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Abstract. Let T (1) is the algebraic generator of the discrete semigroup T = {T (n)}n≥0.
We prove that the system ξn+1 = T (1)ξn is uniformly exponentially stable if and only if for
any θ, a real number and any p-periodic sequence z(n) with z(0) = 0 the unique solution of
the Cauchy Problem {

ξn+1 = T (1)ξn + eiθ(n+1)z(n+ 1),

ξ0 = 0
(T (1), θ, 0)

is bounded. We also extend the above result to p-periodic system ζn+1 = Anζn, i.e., we
proved that the system ζn+1 = Anζn is uniformly exponentially stable if and only if for
θ ∈ R and any p-periodic sequence z(n), with z(0) = 0 the unique solution of the Cauchy
Problem {

ζn+1 = Anζn + eiθ(n+1)z(n+ 1),

ζ0 = 0
(An, θ, 0)

is bounded. Here, An is a sequence of bounded linear operators on Banach space X .

0Received April 19, 2014. Revised July 9, 2014.
02010 Mathematics Subject Classification: 47A05, 47A30, 47D06, 47A10, 35B35, 35B10.
0Keywords: Exponential stability, discrete semigroups, discrete evolution family, periodic

sequences



548 R. P. Agarwal, A. Zada, N. Ahmad and D. Lassoued

1. Introduction

In 1821, A. L. Cauchy addressed, in the Chapter V of his Cours d’Analyse
[9], the following problem:

Déterminer la fonction ψ(x) de manière qu’elle reste continue entre deux
limites réelles quelconques de la variable x, et que l’on ait pour toutes les
valeurs réelles des variables x et y

ψ(x+ y) = ψ(x)ψ(y). (1.1)

This means the question of determining a function ψ(x) in such a way that
it remains continuous between two arbitrary real limits of the variable x, and
that, for all real values of the variables x and y, one has (1.1) is satisfied.

In modern notations the Cauchy question can be restated as: Find all the
maps T (·) : R+ → C which satisfy the following functional equation{

T (t+ s) = T (t)T (s),

T (0) = 1.
(1.2)

It was easy to check that the function T (t) = eat, for all t ∈ R+ satisfies
(1.2). Also, it was found that the function T (t) = eat satisfies the differential
equation 

dT (t)

dt
= aT (t),

T (0) = 1.

The next question was to extend the same idea to functions of the form
T (·) : R+ →Mn(C) whereMn(C) is the space of all square matrices of order
n. In this case the solution of the differential equation

dT (t)

dt
= AT (t),

T (0) = I

is T (t) = etA where, in 1888 the exponential of the matrix A were defined
by G. Peano [15, 16]. Later on, the family T (t) = (etA)t≥0, t ≥ 0 was called
semigroup of operators generated by the matrix A.

In 1892, Liapunov gives his classical Liapunov stability theorem which is
stated as

Theorem 1.1. ([12]) Let (etA)t≥0 be the family of operators generated by
A ∈Mn(C). Then the following assertions are equivalent.

(a) The semigroup is stable, i.e., lim
t→∞
‖etA‖ = 0.
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(b) All eigenvalues of A have negative real part, i.e., Re(λ) < 0 for all the
eigenvalues λ of A.

In 1970, one of the remarkable results in the stability of strongly continuous
semigroup T = {T (t)}t≥0 was obtained by R. Datko [10]. This result states
that a strongly continuous semigroup of bounded linear operators acting on
complex or real Banach space is uniformly exponentially stable if and only if∫ ∞

0
‖T (t)x‖dt <∞.

In 1972, Pazy [15] extended the result of Datko to more stronger form which
stated that a strongly continuous semigroup of bounded linear operators acting
on real or complex Banach space is uniformily exponentially stable if and only
if ∫ ∞

0
‖T (t)x‖pdt <∞, for any p ≥ 1.

In the last few decades, the theory of exponential stability of semigroups of
operators is well developed. For further results on this topic, we recommend
[1]-[7], [13, 14, 18].

In 2008, the classical Lyapunov Theorem 1.1 was extended by the first
author of this note [19], in the following manner:

Theorem 1.2. The system ξ̇(t) = Aξ(t) is exponentially stable if and only if
for any θ ∈ R and any b ∈ Cn the solution of the Cauchy Problem{

ζ̇(t) = Aζ(t) + eiθtb, t ≥ 0,

ζ(0) = 0

is bounded, where A ∈Mn(C).

In 2009, Buse and Zada [8] proved the following similar result for discrete
systems:

Theorem 1.3. The system ξn+1 = Aξn is exponentially stable if and only if
for any θ ∈ R and any b ∈ Cm the solution of the discrete Cauchy Problem{

ζn+1 = Aζn + eiθnb, n ∈ N,
ζ0 = 0

is bounded.

In this article, we aim to study a similar result as above for the systems
ξn+1 = T (1)ξn and ζn+1 = Anζn, where T (1) is the algebric generator of the
discrete semigroup {T (n)}n≥0 and An is the q-periodic sequence of bounded
linear operators acting on X.
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Indeed, we establish a result which states the following result as a corollary:

Theorem 1.4. The system ξn+1 = T (1)ξn is uniformly exponentially stable
if and only if for each real number θ and each p-periodic sequence z(n) with
z(0) = 0 the unique solution of the Cauchy Problem{

ξn+1 = T (1)ξn + eiθ(n+1)z(n+ 1),

ξ0 = 0
(T (1), θ, 0)

is bounded.

Moreover, we prove the following theorem:

Theorem 1.5. The system ζn+1 = Anζn is uniformly exponentially stable
if and only if for any real number θ and any p-periodic sequence z(n) with
z(0) = 0 the unique solution of the Cauchy Problem{

ζn+1 = Anζn + eiθ(n+1)z(n+ 1),

ζ0 = 0
(An, θ, 0)

is bounded.

2. Notations and preliminaries

Let X be a real or complex Banach space and B(X ) the Banach algebra of
all linear and bounded operators acting on X .

We denote by ‖ · ‖ the norms of operators and vectors. Denote by R+ the
set of real numbers and by N the set of all non-negative integers.

Let B(N,X ) be the space of X -valued bounded sequences with the supre-
mum norm, and P p0 (N,X ) be the space of p-periodic (with p ≥ 2) sequences z
with z(0) = 0. Then clearly P p0 (N,X ) is a closed subspace of B(N,X ).

Throughout this paperA ∈ B(X ), σ(A) denotes the spectrum of A and r(A)
denotes the spectral radius of A, and is defined as r(A) = sup{|λ| : λ ∈ σ(A)}.
It is well known that r(A) := lim

n→∞
‖An‖

1
n . The resolvent set of A is defined

as ρ(A) := C\σ(A), i.e the set of all λ ∈ C for which A − λI is an invertible
operator in B(X ).

We give some results in the framework of general Banach space and spaces
of sequences as defined above.

Recall that A is power bounded if there exists a positive constant M such
that ‖An‖ ≤M for all n ∈ N.

We introduce few Lemmas with their proofs from [5], for the sake of the
self-containedness of the paper.
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Lemma 2.1. ([5]) Let A ∈ B(X ). If there exists M > 0 such that

sup
n∈N
‖I +A+ · · ·+An‖ = M <∞, (2.1)

then A is power bounded and 1 ∈ ρ(A).

Proof. The proof is given in [5], but for convenience we will prove this Lemma
in the sequel.

Since we have the identity

An+1 = I + (A− I)(I +A+ · · ·+An),

by using the inequality (2.1) we get that A is power bounded.
Next, suppose that 1 ∈ σ(A). Then there exists a sequence (ξm)m∈N with

ξm ∈ X , ‖ξm‖ = 1 and (I −A)ξm → 0 as m→∞. Now A is power bounded,
and hence Ak(I −A)xm → 0 as m → ∞ uniformly for k ∈ N. Then, N ∈ N,
N > 2M and m ∈ N such that

‖Ak(I −A)xm‖ ≤
1

2N
, k = 0, 1, · · · , N.

Therefore,

M ≥ ‖
N∑
k=0

Akξm‖ = ‖ξm +

N∑
k=1

Akξm‖

= ‖ξm +
N∑
k=1

(ξm +
k−1∑
j=0

Aj(A− I)ξm)‖

= ‖(N + 1)ξm +
N∑
k=1

k−1∑
j=0

Aj(A− I)ξm‖

≥ (N + 1)− N(N + 1)

4N
>
N

2
> M,

which is absurd and hence 1 ∈ ρ(A). �

Lemma 2.2. Let V ∈ B(X ) and θ ∈ R. If

sup
n∈N
‖

n∑
k=0

eiθkVk‖ = Mθ <∞. (2.2)

Then V is power bounded and e−iθ ∈ ρ(V).

Proof. Let A = eiθV, then by Lemma 2.1 we have A is power bounded but
‖A‖ = ‖V‖, hence V is power bounded. Also again, by Lemma 2.1, we have
1 ∈ ρ(A) = ρ(eiθV), i.e., eiθV − I is invertible, from this we get V − e−iθI is
invertible. Hence e−iθ ∈ ρ(V). �
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Lemma 2.3. Let V ∈ B(X ). If the inequality (2.2) holds true for all θ ∈ R,
then r(V) < 1.

Proof. From Lemma 2.2 we have V is power bounded, so there exists M > 0

such that ‖Vn‖ ≤M for all n ∈ N, then clearly r(V) := lim
n→∞

‖Vn‖
1
n ≤ 1. But

eiθ ∈ ρ(V) for all θ ∈ R and σ(V) is compact, hence r(V) < 1. �

3. Exponential stability of discrete semigroup

We recall that a discrete semigroup is a family T = {T (n) : n ∈ N} of
bounded linear operators acting on X which satisfies the following conditions:

(1) T (0) = I, the identity operator on X ,
(2) T (n+m) = T (n)T (m) for all n,m ∈ N.

It is clear that T (n) = T n(1) for all n ∈ N, T (1) is called the algebraic
generator of the semigroup T .

The growth bound of T is denoted by ω0(T ) and is defined as

ω0(T ) := inf
{
ω ∈ R : there exists Mω ≥ 1 such that

∀n ∈ N, ‖T (n)‖ ≤Mωe
ωn
}
.

The family T is uniformly exponentially stable if ω0(T ) is negative, or equiv-
alently, if there exists M ≥ 1 and ω > 0 such that ‖T (n)‖ ≤ Me−ωn for all
n ∈ N.

Let us divide n by p, i.e., n = lp+r for some l ∈ N, where r ∈ {0, 1, · · · , p−
1}. We consider the following sets which will be useful along this work

Aj := {1 + jp, 2 + jp, · · · , (j + 1)p− 1}, for all j ∈ N.

If r ≥ 1 then

Bl := {lp+ 1, lp+ 2, · · · , lq + r}
and

C := {0, p, 2p, · · · , lp}.
It is clear that

l−1⋃
j=0

Aj
⋃
Bl
⋃
C = {0, 1, 2, · · · , n}. (3.1)

We denote by W the class of all sequences from the space Pp0(N, X) in the
form of {z(n) : z(n) = n(p− n)T (n)}, that is,

W =
{
z(n) ∈ Pp0(N, X) : z(n) = n(p− n)T (n)

}
. (3.2)

It is not difficult to see that W is the subspace of Pp0(N, X).
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Our first result is stated as

Theorem 3.1. Let T (1) is the algebraic generator of the discrete semigroup
T = {T (n) : n ∈ N} on X and θ ∈ R. Then the following statements hold
true.

(1) If the system ξn+1 = T (1)ξn is uniformly exponentially stable then for
each real number θ and for each p-periodic sequence z(n) with z(0) =
0 the unique solution solution of the Cauchy Problem (T (1), θ, 0) is
bounded.

(2) If for each real number θ and for each p-periodic sequence z(n) in
W the unique solution solution of the Cauchy Problem (T (1), θ, 0) is
bounded, then T (n) is uniformly exponentially stable.

Proof. (1) First we will show that if T (n) is uniformly exponentially stable
then the unique solution ζn of (T (1), θ, 0) is bounded.

As T (n) is uniformly exponentially stable; there exist two positive constants
M and β such that ‖T (n)‖ ≤ Me−βn, for all n ∈ N. The unique solution of
the Cauchy Problem (T (1), θ, 0) is given by

ξn =
n∑
k=0

eiθkT (n− k)z(k).

Taking the norm of both sides, we get

‖ξn‖ = ‖
n∑
k=0

eiθkT (n− k)z(k)‖

≤
n∑
k=0

‖eiθkT (n− k)z(k)‖ =
n∑
k=0

‖eiθk‖‖T (n− k)‖‖z(k)‖

≤
n∑
k=0

‖T (n− k)‖‖z(k)‖

≤
n∑
k=0

Me−β(n−k)M ′ = M ′′e−βn
n∑
k=0

eβk

≤ M ′′′.

Thus, the solution of the Cauchy Problem (T (1), θ, 0) is bounded.

(2) The proof of the second part is not so easy.

As the unique solution of the Cauchy Problem{
ξn+1 = T (1)xn + eiθ(n+1)z(n+ 1),

ξ0 = 0,
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is

ξn =

n∑
k=0

eiθkT (n− k)z(k)

where z(k) ∈ W, i.e., z(k) = k(p − k)T (k), according to the partition (3.1),

i.e., {0, 1, 2, · · · , n} = ∪N−1j=0 Aj ∪BN ∪C, let us replace k by k− jp in z(k) for
Aj and define it as

z(k) =

 (k − jp)[(1 + j)p− k]T (k − jp), if k ∈ Aj ,
k(p− k)T (k), if k ∈ Bl,
0, if k ∈ C.

Then clearly z(k) ∈ W. This implies that

ξn =
n∑
k=0

eiθkT (n− k)z(k)

=
∑

k∈
⋃l−1
j=0Aj∪Bl∪C

eiθkT (lp+ r − k)z(k)

=
∑

k∈
⋃l−1
j=0Aj

eiθkT (lp+ r − k)z(k) +
∑
k∈Bl

eiθkT (lp+ r − k)z(k)

+
∑
k∈C

eiθkT (lp+ r − k)z(k)

=

l−1∑
j=0

(p−1+jp)∑
k=1+jp

eiθkT (lp+ r − k)z(k) +

lp+r∑
k=lp+1

eiθkT (lp+ r − k)z(k) + 0

= J1 + J2,

where

J1 =
l−1∑
j=0

(p−1+jp)∑
k=1+jp

eiθkT (lp+ r − k)(k − jq)[p− (k − jp)]T (k − jp)x

=

l−1∑
j=0

T (lp+ r − jp)
(p−1+jp)∑
k=1+jp

eiθk(k − jp)[p− (k − jp)]x
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=
l−1∑
j=0

T (lp+ r − jp)eiθjp
p−1∑
ν=1

eiθνν(p− ν)x

=
l−1∑
j=0

e−iθ(lp+r−jp)T (lp+ r − jp)eiθ(lp+r)
p−1∑
ν=1

eiθνν(p− ν)x

=

r+lp∑
ω=r+p

e−iθωT ω(1)eiθn
p−1∑
ν=1

eiθνν(p− ν)x

=
n∑

ω=r+p

e−iθωT ω(1)S(x)

with S(x) = eiθn
p−1∑
ν=1

eiθνν(p− ν)x. And

J2 =
r−1∑
ρ=0

eiθ(lp+r−ρ)T (ρ)z(lp+ r − ρ)x

=
r−1∑
ρ=0

eiθ(lp+r−ρ)T (ρ)z(r − ρ)x.

Hence,

ξn =
n∑
k=0

eiθkT (n−k)z(k) =
n∑

ω=r+p

e−iθωTω(1)S(x)+
r−1∑
ρ=0

eiθ(n−ρ)T (ρ)z(r−ρ)x.

Now by our assumption xn is bounded, i.e.,

‖ξn‖ = sup
n≥0

∥∥∥ n∑
k=0

eiθkT (n− k)z(k)
∥∥∥ <∞.

Thus

sup
n≥0
‖

n∑
ω=r+p

e−iθωT ω(1)S(x) +

r−1∑
ρ=0

eiθ(n−ρ)T (ρ)z(r − ρ)x‖ <∞,

which implies that

sup
n≥0
‖

n∑
ω=r+p

e−iθωT ω(1)S(x)‖ <∞,

i.e.,

sup
n≥0
‖

n∑
ω=r+p

e−iθωT ω(1)‖ <∞.
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Thus by Lemma 3.4, T = {T (n)}n≥0 is uniformly exponentially stable. �

As a consequence of this theorem, we state the following Corollary.

Corollary 3.2. The system ξn+1 = T (1)ξn is uniformly exponentially stable
if and only if for any real number θ and any p-periodic sequence z(n) with
z(0) = 0 the unique solution of the Cauchy Problem (T (1), θ, 0) is bounded.

4. Uniform exponential stability of discrete evolution family

The family U = {U(m,n) : m,n ∈ Z+,m ≥ n} of bounded linear operators
is called p-periodic discrete evolution family, for a fixed integer p ≥ 2, if it
satisfies the following properties

• U(m,m) = I, for all m ∈ Z+.
• U(m,n)U(n, r) = U(m, r), for all m ≥ n ≥ r, m,n, r ∈ Z+.
• U(m+ p, n+ p) = U(m,n), for all m ≥ n, m,n ∈ Z+.
• The map (m,n) 7→ U(m,n)x : {(m,n) : m,n ∈ Z+ : m ≥ n} → X is

continuous for all m ≥ n.
It is well known that U is exponentially bounded, that is there exist ω ∈ R

and Mω ≥ 0 such that

‖U(m,n)‖ ≤Mωe
ω(m−n), for all m ≥ n. (4.1)

The growth bound of exponentially bounded evolution family U is defined
by

ω0(U) := inf
{
ω ∈ R : there is Mω ≥ 0 such that (4.1) holds

}
.

Let us consider the following discrete Cauchy Problem:{
ζn+1 = Anζn + eiθ(n+1)z(n+ 1), n ∈ Z+,

ζ0 = 0,

where the sequence (An) is q-periodic, i.e., A(n+ p) = An for all n ∈ Z+ and
a fixed p ≥ 2.

Let

U(n, k) =

{An−1An−2 · · · Ak, if k ≤ n− 1,

I, if k = n.

Then, the family {U(n, k)}n≥k≥0 is a discrete p-periodic evolution family and
the solution ζn of the Cauchy Problem (An, θ, 0) in terms of the discrete evo-
lution family U(n, k) is given by:

ζn =

n∑
k=1

eiθkU(n, k)z(k).
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We denote by B the class of all sequences from the space Pp0(N, X) in the
form of {z(n) : z(n) = n(p− n)U(n, 0)}, i.e.,

W =
{
z(n) ∈ Pp0(N, X) : z(n) = n(p− n)U(n, 0)

}
. (4.2)

Clearly W is the subspace of Pp0(N, X).

Now we are in position to state and prove our main result.

Theorem 4.1. Let U = {U(m,n) : m,n ∈ N} be a discrete evolution family
on X and θ is any real number. The following statements hold true.

(1) If the system ξn+1 = Anξn is uniformly exponentially stable, equiva-
lently U is uniformly exponentially stable then for each real number θ
and each p-periodic sequence zn with z0 = 0 the unique solution of the
Cauchy Problem (An, θ, 0) is bounded.

(2) If for each real number θ and each p-periodic sequence zn in W the
unique solution of the Cauchy Problem (An, θ, 0) is bounded, then U is
uniformly exponentially stable.

Proof. (1) Here we will show that if U(m,n) is uniformly exponentially stable
then the unique solution ζn of (An, θ, 0) is bounded. As U(m,n) is uniformly
exponentially stable thus there exist two positive constants M and ν such that
‖U(m,n)‖ ≤Me−ν(m−n), for all m,n ∈ N.

The unique solution of the Cauchy Problem (An, θ, 0) is given by

ζn =

n∑
k=1

eiθkU(n, k)zk.

Taking the norm of both sides, we obtain

‖ζn‖ = ‖
n∑
k=1

eiθkU(n, k)zk‖

≤
n∑
k=1

‖eiθkU(n, k)zk‖ =
n∑
k=1

‖eiθk‖‖U(n, k)‖‖zk‖

≤
n∑
k=1

‖U(n, k)‖‖zk‖

≤
n∑
k=1

Me−ν(n−k)M ′ = M ′′e−νn
n∑
k=1

eνk

≤ M ′′′.

Thus, the solution of the Cauchy Problem (An, θ, 0) is bounded.
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(2) The proof of the second part is not so easy. As the unique solution of
the Cauchy Problem

{
ζn+1 = Anζn + eiθ(n+1)z(n+ 1),

ζ0 = 0,

in terms of evolution family U(n, k) is

ζn =
n∑
k=0

eiθkU(n, k)z(k)

where z(k) ∈ B, i.e., z(k) = k(q − k)U(k, 0). According to the partition (3.1),

i.e., {0, 1, 2, · · · , n} =
l−1⋃
j=0
Aj
⋃
Bl
⋃
C, let us replace k by k − jp in z(k) for

Aj and define it as

z(k) =

 (k − jp)[(1 + j)p− k]U(k − jp, 0), if k ∈ Aj ,
k(p− k)U(k, 0), if k ∈ Bl,
0, if k ∈ C.

Then clearly z(k) ∈ B. Thus

ζn =

n∑
k=1

eiθkU(n, k)z(k) =

lp+r∑
k=1

eiθkU(lp+ r, k)z(k)

=
∑

k∈∪l−1
j=0Aj∪Bl∪C

eiθkU(lp+ r, k)z(k)

=
∑

k∈∪l−1
j=0Aj

eiθkU(lp+ r, k)z(k) +
∑
k∈Bl

eiθkU(lp+ r, k)z(k)

+
∑
k∈C

eiθkU(lp+ r, k)z(k)

=

l−1∑
j=0

p−1+jp∑
k=1+jp

eiθkU(lp+ r, k)z(k) +

lp+r∑
k=lp+1

eiθkU(lp+ r, k)z(k)

+
∑
k∈C

eiθkU(lp+ r, k)z(k)

=

l−1∑
j=0

p−1+jp∑
k=1+jp

eiθkU(lp+ r, k)(k − jp)[(1 + j)p− k]U(k − jp, 0)



Exponential stability of discrete evolution family 559

+

lp+r∑
k=lp+1

eiθkU(lp+ r, k)k(p− k)U(k, 0)

+
∑
k∈C

eiθkU(lp+ r, k)0

=

l−1∑
j=0

p−1+jp∑
k=1+jp

eiµkU(lp+ r, k)(k − jp)[(1 + j)p− k]U(k − jp, 0)

+

lp+r∑
k=lp+1

eiθkU(lp+ r, k)k(p− k)U(k, 0)

= I1 + I2,

where

I1 =

l−1∑
j=0

p−1+jp∑
k=1+jp

eiθkU(lp+ r, k)(k − jp)[(1 + j)p− k]U(k − jp, 0)

and

I2 =

lp+r∑
k=lp+1

eiθkU(lp+ r, k)k(p− k)U(k, 0).

Now to further simplify I1

I1 =

l−1∑
j=0

p−1+jp∑
k=1+jp

eiθkU(lp+ r, k)(k − jp)[(1 + j)p− k)]U(k − jp, 0)

=

l−1∑
j=0

p−1+jp∑
k=1+jp

eiθkU(lp+ r, k)(k − jp)[(1 + j)p− k)]U(k, jp)

=
l−1∑
j=0

p−1+jp∑
k=1+jp

eiθkU(lp+ r, jp)(k − jp)[(1 + j)p− k)]

=
l−1∑
j=0

U(lp+ r, jp)

p−1+jp∑
k=1+jp

eiθk(k − jp)[(1 + j)p− k)]

=

−1∑
j=0

U(lp+ r, jp)

p−1+jp∑
k=1+jp

eiθk(k − jp)[p− (k − jp)]

=

l−1∑
j=0

U(r, 0)Ul−j(p, 0)eiθjp
p−1∑
v=1

eiθvv(p− v)
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= U(r, 0)

p−1∑
v=1

eiθvv(p− v)
l−1∑
j=0

eiθjpUl−j(p, 0)

= U(r, 0)

p−1∑
v=1

eiθvv(p− v)
l∑

α=1

eiθp(α)Uα(p, 0)

= U(r, 0)

p−1∑
v=1

eiθvv(p− v)eiθpl
l∑

α=1

eiθpαUα(p, 0)

= G(µ, p)
l∑

α=1

eiθpαUα(p, 0),

where G(µ, p) = U(r, 0)
∑p−1

v=1 e
iθvv(p− v)e−iθpl 6= 0. Also

I2 =

lp+r∑
k=lp+1

eiθkU(lp+ r, k)k(p− k)U(k, 0)

=

lp+r∑
k=lp+1

eiθkU(lp+ r, 0)k(p− k)

= U(lp+ r, 0)

lp+r∑
k=lp+1

eiθkk(p− k).

Hence,

n∑
k=0

eiθkU(n, k)z(k)

= G(θ, p)

l∑
α=1

eiθpαUα(p, 0)x+ U(lp+ r, 0)

lp+r∑
k=lp+1

eiθkk(p− k).

As ζn is bounded, we have I1 is bounded, i.e.,

sup
l≥0

∥∥∥ l∑
α=0

eiµpαUα(p, 0)
∥∥∥ <∞.

Now applying Lemma (2.2), we obtain that U(p, 0) is power bounded and
e−iµp ∈ ρ(U(p, 0)). Therefore, U is uniformly exponentially stable and hence
the proof is completed. �
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