Nonlinear Functional Analysis and Applications Vol. 19, No. 4 (2014), pp. 585-599

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright \bigodot 2014 Kyungnam University Press

COMMON FIXED POINTS OF STRICT PSEUDOCONTRACTIONS BY ITERATIVE ALGORITHMS IN HILBERT SPACES

Meng Wen¹, Changsong Hu² and Jigen Peng³

¹School of Mathematics and Statistics Xi'an Jiaotong University, Xi'an 710049, P.R. China e-mail: wen5495688@163.com

²Department of Mathematics Hubei Normal University, Huangshi, 435002, P.R. China e-mail: huchang1004@yahoo.com.cn

³School of Mathematics and Statistics Xi'an Jiaotong University, Xi'an 710049, P.R. China e-mail: jgpeng@mail.xjtu.edu.cn

Abstract. In this paper, we present iteration schemes to weakly and strongly approximate common fixed points of a finite family of a class of strict pseudocontractions in Hilbert spaces. It is proved that the sequence generated by the iterative scheme converges strongly to a common point of the set of fixed points, which solves the variational inequality $\langle (\mu F - \gamma \phi) \tilde{x}, \tilde{x} - p \rangle \leq 0$, for $p \in \bigcap_{i=1}^{N} Fix(T_i)$. Our results improve and extend corresponding ones announced by many others.

1. INTRODUCTION

Let *H* be a real Hilbert space and let *C* be a nonempty closed convex subset of *H*. A mapping $T: C \to C$ is said to be λ -strictly pseudo-contractive if there exists a constant $\lambda \in [0, 1)$ such that

$$||Tx - Ty||^{2} \le ||x - y||^{2} + \lambda ||(I - T)x - (I - T)y||^{2}, \ x, y \in C.$$
(1.1)

⁰Received April 23, 2014. Revised July 19, 2014.

⁰2010 Mathematics Subject Classification: 47H09, 47H10.

⁰Keywords: Strong convergence, strictly pseudo-contractive mapping, fixed points, k-Lipschitzian, η -strongly monotone.

It is clear that (1.1) is equivalent to the following:

$$\langle Tx - Ty, x - y \rangle \le ||x - y||^2 - \frac{1 - \lambda}{2} ||(I - T)x - (I - T)y||^2,$$

and Fix(T) denotes the set of fixed points of the mapping T; that is, $Fix(T) = \{x \in C : Tx = x\}.$

Note that the class of λ -strictly pseudo-contractive mappings includes the class of nonexpansive mappings T on C (that is, $||Tx-Ty|| \leq ||x-y||, x, y \in C$) as a subclass. That is, T is nonexpansive if and only if T is 0-strictly pseudo-contractive.

Theorem 1.1. ([1]) Let (X,d) be a complete metric space and let f be a contraction on X, that is, there exists $r \in (0,1)$ such that $d(f(x), f(y)) \leq rd(x, y)$ for all $x, y \in X$. Then f has a unique fixed point.

Theorem 1.2. ([2]) Let (X, d) be a complete metric space and let ϕ be a Meir-Keeler contraction (MKC, for short) on X, that is, for every $\varepsilon > 0$, there exists $\delta > 0$ such that $d(x, y) < \varepsilon + \delta$ implies $d(\phi(x), \phi(y)) < \varepsilon$ for all $x, y \in X$. Then ϕ has a unique fixed point.

This theorem is one of generalizations of Theorem 1.1, because contractions are Meir-Keeler contractions.

A mapping $F: C \to C$ is called k-Lipschitzian if there exists a positive constant k such that

$$||Fx - Fy|| \le k ||x - y||, \quad \forall x, y \in C.$$
(1.2)

F is said to be $\eta\text{-strongly monotone}$ if there exists a positive constant η such that

$$\langle Fx - Fy, x - y \rangle \ge \eta ||x - y||^2, \quad \forall x, y \in C.$$
 (1.3)

Let A be a strongly positive bounded linear operator on H, that is, there exists a constant $\tilde{\gamma} > 0$ such that

$$\langle Ax, x \rangle \ge \tilde{\gamma} \|x\|^2, \quad \forall \ x \in H.$$

A typical problem is that of minimizing a quadratic function over the set of the fixed points of a nonexpansive mapping on a real Hilbert space H:

$$\min_{x \in Fix(T)} \frac{1}{2} \langle Ax, x \rangle - \langle x, b \rangle,$$

where b is a given point in H.

Remark 1.3. ([4]) From the definition of A, we note that a strongly positive bounded linear operator A is a ||A||-Lipschizian and $\tilde{\gamma}$ -strongly monotone operator.

In 2010, Tian [3] introduced the following iterative method: for a nonexpansive mapping $T: H \to H$ with $Fix(T) \neq \emptyset$,

$$x_{n+1} = \alpha_n \gamma f(x_n) + (I - \mu \alpha_n F) T x_n, \quad \forall n \ge 1,$$
(1.4)

where F is a k-Lipschitzian and η -strongly monotone operator. He obtained that the sequence $\{x_n\}$ generated by (1.4) converges strongly to a point q in Fix(T), which is the unique solution of the variational inequality $\langle (\gamma f - \mu F)q, p - q \rangle \leq 0, p \in Fix(T)$.

Recently, Wang [4] considered the following iterative method: for $x_1 = x \in C$,

$$\begin{cases} y_n = \beta_n x_n + (1 - \beta_n) W_n x_n, \\ x_{n+1} = \alpha_n \gamma f(x_n) + (I - \mu \alpha_n F) y_n, \quad \forall n \ge 1, \end{cases}$$
(1.5)

where W_n is a family of nonexpansive mappings, and F is a k-Lipschitzian and η -strongly monotone operator with $0 < \mu < \frac{2\eta}{k^2}$. She proved that if the parameters satisfy appropriate conditions, then $\{x_n\}$ defined by (1.5) converges strongly to a common element of the fixed points of an infinite family of λ_i -strictly pseudo-contractive mappings, which is a unique solution of the variational inequality $\langle (\gamma f - \mu F)q, p - q \rangle \leq 0, p \in \bigcap_{i=1}^{\infty} Fix(T_i)$.

Very recently, Colao and Marino [5] introduced the following iterative method:

$$x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) V_n x_n, \quad \forall n \ge 1,$$
(1.6)

where V_n are mappings defined by (2.2), and $f: C \to C$ is a ρ -contraction. He given a new method to prove that the sequence $\{x_n\}$ generated by (1.6) converges strongly to the unique point $q \in F^* = \bigcap_{i=1}^N Fix(T_i)$, which satisfies the variational inequality $\langle q - f(q), j(q-p) \rangle \leq 0, p \in F^*$.

In this work, motivated and inspired by the above results, we consider the following iterative method: for $x_1 = x \in C$,

$$\begin{cases} y_n = \beta_n x_n + (1 - \beta_n) V_n x_n, \\ x_{n+1} = \alpha_n \gamma \phi(x_n) + (I - \mu \alpha_n F) y_n, \quad \forall n \ge 1, \end{cases}$$
(1.7)

where V_n are mappings defined by (2.2), ϕ is a Meir-Keeler contraction (MKC, for short) and F is a k-Lipschitzian and η -strongly monotone operator with $0 < \mu < \frac{2\eta}{k^2}$. We will prove that if the parameters satisfy appropriate conditions, then $\{x_n\}$ defined by (1.7) converges strongly to a common element of the fixed points of a finite family of λ_i -strictly pseudo-contractive mappings, which is a unique solution of the variational inequality $\langle (\mu F - \gamma \phi)(\tilde{x}), \tilde{x} - p \rangle \leq 0$, $p \in F^* = \bigcap_{i=1}^N Fix(T_i)$. Our results extend and improve the corresponding results of Wang [4], Colao and Marino [5] and many others.

2. Preliminaries

Let *H* be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and $\|\cdot\|$. For the sequence $\{x_n\}$ in *H*, we write $x_n \to x$ to indicate that the sequence $\{x_n\}$ converges weakly to *x*. $x_n \to x$ means that $\{x_n\}$ converges strongly to *x*. In a real Hilbert space *H*, we have

$$\|x-y\|^2 = \|x\|^2 + \|y\|^2 - 2\langle x, y \rangle, \ \forall x, y \in H.$$

In order to prove our main results, we need the following lemmas.

Lemma 2.1. In a Hilbert space
$$H$$
, the following inequality holds:
 $\|x+y\|^2 \le \|x\|^2 + 2\langle y, x+y \rangle, \quad x, y \in H.$

Lemma 2.2. ([6, Lemma 2.3]) Let ϕ be a MKC on a convex subset C of a Banach space E. Then for each $\varepsilon > 0$, there exists $r \in (0, 1)$ such that

(2.1)

$$||x - y|| \ge \varepsilon \quad implies \quad ||\phi x - \phi y|| \le r ||x - y||, \quad \forall x, y \in C.$$

Lemma 2.3. ([4, Lemma 2.2]) Let F be a k-Lipschitzian and η -strongly monotone operator on a Hilbert space H with $k > 0, \eta > 0, 0 < \mu < \frac{2\eta}{k^2}$ and 0 < t < 1. Then $S = (I - t\mu F) : H \to H$ is a contraction with contractive coefficient $1 - t\tau$ and $\tau = \frac{1}{2}\mu(2\eta - \mu k^2)$.

Lemma 2.4. ([7]) Let $\{x_n\}$ and $\{z_n\}$ be bounded sequences in a Banach space E and $\{\gamma_n\}$ be a sequence in [0, 1] which satisfies the following condition:

$$0 < \liminf_{n \to \infty} \gamma_n \le \limsup_{n \to \infty} \gamma_n < 1.$$

Suppose that

$$x_{n+1} = \gamma_n x_n + (1 - \gamma_n) z_n, \quad n \ge 0,$$

and

$$\limsup_{n \to \infty} (\|z_{n+1} - z_n\| - \|x_{n+1} - x_n\|) \le 0.$$

Then $\lim_{n\to\infty} ||z_n - x_n|| = 0.$

Lemma 2.5. ([8, 9]) Let $\{s_n\}$ be a sequence of non-negative real numbers satisfying

 $s_{n+1} \leq (1-\lambda_n)s_n + \lambda_n\delta_n + \gamma_n, \ n \geq 0,$

where $\{\lambda_n\}$, $\{\delta_n\}$ and $\{\gamma_n\}$ satisfy the following conditions:

 $\begin{array}{ll} (\mathrm{i}) \ \{\lambda_n\} \subset [0,1] \quad and \quad \sum_{n=0}^{\infty} \lambda_n = \infty, \\ (\mathrm{ii}) \ \limsup_{n \to \infty} \delta_n \leq 0 \quad or \quad \sum_{n=0}^{\infty} \lambda_n \delta_n < \infty, \\ (\mathrm{iii}) \ \gamma_n \geq 0 (n \geq 0), \ \sum_{n=0}^{\infty} \gamma_n < \infty. \end{array}$

Then $\lim_{n\to\infty} s_n = 0$.

Lemma 2.6. ([10]) Let $\{y_m\}$ be a bounded sequence contained in a separable subset K of a Banach space E. Then there is a subsequence $\{y_{m_k}\}$ of $\{y_m\}$ such that $\lim_k ||y_{m_k} - z||$ exists for all $z \in K$.

Lemma 2.7. ([10]) Let C be a closed convex subset of a Banach space E with a uniformly Gâteaux differentiable norm, and let $\{y_m\}$ be a sequence in K such that $h(z) = \lim_m ||y_m - z||$ exists for all $z \in C$. If h attains its minimum over C at u, then

$$\limsup_{m} \langle z - u, j(y_m - u) \rangle \le 0,$$

for all $z \in C$.

Lemma 2.8. ([11]) Let E be a reflexive Banach space and let C be a closed convex subset of E. Let h be a proper convex lower semicontinuous function of C into $(-\infty, \infty]$ and suppose that $h(x_n) \to \infty$ as $||x_n|| \to \infty$. Then, there exists $x_0 \in D(h)$ such that

$$h(x_0) = \inf\{h(x) : x \in C\}.$$

The following lemmas are obtained from the reference [5].

Lemma 2.9. ([5, Lemma 3]) Let C be a nonempty closed convex subset of a real Hilbert space H and $T : C \to C$ be a λ -strictly pseudocontractive mapping. Define a mapping $S : C \to C$ by $Sx = (1 - \alpha)x + \alpha Tx$ for all $x \in C$ and $\alpha \in (0, 1-\lambda)$. Then S is a nonexpansive mapping such that Fix(S) = Fix(T).

Lemma 2.10. ([5, Lemma 9]) Let C be a closed convex and nonempty subset of a Hilbert space H. Let $\{T_i\}_{i=1}^N$ be a family of mappings from C into itself, such that $F^* = \bigcap_{i=1}^N Fix(T_i) \neq \emptyset$ and for each $i \in \{1, \ldots, N\}$, T_i is λ_i -strictly pseudocontractive. Moreover, let $\gamma_1, \ldots, \gamma_N \in (0, \min_{i=1,\ldots,N}\{1 - \lambda_i\})$ and define the mapping V of C into itself as follows:

$$\begin{cases}
U_1 = \gamma_1 T_1 + (1 - \gamma_1) I, \\
U_2 = \gamma_2 T_2 U_1 + (1 - \gamma_2) U_1, \\
\vdots \\
U_{N-1} = \gamma_{N-1} T_{N-1} U_{N-2} + (1 - \gamma_{N-1}) U_{N-2}, \\
V \equiv U_N = \gamma_N T_N U_{N-1} + (1 - \gamma_N) U_{N-1}.
\end{cases}$$
(2.2)

Then U_1, \ldots, U_{N-1} and V are nonexpansive. Moreover, $Fix(V) = F^*$.

M. Wen, C. Hu and J. Peng

Lemma 2.11. ([5, Lemma 10]) Let C, E and the family $\{T_i\}_{i=1}^N$ be as in Lemma 2.10. Moreover let the maps \tilde{V} and V be generated following the scheme (2.2) by the family $\{T_i\}_{i=1}^N$ and coefficients $\tilde{\gamma_1}, \ldots, \tilde{\gamma_N}$ and $\gamma_1, \ldots, \gamma_N$ respectively. Fix $w \in F^*$, then for any $x \in C$ the following holds

$$\|\tilde{V}x - Vx\| \le \sum_{i=1}^{N} |\tilde{\gamma}_i - \gamma_i| M_i \|x - w\|$$

where $M_i = \frac{2(2-\lambda_i)}{1-\lambda_i}$.

Lemma 2.12. ([12]) Let H be a Hilbert space, C a closed convex subset of H and $T : C \to C$ a nonexpansive mapping with $Fix(T) \neq \emptyset$. If $\{x_n\}$ is a sequence in C weakly converging to x and if $\{(I-T)x_n\}$ converges strongly to y, then (I-T)x = y.

Let *C* be a closed subspace of *H*. Let *F* be a *k*-Lipschitzian and η -strongly monotone operator on *C* with k > 0, $\eta > 0$ and $V_n : C \to C$ be a family of nonexpansive mappings. Now given $\phi : C \to C$ be a MKC, let us have $\alpha_n \in (0,1), \ 0 < \mu < \frac{2\eta}{k^2}, \ 0 < \gamma < \mu(\eta - \frac{\mu k^2}{2}) = \tau, \ \tau < 1$, and consider a mapping S_n on *H* defined by

$$S_n x = \alpha_n \gamma \phi(x) + (I - \alpha_n \mu F) V_n x, \quad x \in C.$$

It is easy to see that S_n is a contraction. Indeed, from Lemma 2.3, we have

$$||S_n x - S_n y|| \le \alpha_n \gamma ||\phi(x) - \phi(y)|| + ||(I - \alpha_n \mu F)V_n x - (I - \alpha_n \mu F)V_n y||$$

$$\le \alpha_n \gamma ||x - y|| + (1 - \alpha_n \tau) ||x - y||$$

$$= [1 - \alpha_n (\tau - \gamma)] ||x - y||,$$

for all $x, y \in H$. Hence it has a unique point, denoted as y_n , which uniquely solves the fixed point equation

$$y_n = \alpha_n \gamma \phi(y_n) + (I - \alpha_n \mu F) V_n y_n, \quad y_n \in C.$$
(2.3)

3. MAIN RESULTS

Theorem 3.1. Let H be a separable Hilbert space, and C be a closed subspace of H. Let $\{T_i\}_{i=1}^N$ be a family of mappings from C into itself, such that $F^* = \bigcap_{i=1}^N Fix(T_i)$ is nonempty and for each $i \in \{1, \ldots, N\}$, T_i is a λ_i -strictly pseudocontractive and $\{\gamma_{i,n}\}_{i=1}^N \subset [a,b] \subset (0,\min_{i=1,\ldots,N}\{1-\lambda_i\})$. Define the mappings V_n as in (2.2). Let $F: C \to C$ be a k-Lipschitzian and η -strongly monotone operator with $0 < \mu < \frac{2\eta}{k^2}$, $\phi: C \to C$ be a MKC with

$$0 < \gamma < \mu(\eta - \frac{\mu k^2}{2}) = \tau, \ \tau < 1 \ and \ \{\alpha_n\} \subset (0, 1).$$
 Define the sequence $\{y_n\}$ by

$$y_n = \alpha_n \gamma \phi(y_n) + (I - \alpha_n \mu F) V_n y_n, \quad n \in \mathbb{N}.$$
(3.1)

If the control sequence $\{\alpha_n\}$ satisfies: (A1) $\lim_n \alpha_n = 0$,

then the sequence $\{y_n\}$ converges to the unique point $\tilde{z} \in F^* = \bigcap_{i=1}^N Fix(T_i)$ which satisfies the inequality:

$$\langle (\mu F - \gamma \phi) \tilde{z}, \tilde{z} - w \rangle \le 0, \quad \forall \ w \in F^*.$$
 (3.2)

Proof. Fix $n \in \mathbb{N}$. By (2.3) we have that the contractive map $S_n x = \alpha_n \gamma \phi(x) + (I - \alpha_n \mu F) V_n x$ maps C into itself. Then its unique fixed point must lie in C. That is

$$y_n = \alpha_n \gamma \phi(y_n) + (I - \alpha_n \mu F) V_n y_n \in C.$$

Boundedness of the sequence $\{y_n\}$ follows directly from nonexpansivity of V_n and from $Fix(V_n) = F^* \neq \emptyset$. In fact, for a fixed $w \in F^*$, we have from Lemma 2.1 and Lemma 2.3

$$||y_{n} - w||^{2} = ||\alpha_{n}\gamma\phi(y_{n}) + (I - \alpha_{n}\mu F)V_{n}y_{n} - w||^{2}$$

$$= ||\alpha_{n}\gamma\phi(y_{n}) - \alpha_{n}\mu Fw + \alpha_{n}\mu Fw + (I - \alpha_{n}\mu F)V_{n}y_{n} - w||^{2}$$

$$= ||\alpha_{n}(\gamma\phi(y_{n}) - \mu Fw) + (I - \alpha_{n}\mu F)V_{n}y_{n} - (I - \alpha_{n}\mu F)w||^{2}$$

$$\leq [(1 - \alpha_{n}\tau)||y_{n} - w|| + \alpha_{n}\gamma||y_{n} - w||]^{2}$$

$$+ 2\alpha_{n}\langle\gamma\phi(w) - \mu Fw, y_{n} - w\rangle$$

$$\leq [1 - \alpha_{n}(\tau - \gamma)]||y_{n} - w||^{2} + 2\alpha_{n}\langle\gamma\phi(w) - \mu Fw, y_{n} - w\rangle$$

$$\leq [1 - \alpha_{n}(\tau - \gamma)]||y_{n} - w||^{2} + 2\alpha_{n}||\gamma\phi(w) - \mu Fw||||y_{n} - w||.$$
(3.3)

Thus

$$\|y_n - w\| \le \frac{2}{\tau - \gamma} \|\gamma \phi(w) - \mu F w\|.$$

Now, our purpose is to prove that

$$\limsup_{n} \langle \gamma \phi(\tilde{z}) - \mu F \tilde{z}, y_n - \tilde{z} \rangle \le 0.$$

 Set

$$\Gamma := \limsup_{n} \langle \gamma \phi(\tilde{z}) - \mu F \tilde{z}, y_n - \tilde{z} \rangle.$$

Since $\{y_n\}$ is bounded and is contained in a separable set C, by Lemma 2.6, we can choose a sequence $\{n_v\} \subset \mathbb{N}$ with the properties that

(Pr.1)
$$\lim_{v} \langle \gamma \phi(\tilde{z}) - \mu F \tilde{z}, y_{n_v} - \tilde{z} \rangle = \Gamma,$$

(Pr.2) $\gamma_{i,n_v} \to \gamma_i \in [a,b] \subset (0, \min_{i=1,\dots,N} \{1-\lambda_i\}) (i=1,\dots,N),$
(Pr.3) $\lim_{v} \|y_{n_v} - z\|$ exists for all $z \in C.$

Denoted by V the map generated by the finite family $\{T_i\}_{i=1}^N$ and coefficient $\gamma_1, \ldots, \gamma_N$ following the scheme (2.2), it results from Lemma 2.10 that V is nonexpansive and $Fix(V) = F^*$. Moreover in view of Lemma 2.11, for every fixed $x \in C$ we have

$$\lim_{v} \|V_{n_v} x - V x\| = 0.$$
(3.4)

Define $h: C \to \mathbb{R}$ by $h(x) := \lim_{v \to w} \|y_{n_v} - x\|$. The map h is well defined by (Pr.3) and h is continuous, convex and $h(x) \to \infty$ as $\|x\| \to \infty$. By Lemma 2.8 h attains a minimum in C. Thus

$$A:=\{x\in C:\ h(x)=\inf_{y\in C}h(y)\}$$

is nonempty and bounded. For any fixed $x \in A$, we have

$$||y_{n_{v}} - Vx|| = ||\alpha_{n_{v}}\gamma\phi(y_{n_{v}}) + (I - \alpha_{n_{v}}\mu F)V_{n_{v}}y_{n_{v}} - Vx||$$

= $||\alpha_{n_{v}}\gamma\phi(y_{n_{v}}) - \alpha_{n_{v}}\mu FV_{n_{v}}y_{n_{v}} + V_{n_{v}}y_{n_{v}} - V_{n_{v}}x + V_{n_{v}}x - Vx||$
 $\leq \alpha_{n_{v}}||\gamma\phi(y_{n_{v}}) - \mu FV_{n_{v}}y_{n_{v}}|| + ||y_{n_{v}} - x|| + ||V_{n_{v}}x - Vx||.$

Hence, by (3.4) we obtain

$$\lim_{v} \|y_{n_{v}} - Vx\| \le \lim_{v} \|y_{n_{v}} - x\|,$$

that is $V : A \to A$. Since H is uniformly smooth, A is closed, convex and bounded and V is nonexpansive then V has a fixed point $\tilde{y} \in A$, that is $\tilde{y} \in Fix(V) \cap A = F^* \cap A$. Furthermore, \tilde{y} minimizes h over C. Thus, from Lemma 2.7, it follows

$$\limsup_{v \in \mathcal{X}} \langle x - \tilde{y}, y_{n_v} - \tilde{y} \rangle \le 0, \quad \forall x \in C.$$

In particular, for $x = \gamma \phi(\tilde{y}) - \mu F \tilde{y} + \tilde{y}$, we obtain

$$\limsup_{v} \langle \gamma \phi(\tilde{y}) - \mu F \tilde{y}, y_{n_v} - \tilde{y} \rangle \le 0.$$

Since \tilde{y} also belongs to F^* , from (3.3) we derive

$$\|y_{n_v} - \tilde{y}\|^2 \le \frac{2}{\tau - \gamma} \langle \gamma \phi(\tilde{y}) - \mu F \tilde{y}, y_{n_v} - \tilde{y} \rangle.$$

Passing the last inequality to \limsup_{v} we obtain

$$\limsup_{v} \|y_{n_{v}} - \tilde{y}\|^{2} \leq \frac{2}{\tau - \gamma} \limsup_{v} \langle \gamma \phi(\tilde{y}) - \mu F \tilde{y}, y_{n_{v}} - \tilde{y} \rangle \leq 0,$$

hence $y_{n_v} \to \tilde{y}$. Note that for any fixed $n \in \mathbb{N}$, we have

$$(\mu F - \gamma \phi)y_n = -\frac{1}{\alpha_n} [(I - V_n)y_n - \alpha_n \mu F y_n + \alpha_n \mu F V_n y_n].$$

Notice

$$\langle (I - V_n)y_n - (I - V_n)w, y_n - w \rangle = \|y_n - w\|^2 - \langle V_n y_n - V_n w, y_n - w \rangle$$

$$\geq \|y_n - w\|^2 - \|V_n y_n - V_n w\| \|y_n - w\|$$

$$\geq \|y_n - w\|^2 - \|y_n - w\|^2$$

$$\geq 0.$$
(3.5)

It follows that, for $w \in F^* = Fix(V_n)$,

$$\langle (\mu F - \gamma \phi) y_n, y_n - w \rangle = -\frac{1}{\alpha_n} \langle (I - V_n) y_n - \alpha_n \mu F y_n + \alpha_n \mu F V_n y_n, y_n - w \rangle$$
$$= -\frac{1}{\alpha_n} \langle (I - V_n) y_n - (I - V_n) w, y_n - w \rangle$$
$$+ \langle (\mu F - \mu F V_n) y_n, y_n - w \rangle$$
$$\leq \langle (\mu F - \mu F V_n) y_n, y_n - w \rangle.$$
(3.6)

Now replacing y_n in (3.6) with y_{n_v} and letting $v \to \infty$, noticing $(\mu F \mu FV_n y_{n_v} \to (\mu F - \mu FV_n) \tilde{y} = 0$ for $\tilde{y} \in F^* = Fix(V_n)$, we obtain

$$\langle (\mu F - \gamma \phi) \tilde{y}, \tilde{y} - w \rangle \le 0, \ \forall w \in F^*$$

which means that $\tilde{y} \in F^*$ is the unique solution of (3.2), i.e., $\tilde{y} = \tilde{z}$. From (Pr.1) we have then

$$\Gamma = \lim_{v} \langle (\mu F - \gamma \phi) \tilde{z}, y_{n_v} - \tilde{z} \rangle \le 0.$$

Passing to $\limsup_{n \to \infty} \inf (3.3)$ with $w = \tilde{z}$, we derive

$$\lim_{n} \|y_n - \tilde{z}\| \le \frac{2\Gamma}{\tau - \gamma} \le 0$$

and the proof is complete.

Theorem 3.2. Let H, C and $\{T_i\}_{i=1}^N$, $\{\gamma_{i,n}\}_{i=1}^N$ be as in Theorem 3.1. Construct the mappings $V_n(n \in \mathbb{N})$ as in (2.2). Let $F : C \to C$ be a k-Lipschitzian and η -strongly monotone operator with $0 < \mu < \frac{2\eta}{k^2}, \phi : C \to C$ be a MKC with $0 < \gamma < \mu(\eta - \frac{\mu k^2}{2}) = \tau$, $\tau < 1$ and let $\{\alpha_n\}$ and $\{\beta_n\} \subset (0,1)$. If the control sequences $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_{i,n}\}_{i=1}^N$ do satisfy:

- (B1) $\lim_{n} \alpha_{n} = 0$, $\sum_{n=1}^{\infty} \alpha_{n} = \infty$; (B2) $\limsup_{n} \frac{1}{\alpha_{n}} \sum_{i=1}^{N} |\gamma_{i,n+1} \gamma_{i,n}| = 0$; (B3) $0 < \liminf_{n \to \infty} \beta_{n} \le \limsup_{n \to \infty} \beta_{n} \le a < 1$ for some constant $a \in \mathbb{R}$ (0,1).

Then the sequences defined by (1.7) converges to the unique point $\tilde{x} \in F^* = \bigcap_{i=1}^{N} Fix(T_i)$, which satisfies the variational inequality:

$$\langle \mu F \tilde{x} - \gamma \phi(\tilde{x}), \tilde{x} - p \rangle \le 0, \quad \forall \ p \in F^*.$$

Proof. We proceed with the following steps.

Step 1. We claim that $\{x_n\}$ is bounded. In fact, for a fixed $w \in F^* = Fix(V_n)$, we have

$$||y_n - w|| = ||\beta_n (x_n - w) + (1 - \beta_n) (V_n x_n - w)||$$

$$\leq \beta_n ||x_n - w|| + (1 - \beta_n) ||V_n x_n - w||$$

$$\leq ||x_n - w||.$$
(3.7)

Then from (1.7) and (3.7) and Lemma 2.3, we obtain

$$\begin{aligned} \|x_{n+1} - w\| &= \|\alpha_n \gamma \phi(x_n) + (I - \mu \alpha_n F) y_n - w\| \\ &= \|\alpha_n \gamma \phi(x_n) - \mu \alpha_n F w + \mu \alpha_n F w + (I - \mu \alpha_n F) y_n - w\| \\ &= \|\alpha_n (\gamma \phi(x_n) - \mu F w) + (I - \mu \alpha_n F) y_n - (I - \mu \alpha_n F) w\| \\ &\leq (1 - \alpha_n \tau) \|y_n - w\| + \alpha_n [\|\gamma \phi(x_n) - \gamma \phi(w)\| \\ &+ \|\gamma \phi(w) - \mu F w\|] \\ &\leq (1 - \alpha_n \tau) \|x_n - w\| + \alpha_n \gamma \|x_n - w\| + \alpha_n \|\gamma \phi(w) - \mu F w\| \\ &\leq [1 - \alpha_n (\tau - \gamma)] \|x_n - w\| + \alpha_n (\tau - \gamma) \frac{\|\gamma \phi(w) - \mu F w\|}{\tau - \gamma} \\ &\leq \max \left\{ \|x_n - w\|, \frac{\|\gamma \phi(w) - \mu F w\|}{\tau - \gamma} \right\}, \quad n \geq 1. \end{aligned}$$

By induction, we have

$$||x_n - w|| \le \max\left\{||x_1 - w||, \frac{||\gamma\phi(w) - \mu Fw||}{\tau - \gamma}\right\} =: M, \quad n \ge 1.$$
(3.8)

Thus $\{y_n\}, \{\mu F y_n\}, \{\phi(x_n)\}$ and $\{V_n x_n\}$ are bounded too.

Step 2. We claim that $\lim_{n\to\infty} ||x_{n+1}-x_n|| = 0$. To this end, define a sequence $\{z_n\}$ by $z_n = (x_{n+1} - \beta_n x_n)/(1 - \beta_n)$, such that $x_{n+1} = \beta_n x_n + (1 - \beta_n) z_n$.

We now observe that

$$z_{n+1} - z_n = \frac{x_{n+2} - \beta_{n+1}x_{n+1}}{1 - \beta_{n+1}} - \frac{x_{n+1} - \beta_n x_n}{1 - \beta_n}$$

$$= \frac{\alpha_{n+1}\gamma\phi(x_{n+1}) + (I - \mu\alpha_{n+1}F)y_{n+1} - \beta_{n+1}x_{n+1}}{1 - \beta_{n+1}}$$

$$- \frac{\alpha_n\gamma\phi(x_n) + (I - \mu\alpha_nF)y_n - \beta_n x_n}{1 - \beta_n}$$

$$= \frac{\alpha_{n+1}}{1 - \beta_{n+1}}(\gamma\phi(x_{n+1}) - \mu F y_{n+1}) + \frac{y_{n+1} - \beta_{n+1}x_{n+1}}{1 - \beta_{n+1}}$$

$$- \frac{\alpha_n}{1 - \beta_n}(\gamma\phi(x_n) - \mu F y_n) - \frac{y_n - \beta_n x_n}{1 - \beta_n}$$

$$= \frac{\alpha_{n+1}}{1 - \beta_{n+1}}(\gamma\phi(x_{n+1}) - \mu F y_{n+1})$$

$$+ \frac{[\beta_{n+1}x_{n+1} + (1 - \beta_{n+1})V_{n+1}x_{n+1}] - \beta_{n+1}x_{n+1}}{1 - \beta_{n+1}}$$

$$- \frac{\alpha_n}{1 - \beta_n}(\gamma\phi(x_n) - \mu F y_n) - \frac{[\beta_n x_n + (1 - \beta_n)V_n x_n] - \beta_n x_n}{1 - \beta_n}$$

$$= \frac{\alpha_{n+1}}{1 - \beta_{n+1}}(\gamma\phi(x_{n+1}) - \mu F y_{n+1}) - \frac{\alpha_n}{1 - \beta_n}(\gamma\phi(x_n) - \mu F y_n)$$

$$+ V_{n+1}x_{n+1} - V_n x_n. \qquad (3.9)$$

It follows from (3.9) that

$$||z_{n+1} - z_n|| \le \frac{\alpha_{n+1}}{1 - \beta_{n+1}} (||\gamma \phi(x_{n+1})|| + ||\mu F y_{n+1}||) + \frac{\alpha_n}{1 - \beta_n} (||\gamma \phi(x_n)|| + ||\mu F y_n||) + ||V_{n+1} x_{n+1} - V_n x_n||.$$
(3.10)

Using Lemma 2.11 and for M and w as in (3.8), it follows

$$\|V_{n+1}x_{n+1} - V_nx_n\| \le \|V_nx_{n+1} - V_nx_n\| + \|V_{n+1}x_{n+1} - V_nx_{n+1}\|$$

$$\le \|x_{n+1} - x_n\| + \sum_{i=1}^N |\gamma_{i,n+1} - \gamma_{i,n}| M_iM.$$
(3.11)

Substituting (3.11) into (3.10), we obtain

$$||z_{n+1} - z_n|| \le \bar{M}(\frac{\alpha_{n+1}}{1 - \beta_{n+1}} + \frac{\alpha_n}{1 - \beta_n}) + ||x_{n+1} - x_n|| + \sum_{i=1}^N |\gamma_{i,n+1} - \gamma_{i,n}| M_i M,$$
(3.12)

M. Wen, C. Hu and J. Peng

where $\overline{M} = \sup\{\|\gamma\phi(x_n)\| + \|\mu F y_n\|, n \ge 1\}$. It follows from (3.12) that

$$\|z_{n+1} - z_n\| - \|x_{n+1} - x_n\|$$

$$\leq \bar{M}(\frac{\alpha_{n+1}}{1 - \beta_{n+1}} + \frac{\alpha_n}{1 - \beta_n}) + \sum_{i=1}^N |\gamma_{i,n+1} - \gamma_{i,n}| M_i M.$$
(3.13)

Observing condition (B1), (B2), (B3) and (3.13), it follows that

$$\limsup_{n \to \infty} (\|z_{n+1} - z_n\| - \|x_{n+1} - x_n\|) \le 0.$$

Hence, by Lemma 2.4, we can obtain

$$\lim_{n \to \infty} \|z_n - x_n\| = 0.$$
 (3.14)

It follows from (B3) and (3.14) that

$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = \lim_{n \to \infty} (1 - \beta_n) \|z_n - x_n\| = 0.$$
(3.15)

Step 3. We claim that $\lim_{n\to\infty} ||x_n - V_n x_n|| = 0$. As a direct consequence of (3.15), we note that

$$||x_n - V_n x_n|| \le ||x_n - x_{n+1}|| + ||x_{n+1} - y_n|| + ||y_n - V_n x_n||$$

= $||x_n - x_{n+1}|| + ||x_{n+1} - y_n|| + \beta_n ||x_n - V_n x_n||.$

From (B1), (B3) and using Step 2, we have

$$(1-a)||x_n - V_n x_n|| \le (1-\beta_n)||x_n - V_n x_n|| \le ||x_n - x_{n+1}|| + ||x_{n+1} - y_n|| \le ||x_n - x_{n+1}|| + \alpha_n ||\gamma \phi(x_n) - \mu F y_n|| \to 0 \quad \text{as} \quad n \to \infty.$$

This implies that

$$||x_n - V_n x_n|| \to 0 \quad \text{as} \quad n \to \infty.$$
(3.16)

Step 4. We claim that $\limsup_n \langle \gamma \phi(\tilde{x}) - \mu F \tilde{x}, x_n - \tilde{x} \rangle \leq 0$, where $\tilde{x} = \lim_m y_m$ with $y_m = \alpha_m \gamma \phi(y_m) + (I - \mu \alpha_m F) V y_m$.

For this purpose, let $\{x_{n_k}\}$ be a subsequence chosen in such a way that $\lim_{k\to\infty} \langle \gamma\phi(\tilde{x}) - \mu F\tilde{x}, x_{n_k} - \tilde{x} \rangle = \limsup_{n\to\infty} \langle \gamma\phi(\tilde{x}) - \mu F\tilde{x}, x_n - \tilde{x} \rangle, x_{n_k} \rightarrow z$ and $\gamma_{i,n_k} \rightarrow \gamma_i (i = 1, \dots, N)$. Let V be the maps generated by the finite $\{T_i\}_{i=1}^N$ and coefficient $\gamma_1, \dots, \gamma_N$ following the scheme (2.2). From (3.16) and Lemma 2.11, we obtain

$$||x_{n_k} - Vx_{n_k}|| \le ||x_{n_k} - V_{n_k}x_{n_k}|| + ||V_{n_k}x_{n_k} - Vx_{n_k}|| \to 0,$$

we have $Vx_{n_k} \rightharpoonup z$. From Lemma 2.12, we know $z \in F^*$. Hence, we have

$$\begin{split} \limsup_{n \to \infty} \langle \gamma \phi(\tilde{x}) - \mu F \tilde{x}, x_n - \tilde{x} \rangle &= \lim_{k \to \infty} \langle \gamma \phi(\tilde{x}) - \mu F \tilde{x}, x_{n_k} - \tilde{x} \rangle \\ &= \langle \gamma \phi(\tilde{x}) - \mu F \tilde{x}, z - \tilde{x} \rangle \\ &\leq 0. \end{split}$$

Step 5. We claim that $\{x_n\}$ converges strongly to \tilde{x} . From (1.7), Lemma 2.1 and Lemma 2.3, we have

$$\begin{aligned} \|x_{n+1} - \tilde{x}\|^2 \\ &= \|\alpha_n \gamma \phi(x_n) + (I - \mu \alpha_n F) y_n - \tilde{x}\|^2 \\ &= \|(I - \mu \alpha_n F) y_n - (I - \mu \alpha_n F) \tilde{x} + \alpha_n (\gamma \phi(x_n) - \mu F \tilde{x})\|^2 \\ &\leq \|(I - \mu \alpha_n F) y_n - (I - \mu \alpha_n F) \tilde{x}\|^2 + 2\alpha_n \langle \gamma \phi(x_n) - \mu F \tilde{x}, x_{n+1} - \tilde{x} \rangle \\ &\leq (1 - \alpha_n \tau)^2 \|y_n - \tilde{x}\|^2 + 2\alpha_n \langle \gamma \phi(x_n) - \gamma \phi(\tilde{x}), x_{n+1} - \tilde{x} \rangle \\ &+ 2\alpha_n \langle \gamma \phi(\tilde{x}) - \mu F \tilde{x}, x_{n+1} - \tilde{x} \rangle \\ &\leq (1 - \alpha_n \tau)^2 \|x_n - \tilde{x}\|^2 + \alpha_n \gamma (\|x_n - \tilde{x}\|^2 + \|x_{n+1} - \tilde{x}\|^2) \\ &+ 2\alpha_n \langle \gamma \phi(\tilde{x}) - \mu F \tilde{x}, x_{n+1} - \tilde{x} \rangle. \end{aligned}$$

It then follows that

$$\begin{aligned} \|x_{n+1} - \tilde{x}\|^2 \\ &\leq \frac{(1 - \alpha_n \tau)^2 + \alpha_n \gamma}{1 - \alpha_n \gamma} \|x_n - \tilde{x}\|^2 + \frac{2\alpha_n}{1 - \alpha_n \gamma} \langle \gamma \phi(\tilde{x}) - \mu F \tilde{x}, x_{n+1} - \tilde{x} \rangle \\ &\leq (1 - \frac{2\alpha_n (\tau - \gamma)}{1 - \alpha_n \gamma}) \|x_n - \tilde{x}\|^2 \\ &\quad + \frac{2\alpha_n (\tau - \gamma)}{1 - \alpha_n \gamma} \bigg[\frac{1}{\tau - \gamma} \langle \gamma \phi(\tilde{x}) - \mu F \tilde{x}, x_{n+1} - \tilde{x} \rangle + \frac{\alpha_n \tau^2}{2(\tau - \gamma)} \tilde{M} \bigg], \end{aligned}$$

where $\tilde{M} = \sup_{n \ge 1} \|x_n - \tilde{x}\|^2$. From (B1) and Step 4, it follows that

$$\sum_{n=1}^{\infty} \frac{2\alpha_n(\tau - \gamma)}{1 - \alpha_n \gamma} = \infty$$

and

$$\limsup_{n \to \infty} \frac{1}{\tau - \gamma} \langle \gamma \phi(\tilde{x}) - \mu F \tilde{x}, x_{n+1} - \tilde{x} \rangle + \frac{\alpha_n \tau^2}{2(\tau - \gamma)} \tilde{M} \le 0.$$

Hence, by Lemma 2.5, the sequence $\{x_n\}$ converges strongly to the unique point $\tilde{x} \in F^* = \bigcap_{i=1}^N Fix(T_i)$, which satisfies the variational inequality: $\langle uF\tilde{x} - \alpha\phi(\tilde{x}), \tilde{x} - n \rangle \leq 0 \quad \forall n \in F^*$

$$\langle \mu F \tilde{x} - \gamma \phi(\tilde{x}), \tilde{x} - p \rangle \le 0, \ \forall \ p \in F^*.$$

Remark 3.3. Our results improve and extend the results of Wang [4] in the following aspects:

- (i) a family of nonexpansive mappings W_n is replaced by V_n ;
- (ii) contractive mapping is replaced by a MKC.

Remark 3.4. If $\beta_n = 0, \gamma = 1, \mu = 1, F$ be an identity operator and ϕ is replaced by a contractive mapping f in Theorem 3.2, we can obtain Theorem 14 of Colao and Marino [5] in Hilbert spaces.

Corollary 3.5. Let H, C and $\{T_i\}_{i=1}^N$, $\{\gamma_{i,n}\}_{i=1}^N$ be as in Theorem 3.2. Construct the mappings $V_n(n \in \mathbb{N})$ as in (2.2). Let A be a strongly positive bounded linear operator on C with coefficient $0 < \tilde{\gamma} < ||A||, \phi : C \to C$ be a MKC with $0 < \gamma < \mu(\bar{\gamma} - \frac{\mu||A||^2}{2}) = \tau, \tau < 1$ and let $\{\alpha_n\}$ and $\{\beta_n\} \subset (0,1)$. If the control sequences $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_{i,n}\}_{i=1}^N$ do satisfy the conditions (B1), (B2) and (B3). Let $\{x_n\}$ be a sequence generated by $x_1 = x \in C$:

$$\begin{cases} y_n = \beta_n x_n + (1 - \beta_n) V_n x_n, \\ x_{n+1} = \alpha_n \gamma \phi(x_n) + (I - \alpha_n \mu A) y_n, \quad \forall \ n \ge 1. \end{cases}$$

Then $\{x_n\}$ converges to the unique point $\tilde{x} \in F^* = \bigcap_{i=1}^N Fix(T_i)$, which satisfies the variational inequality:

$$\langle \mu A \tilde{x} - \gamma \phi(\tilde{x}), \tilde{x} - p \rangle \leq 0, \quad \forall p \in F^*.$$

Acknowledgments: This work was supported by the Natural Science Foundation of China under the contact no. 11131006.

References

- S. Banach, Surles operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math., 3 (1922), 133–181.
- [2] A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 1326–1329.
- [3] M. Tian, A general iterative algorithm for nonexpansive mappings in Hilbert spaces, Nonlinear Anal., 73 (2010), 689–694.
- [4] S. Wang, A general iterative method for obtaining an infinite family of strictly pseudocontractive mappings in Hilbert spaces, Appl. Math. Lett., 24 (2011), 901–907.
- [5] V. Colao and G. Marino, Common fixed points of strict pseudocontractions by iterative algorithms, J. Math. Anal. Appl., 2 (2011), 631-644.
- [6] T. Suzuki, Moudafis viscosity approximations with Meir-Keeler contractions, J. Math. Anal. Appl., 325 (2007), 342–352.
- [7] T. Suzuki, Strong convergence of Krasnoselskii and Manns type sequences for one parameter nonexpansive semigroups without Bochner integral, J. Math. Anal. Appl., 35 (2005), 227–239.

- [8] L.S. Liu, Iterative processes with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., 194 (1995), 114–125.
- [9] H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Sov., 66 (2002), 240–256.
- [10] S. Reich, Product formulas, nonlinear semigroups, and accretive operators, J. Funct. Anal., 36(2) (1980), 147–168.
- [11] W. Takahashi, Nonlinear Functional Analysis, Fixed Point Theory Appl., (2000).
- [12] K. Geobel and W.A. Kirk, Topics in Metric Fixed Point Theory, in: Cambridge Stud. Adv. Math., vol. 28, pp. 473-504. Cambridge Univ. Press (1990).