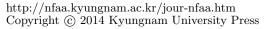
Nonlinear Functional Analysis and Applications Vol. 19, No. 4 (2014), pp. 547-561



CRITERION FOR THE EXPONENTIAL STABILITY OF DISCRETE EVOLUTION FAMILY OVER BANACH SPACES

R. P. Agarwal¹, Akbar Zada², Nisar Ahmad³ and Dhaou Lassoued⁴

¹Department of Mathematics Texas A&M University at Kingsville, Kingsville, TX, USA e-mail: agarwal@tamuk.edu

²Department of Mathematics University of Peshawar, Peshawar, Pakistan e-mail: akbarzada@upesh.edu.pk, zadababo@yahoo.com

> ³Department of Mathematics University of Peshawar, Peshawar, Pakistan e-mail: nisarnn22@yahoo.com

⁴Laboratoire SAMM EA543, Université Paris 1 Panthéon-Sorbonne Centre P. M. F. 90 rue de Tolbiac, 75634 Paris Cedex 13, France e-mail: dhaou06@gmail.com, Dhaou.Lassoued@univ-paris1.fr

Abstract. Let $\mathcal{T}(1)$ is the algebraic generator of the discrete semigroup $\mathbf{T} = \{\mathcal{T}(n)\}_{n \geq 0}$. We prove that the system $\xi_{n+1} = \mathcal{T}(1)\xi_n$ is uniformly exponentially stable if and only if for any θ , a real number and any *p*-periodic sequence z(n) with z(0) = 0 the unique solution of the Cauchy Problem

$$\begin{cases} \xi_{n+1} = \mathcal{T}(1)\xi_n + e^{i\theta(n+1)}z(n+1), \\ \xi_0 = 0 \end{cases} (\mathcal{T}(1), \theta, 0)$$

is bounded. We also extend the above result to *p*-periodic system $\zeta_{n+1} = \mathcal{A}_n \zeta_n$, i.e., we proved that the system $\zeta_{n+1} = \mathcal{A}_n \zeta_n$ is uniformly exponentially stable if and only if for $\theta \in \mathbb{R}$ and any *p*-periodic sequence z(n), with z(0) = 0 the unique solution of the Cauchy Problem

$$\begin{cases} \zeta_{n+1} = \mathcal{A}_n \zeta_n + e^{i\theta(n+1)} z(n+1), \\ \zeta_0 = 0 \end{cases} \qquad (\mathcal{A}_n, \theta, 0)$$

is bounded. Here, \mathcal{A}_n is a sequence of bounded linear operators on Banach space \mathcal{X} .

⁰Received April 19, 2014. Revised July 9, 2014.

 ⁰2010 Mathematics Subject Classification: 47A05, 47A30, 47D06, 47A10, 35B35, 35B10.
 ⁰Keywords: Exponential stability, discrete semigroups, discrete evolution family, periodic

sequences

1. INTRODUCTION

In 1821, A. L. Cauchy addressed, in the Chapter V of his *Cours d'Analyse* [9], the following problem:

Déterminer la fonction $\psi(x)$ de manière qu'elle reste continue entre deux limites réelles quelconques de la variable x, et que l'on ait pour toutes les valeurs réelles des variables x et y

$$\psi(x+y) = \psi(x)\psi(y). \tag{1.1}$$

This means the question of determining a function $\psi(x)$ in such a way that it remains continuous between two arbitrary real limits of the variable x, and that, for all real values of the variables x and y, one has (1.1) is satisfied.

In modern notations the Cauchy question can be restated as: Find all the maps $\mathcal{T}(\cdot) : \mathbb{R}_+ \to \mathbb{C}$ which satisfy the following functional equation

$$\begin{cases} \mathcal{T}(t+s) = \mathcal{T}(t)\mathcal{T}(s), \\ \mathcal{T}(0) = 1. \end{cases}$$
(1.2)

It was easy to check that the function $\mathcal{T}(t) = e^{at}$, for all $t \in \mathbb{R}_+$ satisfies (1.2). Also, it was found that the function $\mathcal{T}(t) = e^{at}$ satisfies the differential equation

$$\begin{cases} \frac{d\mathcal{T}(t)}{dt} = a\mathcal{T}(t), \\ \mathcal{T}(0) = 1. \end{cases}$$

The next question was to extend the same idea to functions of the form $\mathcal{T}(\cdot) : \mathbb{R}_+ \to \mathcal{M}_n(\mathbb{C})$ where $\mathcal{M}_n(\mathbb{C})$ is the space of all square matrices of order n. In this case the solution of the differential equation

$$\begin{cases} \frac{d\mathcal{T}(t)}{dt} = \mathcal{AT}(t), \\ \mathcal{T}(0) = I \end{cases}$$

is $\mathcal{T}(t) = e^{tA}$ where, in 1888 the exponential of the matrix \mathcal{A} were defined by G. Peano [15, 16]. Later on, the family $\mathcal{T}(t) = (e^{tA})_{t\geq 0}, t\geq 0$ was called semigroup of operators generated by the matrix \mathcal{A} .

In 1892, Liapunov gives his classical Liapunov stability theorem which is stated as

Theorem 1.1. ([12]) Let $(e^{t\mathcal{A}})_{t\geq 0}$ be the family of operators generated by $\mathcal{A} \in \mathcal{M}_n(\mathbb{C})$. Then the following assertions are equivalent.

(a) The semigroup is stable, i.e., $\lim_{t\to\infty} \|e^{t\mathcal{A}}\| = 0.$

(b) All eigenvalues of A have negative real part, i.e., Re(λ) < 0 for all the eigenvalues λ of A.

In 1970, one of the remarkable results in the stability of strongly continuous semigroup $T = \{T(t)\}_{t\geq 0}$ was obtained by R. Datko [10]. This result states that a strongly continuous semigroup of bounded linear operators acting on complex or real Banach space is uniformly exponentially stable if and only if

$$\int_0^\infty \|\mathcal{T}(t)x\| dt < \infty.$$

In 1972, Pazy [15] extended the result of Datko to more stronger form which stated that a strongly continuous semigroup of bounded linear operators acting on real or complex Banach space is uniformily exponentially stable if and only if

$$\int_0^\infty \|\mathcal{T}(t)x\|^p dt < \infty, \quad \text{for any } p \ge 1.$$

In the last few decades, the theory of exponential stability of semigroups of operators is well developed. For further results on this topic, we recommend [1]-[7], [13, 14, 18].

In 2008, the classical Lyapunov Theorem 1.1 was extended by the first author of this note [19], in the following manner:

Theorem 1.2. The system $\dot{\xi}(t) = \mathcal{A}\xi(t)$ is exponentially stable if and only if for any $\theta \in \mathbb{R}$ and any $b \in \mathbb{C}^n$ the solution of the Cauchy Problem

$$\begin{cases} \dot{\zeta}(t) = \mathcal{A}\zeta(t) + e^{i\theta t}b, \quad t \ge 0, \\ \zeta(0) = 0 \end{cases}$$

is bounded, where $\mathcal{A} \in \mathcal{M}_n(\mathbb{C})$.

In 2009, Buse and Zada [8] proved the following similar result for discrete systems:

Theorem 1.3. The system $\xi_{n+1} = \mathcal{A}\xi_n$ is exponentially stable if and only if for any $\theta \in \mathbb{R}$ and any $b \in \mathbb{C}^m$ the solution of the discrete Cauchy Problem

$$\begin{cases} \zeta_{n+1} = \mathcal{A}\zeta_n + e^{i\theta n}b, & n \in \mathbb{N}, \\ \zeta_0 = 0 \end{cases}$$

is bounded.

In this article, we aim to study a similar result as above for the systems $\xi_{n+1} = \mathcal{T}(1)\xi_n$ and $\zeta_{n+1} = \mathcal{A}_n\zeta_n$, where $\mathcal{T}(1)$ is the algebric generator of the discrete semigroup $\{\mathcal{T}(n)\}_{n\geq 0}$ and \mathcal{A}_n is the q-periodic sequence of bounded linear operators acting on X.

Indeed, we establish a result which states the following result as a corollary:

Theorem 1.4. The system $\xi_{n+1} = \mathcal{T}(1)\xi_n$ is uniformly exponentially stable if and only if for each real number θ and each p-periodic sequence z(n) with z(0) = 0 the unique solution of the Cauchy Problem

$$\begin{cases} \xi_{n+1} = \mathcal{T}(1)\xi_n + e^{i\theta(n+1)}z(n+1), \\ \xi_0 = 0 \end{cases} (\mathcal{T}(1), \theta, 0)$$

is bounded.

Moreover, we prove the following theorem:

Theorem 1.5. The system $\zeta_{n+1} = \mathcal{A}_n \zeta_n$ is uniformly exponentially stable if and only if for any real number θ and any p-periodic sequence z(n) with z(0) = 0 the unique solution of the Cauchy Problem

$$\begin{cases} \zeta_{n+1} = \mathcal{A}_n \zeta_n + e^{i\theta(n+1)} z(n+1), \\ \zeta_0 = 0 \end{cases} \qquad (\mathcal{A}_n, \theta, 0)$$

is bounded.

2. NOTATIONS AND PRELIMINARIES

Let \mathcal{X} be a real or complex Banach space and $\mathcal{B}(\mathcal{X})$ the Banach algebra of all linear and bounded operators acting on \mathcal{X} .

We denote by $\|\cdot\|$ the norms of operators and vectors. Denote by \mathbb{R}_+ the set of real numbers and by \mathbb{N} the set of all non-negative integers.

Let $B(\mathbb{N}, \mathcal{X})$ be the space of \mathcal{X} -valued bounded sequences with the supremum norm, and $P_0^p(\mathbb{N}, \mathcal{X})$ be the space of *p*-periodic (with $p \ge 2$) sequences *z* with z(0) = 0. Then clearly $P_0^p(\mathbb{N}, \mathcal{X})$ is a closed subspace of $B(\mathbb{N}, \mathcal{X})$.

Throughout this paper $\mathcal{A} \in \mathcal{B}(\mathcal{X})$, $\sigma(\mathcal{A})$ denotes the spectrum of \mathcal{A} and $r(\mathcal{A})$ denotes the spectral radius of \mathcal{A} , and is defined as $r(\mathcal{A}) = \sup\{|\lambda| : \lambda \in \sigma(\mathcal{A})\}$. It is well known that $r(\mathcal{A}) := \lim_{n \to \infty} ||\mathcal{A}^n||^{\frac{1}{n}}$. The resolvent set of \mathcal{A} is defined as $\rho(\mathcal{A}) := \mathbb{C} \setminus \sigma(\mathcal{A})$, i.e the set of all $\lambda \in \mathbb{C}$ for which $\mathcal{A} - \lambda I$ is an invertible operator in $\mathcal{B}(\mathcal{X})$.

We give some results in the framework of general Banach space and spaces of sequences as defined above.

Recall that \mathcal{A} is power bounded if there exists a positive constant M such that $\|\mathcal{A}^n\| \leq M$ for all $n \in \mathbb{N}$.

We introduce few Lemmas with their proofs from [5], for the sake of the self-containedness of the paper.

Lemma 2.1. ([5]) Let $\mathcal{A} \in \mathcal{B}(\mathcal{X})$. If there exists M > 0 such that

$$\sup_{n \in \mathbb{N}} \|I + \mathcal{A} + \dots + \mathcal{A}^n\| = M < \infty,$$
(2.1)

then \mathcal{A} is power bounded and $1 \in \rho(\mathcal{A})$.

Proof. The proof is given in [5], but for convenience we will prove this Lemma in the sequel.

Since we have the identity

$$\mathcal{A}^{n+1} = I + (\mathcal{A} - I)(I + \mathcal{A} + \dots + \mathcal{A}^n),$$

by using the inequality (2.1) we get that A is power bounded.

Next, suppose that $1 \in \sigma(\mathcal{A})$. Then there exists a sequence $(\xi_m)_{m \in \mathbb{N}}$ with $\xi_m \in \mathcal{X}$, $\|\xi_m\| = 1$ and $(I - \mathcal{A})\xi_m \to 0$ as $m \to \infty$. Now \mathcal{A} is power bounded, and hence $\mathcal{A}^k(I - \mathcal{A})x_m \to 0$ as $m \to \infty$ uniformly for $k \in \mathbb{N}$. Then, $N \in \mathbb{N}$, N > 2M and $m \in \mathbb{N}$ such that

$$\|\mathcal{A}^k(I-\mathcal{A})x_m\| \le \frac{1}{2N}, \ k = 0, 1, \cdots, N.$$

Therefore,

$$M \geq \|\sum_{k=0}^{N} \mathcal{A}^{k} \xi_{m}\| = \|\xi_{m} + \sum_{k=1}^{N} \mathcal{A}^{k} \xi_{m}\|$$
$$= \|\xi_{m} + \sum_{k=1}^{N} (\xi_{m} + \sum_{j=0}^{k-1} \mathcal{A}^{j} (\mathcal{A} - I) \xi_{m})\|$$
$$= \|(N+1)\xi_{m} + \sum_{k=1}^{N} \sum_{j=0}^{k-1} \mathcal{A}^{j} (\mathcal{A} - I) \xi_{m}\|$$
$$\geq (N+1) - \frac{N(N+1)}{4N} > \frac{N}{2} > M,$$

which is absurd and hence $1 \in \rho(\mathcal{A})$.

Lemma 2.2. Let $\mathcal{V} \in \mathcal{B}(\mathcal{X})$ and $\theta \in \mathbb{R}$. If

$$\sup_{n \in \mathbb{N}} \|\sum_{k=0}^{n} e^{i\theta k} \mathcal{V}^k\| = M_{\theta} < \infty.$$
(2.2)

Then \mathcal{V} is power bounded and $e^{-i\theta} \in \rho(\mathcal{V})$.

Proof. Let $\mathcal{A} = e^{i\theta}\mathcal{V}$, then by Lemma 2.1 we have \mathcal{A} is power bounded but $\|\mathcal{A}\| = \|\mathcal{V}\|$, hence \mathcal{V} is power bounded. Also again, by Lemma 2.1, we have $1 \in \rho(\mathcal{A}) = \rho(e^{i\theta}\mathcal{V})$, i.e., $e^{i\theta}\mathcal{V} - I$ is invertible, from this we get $\mathcal{V} - e^{-i\theta}I$ is invertible. Hence $e^{-i\theta} \in \rho(\mathcal{V})$.

551

Lemma 2.3. Let $\mathcal{V} \in \mathcal{B}(\mathcal{X})$. If the inequality (2.2) holds true for all $\theta \in \mathbb{R}$, then $r(\mathcal{V}) < 1$.

Proof. From Lemma 2.2 we have \mathcal{V} is power bounded, so there exists M > 0 such that $\|\mathcal{V}^n\| \leq M$ for all $n \in \mathbb{N}$, then clearly $r(\mathcal{V}) := \lim_{n \to \infty} \|\mathcal{V}^n\|^{\frac{1}{n}} \leq 1$. But $e^{i\theta} \in \rho(\mathcal{V})$ for all $\theta \in R$ and $\sigma(\mathcal{V})$ is compact, hence $r(\mathcal{V}) < 1$.

3. Exponential stability of discrete semigroup

We recall that a discrete semigroup is a family $T = \{T(n) : n \in \mathbb{N}\}$ of bounded linear operators acting on \mathcal{X} which satisfies the following conditions:

(1) $\mathcal{T}(0) = I$, the identity operator on \mathcal{X} ,

(2) $\mathcal{T}(n+m) = \mathcal{T}(n)\mathcal{T}(m)$ for all $n, m \in \mathbb{N}$.

It is clear that $\mathcal{T}(n) = \mathcal{T}^n(1)$ for all $n \in \mathbb{N}$, $\mathcal{T}(1)$ is called the algebraic generator of the semigroup T.

The growth bound of T is denoted by $\omega_0(T)$ and is defined as

$$\omega_0(\mathbf{T}) := \inf \left\{ \omega \in \mathbb{R} : \text{ there exists } M_\omega \ge 1 \text{ such that} \\ \forall n \in \mathbb{N}, \ \|\mathcal{T}(n)\| \le M_\omega e^{\omega n} \right\}.$$

The family T is uniformly exponentially stable if $\omega_0(T)$ is negative, or equivalently, if there exists $M \ge 1$ and $\omega > 0$ such that $||\mathcal{T}(n)|| \le Me^{-\omega n}$ for all $n \in \mathbb{N}$.

Let us divide n by p, i.e., n = lp + r for some $l \in \mathbb{N}$, where $r \in \{0, 1, \dots, p-1\}$. We consider the following sets which will be useful along this work

$$\mathcal{A}_j := \{1 + jp, 2 + jp, \cdots, (j+1)p - 1\}, \quad \text{for all } j \in \mathbb{N}.$$

If $r \geq 1$ then

$$B_l := \{lp + 1, lp + 2, \cdots, lq + r\}$$

and

$$C := \{0, p, 2p, \cdots, lp\}.$$

It is clear that

$$\bigcup_{j=0}^{l-1} A_j \bigcup B_l \bigcup C = \{0, 1, 2, \cdots, n\}.$$
(3.1)

We denote by \mathcal{W} the class of all sequences from the space $\mathbb{P}_0^p(\mathbb{N}, X)$ in the form of $\{z(n) : z(n) = n(p-n)T(n)\}$, that is,

$$\mathcal{W} = \Big\{ z(n) \in \mathbb{P}_0^p(\mathbb{N}, X) : z(n) = n(p-n)\mathcal{T}(n) \Big\}.$$
(3.2)

It is not difficult to see that \mathcal{W} is the subspace of $\mathbb{P}^p_0(\mathbb{N}, X)$.

Our first result is stated as

Theorem 3.1. Let $\mathcal{T}(1)$ is the algebraic generator of the discrete semigroup $\mathbf{T} = \{\mathcal{T}(n) : n \in \mathbb{N}\}$ on X and $\theta \in \mathbb{R}$. Then the following statements hold true.

- (1) If the system $\xi_{n+1} = \mathcal{T}(1)\xi_n$ is uniformly exponentially stable then for each real number θ and for each p-periodic sequence z(n) with z(0) =0 the unique solution solution of the Cauchy Problem ($\mathcal{T}(1), \theta, 0$) is bounded.
- (2) If for each real number θ and for each p-periodic sequence z(n) in \mathcal{W} the unique solution solution of the Cauchy Problem $(\mathcal{T}(1), \theta, 0)$ is bounded, then T(n) is uniformly exponentially stable.

Proof. (1) First we will show that if $\mathcal{T}(n)$ is uniformly exponentially stable then the unique solution ζ_n of $(\mathcal{T}(1), \theta, 0)$ is bounded.

As $\mathcal{T}(n)$ is uniformly exponentially stable; there exist two positive constants M and β such that $\|\mathcal{T}(n)\| \leq Me^{-\beta n}$, for all $n \in \mathbb{N}$. The unique solution of the Cauchy Problem $(\mathcal{T}(1), \theta, 0)$ is given by

$$\xi_n = \sum_{k=0}^n e^{i\theta k} \mathcal{T}(n-k) z(k).$$

Taking the norm of both sides, we get

$$\begin{aligned} \|\xi_n\| &= \|\sum_{k=0}^n e^{i\theta k} \mathcal{T}(n-k) z(k)\| \\ &\leq \sum_{k=0}^n \|e^{i\theta k} \mathcal{T}(n-k) z(k)\| = \sum_{k=0}^n \|e^{i\theta k}\| \|\mathcal{T}(n-k)\| \| z(k)\| \\ &\leq \sum_{k=0}^n \|\mathcal{T}(n-k)\| \| z(k)\| \\ &\leq \sum_{k=0}^n M e^{-\beta(n-k)} M' = M'' e^{-\beta n} \sum_{k=0}^n e^{\beta k} \\ &\leq M'''. \end{aligned}$$

Thus, the solution of the Cauchy Problem $(\mathcal{T}(1), \theta, 0)$ is bounded. (2) The proof of the second part is not so easy.

As the unique solution of the Cauchy Problem

$$\begin{cases} \xi_{n+1} = \mathcal{T}(1)x_n + e^{i\theta(n+1)}z(n+1), \\ \xi_0 = 0, \end{cases}$$

$$\xi_n = \sum_{k=0}^n e^{i\theta k} \mathcal{T}(n-k) z(k)$$

where $z(k) \in \mathcal{W}$, i.e., $z(k) = k(p-k)\mathcal{T}(k)$, according to the partition (3.1), i.e., $\{0, 1, 2, \dots, n\} = \bigcup_{j=0}^{N-1} A_j \cup B_N \cup C$, let us replace k by k - jp in z(k) for \mathcal{A}_j and define it as

$$z(k) = \begin{cases} (k-jp)[(1+j)p-k]\mathcal{T}(k-jp), & \text{if } k \in \mathcal{A}_j, \\ k(p-k)\mathcal{T}(k), & \text{if } k \in B_l, \\ 0, & \text{if } k \in C. \end{cases}$$

Then clearly $z(k) \in \mathcal{W}$. This implies that

$$\begin{split} \xi_n &= \sum_{k=0}^{n} e^{i\theta k} \mathcal{T}(n-k) z(k) \\ &= \sum_{k \in \bigcup_{j=0}^{l-1} \mathcal{A}_j \cup B_l \cup C} e^{i\theta k} \mathcal{T}(lp+r-k) z(k) \\ &= \sum_{k \in \bigcup_{j=0}^{l-1} \mathcal{A}_j} e^{i\theta k} \mathcal{T}(lp+r-k) z(k) + \sum_{k \in B_l} e^{i\theta k} \mathcal{T}(lp+r-k) z(k) \\ &+ \sum_{k \in C} e^{i\theta k} \mathcal{T}(lp+r-k) z(k) \\ &= \sum_{j=0}^{l-1} \sum_{k=1+jp}^{(p-1+jp)} e^{i\theta k} \mathcal{T}(lp+r-k) z(k) + \sum_{k=lp+1}^{lp+r} e^{i\theta k} \mathcal{T}(lp+r-k) z(k) + 0 \\ &= J_1 + J_2, \end{split}$$

where

$$J_{1} = \sum_{j=0}^{l-1} \sum_{k=1+jp}^{(p-1+jp)} e^{i\theta k} \mathcal{T}(lp+r-k)(k-jq)[p-(k-jp)]\mathcal{T}(k-jp)x$$
$$= \sum_{j=0}^{l-1} \mathcal{T}(lp+r-jp) \sum_{k=1+jp}^{(p-1+jp)} e^{i\theta k}(k-jp)[p-(k-jp)]x$$

554

is

$$= \sum_{j=0}^{l-1} \mathcal{T}(lp+r-jp)e^{i\theta jp} \sum_{\nu=1}^{p-1} e^{i\theta\nu}\nu(p-\nu)x$$

$$= \sum_{j=0}^{l-1} e^{-i\theta(lp+r-jp)} \mathcal{T}(lp+r-jp)e^{i\theta(lp+r)} \sum_{\nu=1}^{p-1} e^{i\theta\nu}\nu(p-\nu)x$$

$$= \sum_{\omega=r+p}^{r+lp} e^{-i\theta\omega} \mathcal{T}^{\omega}(1)e^{i\theta n} \sum_{\nu=1}^{p-1} e^{i\theta\nu}\nu(p-\nu)x$$

$$= \sum_{\omega=r+p}^{n} e^{-i\theta\omega} \mathcal{T}^{\omega}(1)S(x)$$
with $S(x) = e^{i\theta n} \sum_{\nu=1}^{p-1} e^{i\theta\nu}\nu(p-\nu)x$. And
$$J_2 = \sum_{\nu=1}^{r-1} e^{i\theta(lp+r-\rho)} \mathcal{T}(\rho)z(lp+r-\rho)x$$

$$J_2 = \sum_{\rho=0}^{r} e^{i\theta(lp+r-\rho)} \mathcal{T}(\rho) z(lp+r-\rho)$$
$$= \sum_{\rho=0}^{r-1} e^{i\theta(lp+r-\rho)} \mathcal{T}(\rho) z(r-\rho) x.$$

Hence,

$$\xi_n = \sum_{k=0}^n e^{i\theta k} \mathcal{T}(n-k) z(k) = \sum_{\omega=r+p}^n e^{-i\theta\omega} T^{\omega}(1) S(x) + \sum_{\rho=0}^{r-1} e^{i\theta(n-\rho)} \mathcal{T}(\rho) z(r-\rho) x.$$

Now by our assumption x_n is bounded, i.e.,

$$\|\xi_n\| = \sup_{n \ge 0} \left\| \sum_{k=0}^n e^{i\theta k} \mathcal{T}(n-k) z(k) \right\| < \infty.$$

Thus

$$\sup_{n\geq 0} \left\| \sum_{\omega=r+p}^{n} e^{-i\theta\omega} \mathcal{T}^{\omega}(1) S(x) + \sum_{\rho=0}^{r-1} e^{i\theta(n-\rho)} \mathcal{T}(\rho) z(r-\rho) x \right\| < \infty,$$

which implies that

$$\sup_{n\geq 0} \|\sum_{\omega=r+p}^{n} e^{-i\theta\omega} \mathcal{T}^{\omega}(1)S(x)\| < \infty,$$

i.e.,

$$\sup_{n\geq 0} \|\sum_{\omega=r+p}^{n} e^{-i\theta\omega} \mathcal{T}^{\omega}(1)\| < \infty.$$

Thus by Lemma 3.4, $\mathbf{T} = \{\mathcal{T}(n)\}_{n>0}$ is uniformly exponentially stable. \Box

As a consequence of this theorem, we state the following Corollary.

Corollary 3.2. The system $\xi_{n+1} = \mathcal{T}(1)\xi_n$ is uniformly exponentially stable if and only if for any real number θ and any p-periodic sequence z(n) with z(0) = 0 the unique solution of the Cauchy Problem $(\mathcal{T}(1), \theta, 0)$ is bounded.

4. UNIFORM EXPONENTIAL STABILITY OF DISCRETE EVOLUTION FAMILY

The family $\mathcal{U} = \{\mathbb{U}(m,n) : m, n \in \mathbb{Z}_+, m \ge n\}$ of bounded linear operators is called *p*-periodic discrete evolution family, for a fixed integer $p \ge 2$, if it satisfies the following properties

- $\mathbb{U}(m,m) = I$, for all $m \in \mathbb{Z}_+$.
- $\mathbb{U}(m,n)\mathbb{U}(n,r) = \mathbb{U}(m,r)$, for all $m \ge n \ge r, m, n, r \in \mathbb{Z}_+$.
- $\mathbb{U}(m+p, n+p) = \mathbb{U}(m, n)$, for all $m \ge n, m, n \in \mathbb{Z}_+$.
- The map $(m,n) \mapsto \mathbb{U}(m,n)x : \{(m,n): m, n \in \mathbb{Z}_+ : m \ge n\} \to \mathcal{X}$ is continuous for all $m \ge n$.

It is well known that \mathcal{U} is exponentially bounded, that is there exist $\omega \in \mathbb{R}$ and $M_{\omega} \geq 0$ such that

$$\|\mathbb{U}(m,n)\| \le M_{\omega} e^{\omega(m-n)}, \quad \text{for all} \quad m \ge n.$$
(4.1)

The growth bound of exponentially bounded evolution family \mathcal{U} is defined by

$$\omega_0(\mathcal{U}) := \inf \Big\{ \omega \in \mathbb{R} : \text{ there is } M_\omega \ge 0 \text{ such that } (4.1) \text{ holds} \Big\}.$$

Let us consider the following discrete Cauchy Problem:

$$\begin{cases} \zeta_{n+1} = \mathcal{A}_n \zeta_n + e^{i\theta(n+1)} z(n+1), & n \in \mathbb{Z}_+, \\ \zeta_0 = 0, \end{cases}$$

where the sequence (\mathcal{A}_n) is q-periodic, i.e., $\mathcal{A}(n+p) = \mathcal{A}_n$ for all $n \in \mathbb{Z}_+$ and a fixed $p \geq 2$.

Let

$$\mathbb{U}(n,k) = \begin{cases} \mathcal{A}_{n-1}\mathcal{A}_{n-2}\cdots\mathcal{A}_k, & \text{if } k \le n-1, \\ I, & \text{if } k = n. \end{cases}$$

Then, the family $\{\mathbb{U}(n,k)\}_{n\geq k\geq 0}$ is a discrete *p*-periodic evolution family and the solution ζ_n of the Cauchy Problem $(\mathcal{A}_n, \theta, 0)$ in terms of the discrete evolution family $\mathbb{U}(n,k)$ is given by:

$$\zeta_n = \sum_{k=1}^n e^{i\theta k} \mathbb{U}(n,k) z(k).$$

We denote by \mathcal{B} the class of all sequences from the space $\mathbb{P}_0^p(\mathbb{N}, X)$ in the form of $\{z(n) : z(n) = n(p-n)\mathbb{U}(n,0)\}$, i.e.,

$$\mathcal{W} = \Big\{ z(n) \in \mathbb{P}_0^p(\mathbb{N}, X) : z(n) = n(p-n)\mathbb{U}(n, 0) \Big\}.$$
(4.2)

Clearly \mathcal{W} is the subspace of $\mathbb{P}^p_0(\mathbb{N}, X)$.

Now we are in position to state and prove our main result.

Theorem 4.1. Let $\mathcal{U} = \{\mathbb{U}(m,n) : m, n \in \mathbb{N}\}$ be a discrete evolution family on \mathcal{X} and θ is any real number. The following statements hold true.

- (1) If the system $\xi_{n+1} = \mathcal{A}_n \xi_n$ is uniformly exponentially stable, equivalently \mathcal{U} is uniformly exponentially stable then for each real number θ and each p-periodic sequence z_n with $z_0 = 0$ the unique solution of the Cauchy Problem $(\mathcal{A}_n, \theta, 0)$ is bounded.
- (2) If for each real number θ and each p-periodic sequence z_n in W the unique solution of the Cauchy Problem $(\mathcal{A}_n, \theta, 0)$ is bounded, then \mathcal{U} is uniformly exponentially stable.

Proof. (1) Here we will show that if $\mathbb{U}(m, n)$ is uniformly exponentially stable then the unique solution ζ_n of $(\mathcal{A}_n, \theta, 0)$ is bounded. As $\mathbb{U}(m, n)$ is uniformly exponentially stable thus there exist two positive constants M and ν such that $\|\mathbb{U}(m, n)\| \leq Me^{-\nu(m-n)}$, for all $m, n \in \mathbb{N}$.

The unique solution of the Cauchy Problem $(\mathcal{A}_n, \theta, 0)$ is given by

$$\zeta_n = \sum_{k=1}^n e^{i\theta k} \mathbb{U}(n,k) z_k.$$

Taking the norm of both sides, we obtain

$$\begin{aligned} \|\zeta_{n}\| &= \|\sum_{k=1}^{n} e^{i\theta k} \mathbb{U}(n,k) z_{k}\| \\ &\leq \sum_{k=1}^{n} \|e^{i\theta k} \mathbb{U}(n,k) z_{k}\| = \sum_{k=1}^{n} \|e^{i\theta k}\| \|\mathbb{U}(n,k)\| \|z_{k}\| \\ &\leq \sum_{k=1}^{n} \|\mathbb{U}(n,k)\| \|z_{k}\| \\ &\leq \sum_{k=1}^{n} M e^{-\nu(n-k)} M' = M'' e^{-\nu n} \sum_{k=1}^{n} e^{\nu k} \\ &\leq M'''. \end{aligned}$$

Thus, the solution of the Cauchy Problem $(\mathcal{A}_n, \theta, 0)$ is bounded.

(2) The proof of the second part is not so easy. As the unique solution of the Cauchy Problem

$$\begin{cases} \zeta_{n+1} = \mathcal{A}_n \zeta_n + e^{i\theta(n+1)} z(n+1), \\ \zeta_0 = 0, \end{cases}$$

in terms of evolution family $\mathbb{U}(n,k)$ is

$$\zeta_n = \sum_{k=0}^n e^{i\theta k} \mathbb{U}(n,k) z(k)$$

where $z(k) \in \mathcal{B}$, i.e., $z(k) = k(q-k)\mathbb{U}(k,0)$. According to the partition (3.1), i.e., $\{0, 1, 2, \dots, n\} = \bigcup_{j=0}^{l-1} \mathcal{A}_j \bigcup B_l \bigcup C$, let us replace k by k - jp in z(k) for \mathcal{A}_j and define it as

$$z(k) = \begin{cases} (k - jp)[(1 + j)p - k] \mathbb{U}(k - jp, 0), & \text{if } k \in \mathcal{A}_j, \\ k(p - k) \mathbb{U}(k, 0), & \text{if } k \in B_l, \\ 0, & \text{if } k \in C. \end{cases}$$

Then clearly $z(k) \in \mathcal{B}$. Thus

$$\begin{split} \zeta_n &= \sum_{k=1}^n e^{i\theta k} \mathbb{U}(n,k) z(k) = \sum_{k=1}^{lp+r} e^{i\theta k} \mathbb{U}(lp+r,k) z(k) \\ &= \sum_{k \in \cup_{j=0}^{l-1} A_j \cup B_l \cup C} e^{i\theta k} \mathbb{U}(lp+r,k) z(k) \\ &= \sum_{k \in \cup_{j=0}^{l-1} A_j} e^{i\theta k} \mathbb{U}(lp+r,k) z(k) + \sum_{k \in B_l} e^{i\theta k} \mathbb{U}(lp+r,k) z(k) \\ &+ \sum_{k \in C} e^{i\theta k} \mathbb{U}(lp+r,k) z(k) \\ &= \sum_{j=0}^{l-1} \sum_{k=1+jp}^{p-1+jp} e^{i\theta k} \mathbb{U}(lp+r,k) z(k) + \sum_{k=lp+1}^{lp+r} e^{i\theta k} \mathbb{U}(lp+r,k) z(k) \\ &+ \sum_{k \in C} e^{i\theta k} \mathbb{U}(lp+r,k) z(k) \\ &= \sum_{j=0}^{l-1} \sum_{k=1+jp}^{p-1+jp} e^{i\theta k} \mathbb{U}(lp+r,k) (k-jp) [(1+j)p-k] \mathbb{U}(k-jp,0) \end{split}$$

$$\begin{split} &+ \sum_{k=lp+1}^{lp+r} e^{i\theta k} \mathbb{U}(lp+r,k)k(p-k)\mathbb{U}(k,0) \\ &+ \sum_{k\in C} e^{i\theta k} \mathbb{U}(lp+r,k)0 \\ &= \sum_{j=0}^{l-1} \sum_{k=l+jp}^{p-1+jp} e^{i\mu k} \mathbb{U}(lp+r,k)(k-jp)[(1+j)p-k]\mathbb{U}(k-jp,0) \\ &+ \sum_{k=lp+1}^{lp+r} e^{i\theta k} \mathbb{U}(lp+r,k)k(p-k)\mathbb{U}(k,0) \\ &= I_1 + I_2, \end{split}$$

where

$$I_1 = \sum_{j=0}^{l-1} \sum_{k=1+jp}^{p-1+jp} e^{i\theta k} \mathbb{U}(lp+r,k)(k-jp)[(1+j)p-k]\mathbb{U}(k-jp,0)$$

and

$$I_2 = \sum_{k=lp+1}^{lp+r} e^{i\theta k} \mathbb{U}(lp+r,k)k(p-k)\mathbb{U}(k,0).$$

Now to further simplify I_1

$$\begin{split} I_{1} &= \sum_{j=0}^{l-1} \sum_{k=1+jp}^{p-1+jp} e^{i\theta k} \mathbb{U}(lp+r,k)(k-jp)[(1+j)p-k)] \mathbb{U}(k-jp,0) \\ &= \sum_{j=0}^{l-1} \sum_{k=1+jp}^{p-1+jp} e^{i\theta k} \mathbb{U}(lp+r,k)(k-jp)[(1+j)p-k)] \mathbb{U}(k,jp) \\ &= \sum_{j=0}^{l-1} \sum_{k=1+jp}^{p-1+jp} e^{i\theta k} \mathbb{U}(lp+r,jp)(k-jp)[(1+j)p-k)] \\ &= \sum_{j=0}^{l-1} \mathbb{U}(lp+r,jp) \sum_{k=1+jp}^{p-1+jp} e^{i\theta k}(k-jp)[(1+j)p-k)] \\ &= \sum_{j=0}^{-1} \mathbb{U}(lp+r,jp) \sum_{k=1+jp}^{p-1+jp} e^{i\theta k}(k-jp)[p-(k-jp)] \\ &= \sum_{j=0}^{l-1} \mathbb{U}(r,0) \mathbb{U}^{l-j}(p,0) e^{i\theta jp} \sum_{v=1}^{p-1} e^{i\theta v} v(p-v) \end{split}$$

R. P. Agarwal, A. Zada, N. Ahmad and D. Lassoued

$$= \mathbb{U}(r,0) \sum_{v=1}^{p-1} e^{i\theta v} v(p-v) \sum_{j=0}^{l-1} e^{i\theta j p} \mathbb{U}^{l-j}(p,0)$$

$$= \mathbb{U}(r,0) \sum_{v=1}^{p-1} e^{i\theta v} v(p-v) \sum_{\alpha=1}^{l} e^{i\theta p(\alpha)} \mathbb{U}^{\alpha}(p,0)$$

$$= \mathbb{U}(r,0) \sum_{v=1}^{p-1} e^{i\theta v} v(p-v) e^{i\theta p l} \sum_{\alpha=1}^{l} e^{i\theta p \alpha} \mathbb{U}^{\alpha}(p,0)$$

$$= G(\mu,p) \sum_{\alpha=1}^{l} e^{i\theta p \alpha} \mathbb{U}^{\alpha}(p,0),$$

where $G(\mu, p) = \mathbb{U}(r, 0) \sum_{v=1}^{p-1} e^{i\theta v} v(p-v) e^{-i\theta pl} \neq 0$. Also

$$I_{2} = \sum_{k=lp+1}^{lp+r} e^{i\theta k} \mathbb{U}(lp+r,k)k(p-k)\mathbb{U}(k,0)$$

= $\sum_{k=lp+1}^{lp+r} e^{i\theta k}\mathbb{U}(lp+r,0)k(p-k)$
= $\mathbb{U}(lp+r,0)\sum_{k=lp+1}^{lp+r} e^{i\theta k}k(p-k).$

Hence,

$$\sum_{k=0}^{n} e^{i\theta k} \mathbb{U}(n,k) z(k)$$

= $G(\theta,p) \sum_{\alpha=1}^{l} e^{i\theta p\alpha} \mathbb{U}^{\alpha}(p,0) x + \mathbb{U}(lp+r,0) \sum_{k=lp+1}^{lp+r} e^{i\theta k} k(p-k) x$

As ζ_n is bounded, we have I_1 is bounded, i.e.,

$$\sup_{l\geq 0}\Big\|\sum_{\alpha=0}^l e^{i\mu p\alpha}\mathbb{U}^\alpha(p,0)\Big\|<\infty.$$

Now applying Lemma (2.2), we obtain that $\mathbb{U}(p,0)$ is power bounded and $e^{-i\mu p} \in \rho(\mathbb{U}(p,0))$. Therefore, \mathcal{U} is uniformly exponentially stable and hence the proof is completed.

References

- S. Balint, On the Perron-Bellman theorem for systems with constant coefficients, Ann. Univ. Timişoara, 21(1-2) (1983), 3–8.
- [2] C. Buşe, On the Perron-Bellman theorem for evolutionary processes with exponential growth in Banach spaces, New Zealand Journal of Mathematics, 27 (1998), 183–190.
- [3] C. Buşe and D. Barbu, Some remarks about the Perron condition for strongly continious semigroups, Analele Univ. Timişoara, 1 (1997).
- [4] C. Buşe, P. Cerone, S.S. Dragomir and A. Sofo, Uniform stability of periodic discrete system in Banach spaces, J. Difference Equ. Appl., 11(12) (2005), 1081–1088.
- [5] C. Buse, S.S. Dragomir and V. Lupulescu, Characterizations of stability for strongly continuous semigroups by boundedness of its convolutions with almost periodic functions, Int. Jour. of Diff. Equa. and Appl., 2(1) (2001), 103–109.
- [6] C. Buşe and M.S. Prajea, On Asymptotic behavior of discrete and continious semigroups on Hilbert spaces, Bull. Math. Soc. Sci. Roum. Tome, 51(99), NO. 2 (2008), 123–135.
- [7] C. Buşe and M. Reghiş, On the Perron-Bellman theorem for strongly continious semigroups and periodic evolutionary processes in Banach spaces, Italian jour. of Pure and Appl. Math., No. 4 (1998), 155–166.
- [8] C. Buse and A. Zada, Dichotomy and boundedness of solutions for some discrete Cauchy Problems, Proc. of IWOTA- 2008, Operator Theory Advances and Applications, Vol. 203 (2010), 165–174.
- [9] A.L. Cauchy, Cours d'Analyse de l'École Royale Polytechnique, première Partie, Analyse Algébrique, 1821, (see also Oeuvres, Ser.2, 3 (1897)).
- [10] R. Datko, Extending a theorem of A. M. Liapunov to Hilbert space, Journal of Math. Anal, Appl., 32 (1970), 610–616.
- [11] J.M.A.M. Van Neerven, The Asymptotic Behaviour of Semigroups of Linear Operators, Birkhäuser-Verlag, 1996.
- [12] A.M. Liapunov, Stability of Motion, Ph.D. thesis, Kharkov, 1892, English translation, Academic Press, 1966.
- [13] R. Nagel, One-parameter semigroups of positive operators, Lect. Notes in Math., 1184, Springer-Verlag, Berlin-New York, 1986.
- [14] J.M.A.M. Van Neerven, Individual stability of strongly continuous semigroups with uniformly bounded local resolvent, Semigroup Forum, 53 (1996), 155–161.
- [15] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, 1983.
- [16] G. Peano, Integrazione per serie delle equazioni differenziali lineari, Atti Reale Acc. Sci. Torino, 22 (1887), 293–302.
- [17] G. Peano, Intégration par séries des équations différentielles linéaires, Math. Ann., 32 (1888), 450–456.
- [18] Vu Quoc Phong, On stability of C_0 -semigroups, Proc. Amer. Math. Soc., **129**(10) (2002), 2871–2879.
- [19] A. Zada, A characterization of dichotomy in terms of boundedness of solutions for some Cauchy problems, Elec. J. of Diff. Equa., 2008(94) (2008), 1–5.