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Abstract. In this paper, we present iteration schemes to weakly and strongly approximate

common fixed points of a finite family of a class of strict pseudocontractions in Hilbert

spaces. It is proved that the sequence generated by the iterative scheme converges strongly

to a common point of the set of fixed points, which solves the variational inequality 〈(µF −
γφ)x̃, x̃− p〉 ≤ 0, for p ∈

⋂N
i=1 Fix(Ti). Our results improve and extend corresponding ones

announced by many others.

1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset
of H. A mapping T : C → C is said to be λ-strictly pseudo-contractive if there
exists a constant λ ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + λ‖(I − T )x− (I − T )y‖2, x, y ∈ C. (1.1)
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It is clear that (1.1) is equivalent to the following:

〈Tx− Ty, x− y〉 ≤ ‖x− y‖2 − 1− λ
2
‖(I − T )x− (I − T )y‖2,

and Fix(T ) denotes the set of fixed points of the mapping T ; that is, Fix(T ) =
{x ∈ C : Tx = x}.

Note that the class of λ-strictly pseudo-contractive mappings includes the
class of nonexpansive mappings T on C (that is, ‖Tx−Ty‖ ≤ ‖x−y‖, x, y ∈ C)
as a subclass. That is, T is nonexpansive if and only if T is 0-strictly pseudo-
contractive.

Theorem 1.1. ([1]) Let (X, d) be a complete metric space and let f be a
contraction on X, that is, there exists r ∈ (0, 1) such that d(f(x), f(y)) ≤
rd(x, y) for all x, y ∈ X. Then f has a unique fixed point.

Theorem 1.2. ([2]) Let (X, d) be a complete metric space and let φ be a
Meir-Keeler contraction (MKC, for short) on X, that is, for every ε > 0,
there exists δ > 0 such that d(x, y) < ε + δ implies d(φ(x), φ(y)) < ε for all
x, y ∈ X. Then φ has a unique fixed point.

This theorem is one of generalizations of Theorem 1.1, because contractions
are Meir-Keeler contractions.

A mapping F : C → C is called k-Lipschitzian if there exists a positive
constant k such that

‖Fx− Fy‖ ≤ k‖x− y‖, ∀ x, y ∈ C. (1.2)

F is said to be η-strongly monotone if there exists a positive constant η such
that

〈Fx− Fy, x− y〉 ≥ η‖x− y‖2, ∀ x, y ∈ C. (1.3)

Let A be a strongly positive bounded linear operator on H, that is, there exists
a constant γ̃ > 0 such that

〈Ax, x〉 ≥ γ̃‖x‖2, ∀ x ∈ H.
A typical problem is that of minimizing a quadratic function over the set of
the fixed points of a nonexpansive mapping on a real Hilbert space H:

min
x∈Fix(T )

1

2
〈Ax, x〉 − 〈x, b〉,

where b is a given point in H.

Remark 1.3. ([4]) From the definition of A, we note that a strongly posi-
tive bounded linear operator A is a ‖A‖-Lipschizian and γ̃-strongly monotone
operator.
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In 2010, Tian [3] introduced the following iterative method: for a nonex-
pansive mapping T : H → H with Fix(T ) 6= ∅,

xn+1 = αnγf(xn) + (I − µαnF )Txn, ∀n ≥ 1, (1.4)

where F is a k-Lipschitzian and η-strongly monotone operator. He obtained
that the sequence {xn} generated by (1.4) converges strongly to a point q
in Fix(T ), which is the unique solution of the variational inequality 〈(γf −
µF )q, p− q〉 ≤ 0, p ∈ Fix(T ).

Recently, Wang [4] considered the following iterative method: for x1 = x ∈
C, {

yn = βnxn + (1− βn)Wnxn,
xn+1 = αnγf(xn) + (I − µαnF )yn, ∀n ≥ 1,

(1.5)

where Wn is a family of nonexpansive mappings, and F is a k-Lipschitzian
and η-strongly monotone operator with 0 < µ < 2η

k2
. She proved that if the

parameters satisfy appropriate conditions, then {xn} defined by (1.5) con-
verges strongly to a common element of the fixed points of an infinite family
of λi-strictly pseudo-contractive mappings, which is a unique solution of the
variational inequality 〈(γf − µF )q, p− q〉 ≤ 0, p ∈

⋂∞
i=1 Fix(Ti).

Very recently, Colao and Marino [5] introduced the following iterative method:

xn+1 = αnf(xn) + (1− αn)Vnxn, ∀n ≥ 1, (1.6)

where Vn are mappings defined by (2.2), and f : C → C is a ρ-contraction.
He given a new method to prove that the sequence {xn} generated by (1.6)

converges strongly to the unique point q ∈ F ∗ =
⋂N
i=1 Fix(Ti), which satisfies

the variational inequality 〈q − f(q), j(q − p)〉 ≤ 0, p ∈ F ∗.
In this work, motivated and inspired by the above results, we consider the

following iterative method: for x1 = x ∈ C,{
yn = βnxn + (1− βn)Vnxn,
xn+1 = αnγφ(xn) + (I − µαnF )yn, ∀n ≥ 1,

(1.7)

where Vn are mappings defined by (2.2), φ is a Meir-Keeler contraction (MKC,
for short) and F is a k-Lipschitzian and η-strongly monotone operator with 0 <

µ < 2η
k2

. We will prove that if the parameters satisfy appropriate conditions,
then {xn} defined by (1.7) converges strongly to a common element of the fixed
points of a finite family of λi-strictly pseudo-contractive mappings, which is
a unique solution of the variational inequality 〈(µF − γφ)(x̃), x̃ − p〉 ≤ 0,

p ∈ F ∗ =
⋂N
i=1 Fix(Ti). Our results extend and improve the corresponding

results of Wang [4], Colao and Marino [5] and many others.
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2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and ‖ · ‖. For the
sequence {xn} in H, we write xn ⇀ x to indicate that the sequence {xn}
converges weakly to x. xn → x means that {xn} converges strongly to x. In
a real Hilbert space H, we have

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2〈x, y〉, ∀x, y ∈ H.

In order to prove our main results, we need the following lemmas.

Lemma 2.1. In a Hilbert space H, the following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, x, y ∈ H. (2.1)

Lemma 2.2. ([6, Lemma 2.3]) Let φ be a MKC on a convex subset C of a
Banach space E. Then for each ε > 0, there exists r ∈ (0, 1) such that

‖x− y‖ ≥ ε implies ‖φx− φy‖ ≤ r‖x− y‖, ∀ x, y ∈ C.

Lemma 2.3. ([4, Lemma 2.2]) Let F be a k-Lipschitzian and η-strongly mono-

tone operator on a Hilbert space H with k > 0, η > 0, 0 < µ < 2η
k2

and
0 < t < 1. Then S = (I − tµF ) : H → H is a contraction with contractive
coefficient 1− tτ and τ = 1

2µ(2η − µk2).

Lemma 2.4. ([7]) Let {xn} and {zn} be bounded sequences in a Banach space
E and {γn} be a sequence in [0, 1] which satisfies the following condition:

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1.

Suppose that

xn+1 = γnxn + (1− γn)zn, n ≥ 0,

and

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖zn − xn‖ = 0.

Lemma 2.5. ([8, 9]) Let {sn} be a sequence of non-negative real numbers
satisfying

sn+1 ≤ (1− λn)sn + λnδn + γn, n ≥ 0,

where {λn}, {δn} and {γn} satisfy the following conditions:

(i) {λn} ⊂ [0, 1] and
∑∞

n=0 λn =∞,
(ii) lim supn→∞ δn ≤ 0 or

∑∞
n=0 λnδn <∞,

(iii) γn ≥ 0(n ≥ 0),
∑∞

n=0 γn <∞.
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Then limn→∞ sn = 0.

Lemma 2.6. ([10]) Let {ym} be a bounded sequence contained in a separable
subset K of a Banach space E. Then there is a subsequence {ymk

} of {ym}
such that limk ‖ymk

− z‖ exists for all z ∈ K.

Lemma 2.7. ([10]) Let C be a closed convex subset of a Banach space E with
a uniformly Gâteaux differentiable norm, and let {ym} be a sequence in K
such that h(z) = limm ‖ym− z‖ exists for all z ∈ C. If h attains its minimum
over C at u, then

lim sup
m
〈z − u, j(ym − u)〉 ≤ 0,

for all z ∈ C.

Lemma 2.8. ([11]) Let E be a reflexive Banach space and let C be a closed
convex subset of E. Let h be a proper convex lower semicontinuous function
of C into (−∞,∞] and suppose that h(xn) → ∞ as ‖xn‖ → ∞. Then, there
exists x0 ∈ D(h) such that

h(x0) = inf{h(x) : x ∈ C}.

The following lemmas are obtained from the reference [5].

Lemma 2.9. ([5, Lemma 3]) Let C be a nonempty closed convex subset of a
real Hilbert space H and T : C → C be a λ-strictly pseudocontractive mapping.
Define a mapping S : C → C by Sx = (1 − α)x + αTx for all x ∈ C and
α ∈ (0, 1−λ). Then S is a nonexpansive mapping such that Fix(S) = Fix(T ).

Lemma 2.10. ([5, Lemma 9]) Let C be a closed convex and nonempty subset
of a Hilbert space H. Let {Ti}Ni=1 be a family of mappings from C into itself,

such that F ∗ =
⋂N
i=1 Fix(Ti) 6= ∅ and for each i ∈ {1, . . . , N}, Ti is λi-strictly

pseudocontractive. Moreover, let γ1, . . . , γN ∈ (0,mini=1,...,N{1 − λi}) and
define the mapping V of C into itself as follows:

U1 = γ1T1 + (1− γ1)I,
U2 = γ2T2U1 + (1− γ2)U1,
...
UN−1 = γN−1TN−1UN−2 + (1− γN−1)UN−2,
V ≡ UN = γNTNUN−1 + (1− γN )UN−1.

(2.2)

Then U1, . . . , UN−1 and V are nonexpansive. Moreover, Fix(V ) = F ∗.
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Lemma 2.11. ([5, Lemma 10]) Let C, E and the family {Ti}Ni=1 be as in

Lemma 2.10. Moreover let the maps Ṽ and V be generated following the
scheme (2.2) by the family {Ti}Ni=1 and coefficients γ̃1, . . . , γ̃N and γ1, . . . , γN
respectively. Fix w ∈ F ∗, then for any x ∈ C the following holds

‖Ṽ x− V x‖ ≤
N∑
i=1

| γ̃i − γi |Mi‖x− w‖,

where Mi = 2(2−λi)
1−λi .

Lemma 2.12. ([12]) Let H be a Hilbert space, C a closed convex subset of
H and T : C → C a nonexpansive mapping with Fix(T ) 6= ∅. If {xn} is a
sequence in C weakly converging to x and if {(I −T )xn} converges strongly to
y, then (I − T )x = y.

Let C be a closed subspace of H. Let F be a k-Lipschitzian and η-strongly
monotone operator on C with k > 0, η > 0 and Vn : C → C be a family
of nonexpansive mappings. Now given φ : C → C be a MKC, let us have

αn ∈ (0, 1), 0 < µ < 2η
k2

, 0 < γ < µ(η − µk2

2 ) = τ , τ < 1, and consider a
mapping Sn on H defined by

Snx = αnγφ(x) + (I − αnµF )Vnx, x ∈ C.

It is easy to see that Sn is a contraction. Indeed, from Lemma 2.3, we have

‖Snx− Sny‖ ≤ αnγ‖φ(x)− φ(y)‖+ ‖(I − αnµF )Vnx− (I − αnµF )Vny‖
≤ αnγ‖x− y‖+ (1− αnτ)‖x− y‖
= [1− αn(τ − γ)]‖x− y‖,

for all x, y ∈ H. Hence it has a unique point, denoted as yn, which uniquely
solves the fixed point equation

yn = αnγφ(yn) + (I − αnµF )Vnyn, yn ∈ C. (2.3)

3. Main Results

Theorem 3.1. Let H be a separable Hilbert space, and C be a closed subspace
of H. Let {Ti}Ni=1 be a family of mappings from C into itself, such that F ∗ =⋂N
i=1 Fix(Ti) is nonempty and for each i ∈ {1, . . . , N}, Ti is a λi-strictly

pseudocontractive and {γi,n}Ni=1 ⊂ [a, b] ⊂ (0,mini=1,...,N{1 − λi}). Define
the mappings Vn as in (2.2). Let F : C → C be a k-Lipschitzian and η-

strongly monotone operator with 0 < µ < 2η
k2

, φ : C → C be a MKC with
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0 < γ < µ(η − µk2

2 ) = τ , τ < 1 and {αn} ⊂ (0, 1). Define the sequence {yn}
by

yn = αnγφ(yn) + (I − αnµF )Vnyn, n ∈ N. (3.1)

If the control sequence {αn} satisfies:
(A1) limn αn = 0,

then the sequence {yn} converges to the unique point z̃ ∈ F ∗ =
⋂N
i=1 Fix(Ti)

which satisfies the inequality:

〈(µF − γφ)z̃, z̃ − w〉 ≤ 0, ∀ w ∈ F ∗. (3.2)

Proof. Fix n ∈ N. By (2.3) we have that the contractive map Snx = αnγφ(x)+
(I − αnµF )Vnx maps C into itself. Then its unique fixed point must lie in C.
That is

yn = αnγφ(yn) + (I − αnµF )Vnyn ∈ C.
Boundedness of the sequence {yn} follows directly from nonexpansivity of

Vn and from Fix(Vn) = F ∗ 6= ∅. In fact, for a fixed w ∈ F ∗, we have from
Lemma 2.1 and Lemma 2.3

‖yn − w‖2 = ‖αnγφ(yn) + (I − αnµF )Vnyn − w‖2

= ‖αnγφ(yn)− αnµFw + αnµFw + (I − αnµF )Vnyn − w‖2

= ‖αn(γφ(yn)− µFw) + (I − αnµF )Vnyn − (I − αnµF )w‖2

≤ [(1− αnτ)‖yn − w‖+ αnγ‖yn − w‖]2

+ 2αn〈γφ(w)− µFw, yn − w〉
≤ [1− αn(τ − γ)]‖yn − w‖2 + 2αn〈γφ(w)− µFw, yn − w〉 (3.3)

≤ [1− αn(τ − γ)]‖yn − w‖2 + 2αn‖γφ(w)− µFw‖‖yn − w‖.
Thus

‖yn − w‖ ≤
2

τ − γ
‖γφ(w)− µFw‖.

Now, our purpose is to prove that

lim sup
n
〈γφ(z̃)− µF z̃, yn − z̃〉 ≤ 0.

Set

Γ := lim sup
n
〈γφ(z̃)− µF z̃, yn − z̃〉.

Since {yn} is bounded and is contained in a separable set C, by Lemma 2.6,
we can choose a sequence {nv} ⊂ N with the properties that

(Pr.1) limv〈γφ(z̃)− µF z̃, ynv − z̃〉 = Γ,
(Pr.2) γi,nv → γi ∈ [a, b] ⊂ (0,mini=1,...,N{1− λi})(i = 1, . . . , N),
(Pr.3) limv ‖ynv − z‖ exists for all z ∈ C.
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Denoted by V the map generated by the finite family {Ti}Ni=1 and coefficient
γ1, . . . , γN following the scheme (2.2), it results from Lemma 2.10 that V is
nonexpansive and Fix(V ) = F ∗. Moreover in view of Lemma 2.11, for every
fixed x ∈ C we have

lim
v
‖Vnvx− V x‖ = 0. (3.4)

Define h : C → R by h(x) := limv ‖ynv − x‖. The map h is well defined by
(Pr.3) and h is continuous, convex and h(x) → ∞ as ‖x‖ → ∞. By Lemma
2.8 h attains a minimum in C. Thus

A := {x ∈ C : h(x) = inf
y∈C

h(y)}

is nonempty and bounded. For any fixed x ∈ A, we have

‖ynv − V x‖ = ‖αnvγφ(ynv) + (I − αnvµF )Vnvynv − V x‖
= ‖αnvγφ(ynv)− αnvµFVnvynv + Vnvynv − Vnvx+ Vnvx− V x‖
≤ αnv‖γφ(ynv)− µFVnvynv‖+ ‖ynv − x‖+ ‖Vnvx− V x‖.

Hence, by (3.4) we obtain

lim
v
‖ynv − V x‖ ≤ lim

v
‖ynv − x‖,

that is V : A → A. Since H is uniformly smooth, A is closed, convex and
bounded and V is nonexpansive then V has a fixed point ỹ ∈ A, that is
ỹ ∈ Fix(V )

⋂
A = F ∗

⋂
A. Furthermore, ỹ minimizes h over C. Thus, from

Lemma 2.7, it follows

lim sup
v
〈x− ỹ, ynv − ỹ〉 ≤ 0, ∀ x ∈ C.

In particular, for x = γφ(ỹ)− µF ỹ + ỹ, we obtain

lim sup
v
〈γφ(ỹ)− µF ỹ, ynv − ỹ〉 ≤ 0.

Since ỹ also belongs to F ∗, from (3.3) we derive

‖ynv − ỹ‖2 ≤
2

τ − γ
〈γφ(ỹ)− µF ỹ, ynv − ỹ〉.

Passing the last inequality to lim supv we obtain

lim sup
v
‖ynv − ỹ‖2 ≤

2

τ − γ
lim sup

v
〈γφ(ỹ)− µF ỹ, ynv − ỹ〉 ≤ 0,

hence ynv → ỹ. Note that for any fixed n ∈ N, we have

(µF − γφ)yn = − 1

αn
[(I − Vn)yn − αnµFyn + αnµFVnyn].
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Notice

〈(I − Vn)yn − (I − Vn)w, yn − w〉 = ‖yn − w‖2 − 〈Vnyn − Vnw, yn − w〉
≥ ‖yn − w‖2 − ‖Vnyn − Vnw‖‖yn − w‖
≥ ‖yn − w‖2 − ‖yn − w‖2

≥ 0. (3.5)

It follows that, for w ∈ F ∗ = Fix(Vn),

〈(µF − γφ)yn, yn − w〉 = − 1

αn
〈(I − Vn)yn − αnµFyn + αnµFVnyn, yn − w〉

= − 1

αn
〈(I − Vn)yn − (I − Vn)w, yn − w〉

+ 〈(µF − µFVn)yn, yn − w〉
≤ 〈(µF − µFVn)yn, yn − w〉. (3.6)

Now replacing yn in (3.6) with ynv and letting v → ∞, noticing (µF −
µFVn)ynv → (µF − µFVn)ỹ = 0 for ỹ ∈ F ∗ = Fix(Vn), we obtain

〈(µF − γφ)ỹ, ỹ − w〉 ≤ 0, ∀w ∈ F ∗,

which means that ỹ ∈ F ∗ is the unique solution of (3.2), i.e., ỹ = z̃. From
(Pr.1) we have then

Γ = lim
v
〈(µF − γφ)z̃, ynv − z̃〉 ≤ 0.

Passing to lim supn in (3.3) with w = z̃, we derive

lim
n
‖yn − z̃‖ ≤

2Γ

τ − γ
≤ 0

and the proof is complete. �

Theorem 3.2. Let H,C and {Ti}Ni=1, {γi,n}Ni=1 be as in Theorem 3.1. Con-
struct the mappings Vn(n ∈ N) as in (2.2). Let F : C → C be a k-Lipschitzian

and η-strongly monotone operator with 0 < µ < 2η
k2

, φ : C → C be a MKC

with 0 < γ < µ(η − µk2

2 ) = τ , τ < 1 and let {αn} and {βn} ⊂ (0, 1). If the

control sequences {αn}, {βn} and {γi,n}Ni=1 do satisfy:

(B1) limn αn = 0,
∑∞

n=1 αn =∞;

(B2) lim supn
1
αn

∑N
i=1 |γi,n+1 − γi,n| = 0;

(B3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn ≤ a < 1 for some constant a ∈
(0, 1).
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Then the sequences defined by (1.7) converges to the unique point x̃ ∈ F ∗ =⋂N
i=1 Fix(Ti), which satisfies the variational inequality:

〈µF x̃− γφ(x̃), x̃− p〉 ≤ 0, ∀ p ∈ F ∗.

Proof. We proceed with the following steps.

Step 1. We claim that {xn} is bounded. In fact, for a fixed w ∈ F ∗ =
Fix(Vn), we have

‖yn − w‖ = ‖βn(xn − w) + (1− βn)(Vnxn − w)‖
≤ βn‖xn − w‖+ (1− βn)‖Vnxn − w‖
≤ ‖xn − w‖. (3.7)

Then from (1.7) and (3.7) and Lemma 2.3, we obtain

‖xn+1 − w‖ = ‖αnγφ(xn) + (I − µαnF )yn − w‖
= ‖αnγφ(xn)− µαnFw + µαnFw + (I − µαnF )yn − w‖
= ‖αn(γφ(xn)− µFw) + (I − µαnF )yn − (I − µαnF )w‖
≤ (1− αnτ)‖yn − w‖+ αn[‖γφ(xn)− γφ(w)‖

+ ‖γφ(w)− µFw‖]
≤ (1− αnτ)‖xn − w‖+ αnγ‖xn − w‖+ αn‖γφ(w)− µFw‖
≤ [1− αn(τ − γ)]‖xn − w‖+ αn‖γφ(w)− µFw‖

≤ [1− αn(τ − γ)]‖xn − w‖+ αn(τ − γ)
‖γφ(w)− µFw‖

τ − γ

≤ max

{
‖xn − w‖,

‖γφ(w)− µFw‖
τ − γ

}
, n ≥ 1.

By induction, we have

‖xn − w‖ ≤ max

{
‖x1 − w‖,

‖γφ(w)− µFw‖
τ − γ

}
=: M, n ≥ 1. (3.8)

Thus {yn}, {µFyn}, {φ(xn)} and {Vnxn} are bounded too.

Step 2. We claim that limn→∞ ‖xn+1−xn‖ = 0. To this end, define a sequence
{zn} by zn = (xn+1 − βnxn)/(1 − βn), such that xn+1 = βnxn + (1 − βn)zn.
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We now observe that

zn+1 − zn =
xn+2 − βn+1xn+1

1− βn+1
− xn+1 − βnxn

1− βn

=
αn+1γφ(xn+1) + (I − µαn+1F )yn+1 − βn+1xn+1

1− βn+1

− αnγφ(xn) + (I − µαnF )yn − βnxn
1− βn

=
αn+1

1− βn+1
(γφ(xn+1)− µFyn+1) +

yn+1 − βn+1xn+1

1− βn+1

− αn
1− βn

(γφ(xn)− µFyn)− yn − βnxn
1− βn

=
αn+1

1− βn+1
(γφ(xn+1)− µFyn+1)

+
[βn+1xn+1 + (1− βn+1)Vn+1xn+1]− βn+1xn+1

1− βn+1

− αn
1− βn

(γφ(xn)− µFyn)− [βnxn + (1− βn)Vnxn]− βnxn
1− βn

=
αn+1

1− βn+1
(γφ(xn+1)− µFyn+1)−

αn
1− βn

(γφ(xn)− µFyn)

+ Vn+1xn+1 − Vnxn. (3.9)

It follows from (3.9) that

‖zn+1 − zn‖ ≤
αn+1

1− βn+1
(‖γφ(xn+1)‖+ ‖µFyn+1‖)

+
αn

1− βn
(‖γφ(xn)‖+ ‖µFyn‖) + ‖Vn+1xn+1 − Vnxn‖. (3.10)

Using Lemma 2.11 and for M and w as in (3.8), it follows

‖Vn+1xn+1 − Vnxn‖ ≤ ‖Vnxn+1 − Vnxn‖+ ‖Vn+1xn+1 − Vnxn+1‖

≤ ‖xn+1 − xn‖+

N∑
i=1

| γi,n+1 − γi,n |MiM. (3.11)

Substituting (3.11) into (3.10), we obtain

‖zn+1 − zn‖ ≤ M̄(
αn+1

1− βn+1
+

αn
1− βn

) + ‖xn+1 − xn‖

+

N∑
i=1

| γi,n+1 − γi,n |MiM, (3.12)
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where M̄ = sup{‖γφ(xn)‖+ ‖µFyn‖, n ≥ 1}. It follows from (3.12) that

‖zn+1 − zn‖ − ‖xn+1 − xn‖

≤ M̄(
αn+1

1− βn+1
+

αn
1− βn

) +
N∑
i=1

| γi,n+1 − γi,n |MiM. (3.13)

Observing condition (B1), (B2), (B3) and (3.13), it follows that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Hence, by Lemma 2.4, we can obtain

lim
n→∞

‖zn − xn‖ = 0. (3.14)

It follows from (B3) and (3.14) that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− βn)‖zn − xn‖ = 0. (3.15)

Step 3. We claim that limn→∞ ‖xn − Vnxn‖ = 0. As a direct consequence of
(3.15), we note that

‖xn − Vnxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖+ ‖yn − Vnxn‖
= ‖xn − xn+1‖+ ‖xn+1 − yn‖+ βn‖xn − Vnxn‖.

From (B1), (B3) and using Step 2, we have

(1− a)‖xn − Vnxn‖ ≤ (1− βn)‖xn − Vnxn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖
≤ ‖xn − xn+1‖+ αn‖γφ(xn)− µFyn‖
→ 0 as n→∞.

This implies that

‖xn − Vnxn‖ → 0 as n→∞. (3.16)

Step 4. We claim that lim supn〈γφ(x̃)−µF x̃, xn− x̃〉 ≤ 0, where x̃ = limm ym
with ym = αmγφ(ym) + (I − µαmF )V ym.

For this purpose, let {xnk
} be a subsequence chosen in such a way that

limk→∞〈γφ(x̃)− µF x̃, xnk
− x̃〉 = lim supn→∞〈γφ(x̃)− µF x̃, xn− x̃〉, xnk

⇀ z
and γi,nk

→ γi(i = 1, . . . , N). Let V be the maps generated by the finite
{Ti}Ni=1 and coefficient γ1, . . . γN following the scheme (2.2). From (3.16) and
Lemma 2.11, we obtain

‖xnk
− V xnk

‖ ≤ ‖xnk
− Vnk

xnk
‖+ ‖Vnk

xnk
− V xnk

‖ → 0,
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we have V xnk
⇀ z. From Lemma 2.12, we know z ∈ F ∗. Hence, we have

lim sup
n→∞

〈γφ(x̃)− µF x̃, xn − x̃〉 = lim
k→∞
〈γφ(x̃)− µF x̃, xnk

− x̃〉

= 〈γφ(x̃)− µF x̃, z − x̃〉
≤ 0.

Step 5. We claim that {xn} converges strongly to x̃. From (1.7), Lemma 2.1
and Lemma 2.3, we have

‖xn+1 − x̃‖2

= ‖αnγφ(xn) + (I − µαnF )yn − x̃‖2

= ‖(I − µαnF )yn − (I − µαnF )x̃+ αn(γφ(xn)− µF x̃)‖2

≤ ‖(I − µαnF )yn − (I − µαnF )x̃‖2 + 2αn〈γφ(xn)− µF x̃, xn+1 − x̃〉
≤ (1− αnτ)2‖yn − x̃‖2 + 2αn〈γφ(xn)− γφ(x̃), xn+1 − x̃〉

+ 2αn〈γφ(x̃)− µF x̃, xn+1 − x̃〉
≤ (1− αnτ)2‖xn − x̃‖2 + αnγ(‖xn − x̃‖2 + ‖xn+1 − x̃‖2)

+ 2αn〈γφ(x̃)− µF x̃, xn+1 − x̃〉.
It then follows that

‖xn+1 − x̃‖2

≤ (1− αnτ)2 + αnγ

1− αnγ
‖xn − x̃‖2 +

2αn
1− αnγ

〈γφ(x̃)− µF x̃, xn+1 − x̃〉

≤ (1− 2αn(τ − γ)

1− αnγ
)‖xn − x̃‖2

+
2αn(τ − γ)

1− αnγ

[
1

τ − γ
〈γφ(x̃)− µF x̃, xn+1 − x̃〉+

αnτ
2

2(τ − γ)
M̃

]
,

where M̃ = supn≥1 ‖xn − x̃‖2. From (B1) and Step 4, it follows that

∞∑
n=1

2αn(τ − γ)

1− αnγ
=∞

and

lim sup
n→∞

1

τ − γ
〈γφ(x̃)− µF x̃, xn+1 − x̃〉+

αnτ
2

2(τ − γ)
M̃ ≤ 0.

Hence, by Lemma 2.5, the sequence {xn} converges strongly to the unique

point x̃ ∈ F ∗ =
⋂N
i=1 Fix(Ti), which satisfies the variational inequality:

〈µF x̃− γφ(x̃), x̃− p〉 ≤ 0, ∀ p ∈ F ∗.
�
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Remark 3.3. Our results improve and extend the results of Wang [4] in the
following aspects:

(i) a family of nonexpansive mappings Wn is replaced by Vn;
(ii) contractive mapping is replaced by a MKC.

Remark 3.4. If βn = 0, γ = 1, µ = 1, F be an identity operator and φ is
replaced by a contractive mapping f in Theorem 3.2, we can obtain Theorem
14 of Colao and Marino [5] in Hilbert spaces.

Corollary 3.5. Let H,C and {Ti}Ni=1, {γi,n}Ni=1 be as in Theorem 3.2. Con-
struct the mappings Vn(n ∈ N) as in (2.2). Let A be a strongly positive bounded
linear operator on C with coefficient 0 < γ̃ < ‖A‖, φ : C → C be a MKC with

0 < γ < µ(γ̄− µ‖A‖2
2 ) = τ , τ < 1 and let {αn} and {βn} ⊂ (0, 1). If the control

sequences {αn}, {βn} and {γi,n}Ni=1 do satisfy the conditions (B1), (B2) and
(B3). Let {xn} be a sequence generated by x1 = x ∈ C:{

yn = βnxn + (1− βn)Vnxn,
xn+1 = αnγφ(xn) + (I − αnµA)yn, ∀ n ≥ 1.

Then {xn} converges to the unique point x̃ ∈ F ∗ =
⋂N
i=1 Fix(Ti), which satis-

fies the variational inequality:

〈µAx̃− γφ(x̃), x̃− p〉 ≤ 0, ∀p ∈ F ∗.
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