn − 1

1− αn

)
‖xn − x‖2 . (3.8)

From (3.8), we have

LIM 〈xn − fxn, j(xn − x)〉 ≤ LIM
(
kn − 1

1− αn

)
‖xn − x‖2 → 0 , (3.9)

as n → ∞. On the other hand, for any s ∈ (0, 1), it follows from Lemma 2.3,
that

‖xn − x∗ − s (fx∗ − x∗)‖2

≤ ‖xn − x∗‖2 + 2 〈−s (fx∗ − x∗) , j (xn − x∗ − s (fx∗ − x∗)) 〉

= ‖xn − x∗‖2 − 2s 〈fx∗ − x∗, j(xn − x∗)〉
− 2s 〈fx∗ − x∗, j (xn − x∗ − s (fx∗ − x∗))− j(xn − x∗) 〉 .

This implies that

〈fx∗ − x∗, j(xn − x∗)〉

≤ 1

2s

[
‖xn − x∗‖2 − ‖xn − x∗ − s (fx∗ − x∗)‖2

]
− 〈fx∗ − x∗, j (xn − x∗ − s (fx∗ − x∗))− j(xn − x∗)〉 . (3.10)

Since E has uniform Gâteaux differential norm, so j is norm-to-weak∗ uni-
formly continuous on bounded subsets of E. For any ε > 0, there exists δ > 0
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such that for all s ∈ (0, δ), we have

〈fx∗ − x∗, j(xn − x∗)〉 ≤
1

2s

[
‖xn − x∗‖2 − ‖xn − x∗ − s (fx∗ − x∗)‖2

]
+ ε .

Taking Banach limit LIM on the above inequality, we have

LIM 〈fx∗ − x∗, j(xn − x∗)〉

≤ 1

2s

[
LIM ‖xn − x∗‖2 − LIM ‖xn − x∗ − s (fx∗ − x∗)‖2

]
+ ε

< ε .

Now, since ε is arbitrary, this implies that

LIM 〈fx∗ − x∗, j(xn − x∗)〉 ≤ 0 . (3.11)

Again by inequality (3.4), we have

LIM ‖xn − x∗‖2 ≤ LIM
1− αn
knηn

〈fx∗ − x∗, j(xn − x∗)〉 ≤ 0 ,

and hence
LIM ‖xn − x∗‖2 = 0 (3.12)

therefore, there exists a subsequence
{
xnj

}
of {xn} which converges strongly

to x∗. Using (3.8), for any x ∈ F , we have〈
xnj − fxnj , j(xnj − x)

〉
≤
(
knj − 1

1− αnj

)∥∥xnj − x
∥∥2 , (3.13)

taking limit in (3.13), we get

〈x∗ − fx∗, j(x∗ − x)〉 ≤ 0 , for any x ∈ F . (3.14)

Now, suppose there exists another subsequence {xnk
} of {xn} which converges

strongly to z∗ (say). Since lim ‖xn − T (t)xn‖ = 0 for each t ∈ R+, we have
that z∗ is a fixed point of T . Thus from (3.14), we have

〈x∗ − fx∗, j(x∗ − z∗)〉 ≤ 0 . (3.15)

Now, since x∗ ∈ F , using (3.8) again, we get

〈xnk
− fxnk

, j(xnk
− x∗)〉 ≤

(
knk
− 1

1− αnk

)
‖xnk

− x∗‖2 , (3.16)

taking limit in (3.16), we get

〈z∗ − fz∗, j(z∗ − x∗)〉 ≤ 0 . (3.17)

Adding (3.15) and (3.17), we get

〈x∗ − z∗ + fz∗ − fx∗, j(x∗ − z∗)〉 ≤ 0 .

This gives

‖x∗ − z∗‖2 ≤ 〈fx∗ − fz∗, j(x∗ − z∗)〉 ≤ α ‖x∗ − z∗‖2 .



224 Balwant Singh Thakur and Mohammad Saeed Khan

Since α ∈ (0, 1), we have, x∗ = z∗. This proves that {xn} converges strongly
to x∗ ∈ F , which is the unique solution to the variational inequality (3.3).
This completes the proof. �

Remark 3.2. Theorem 3.1 includes as special case the corresponding results
in [3, 5, 6, 11, 14, 16, 17].

Remark 3.3. In Theorem 3.1, viscosity iteration method involves strong pseu-
docontractive mapping, and therefore x∗ ∈ F is the solution of larger class of
variational inequality (3.3).
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