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Abstract. The object of this paper is to establish certain coupled random coincidence point

theorems for a pair of random operators satisfying a contractive condition of rational type.

We also prove some coupled common random fixed point of two random operators using I -

scheme. These results present random versions and extensions of recent results of Chandok

et. al. [9] and Singh et. al. [39].

1. Introduction

Fixed point theory is one of the famous and traditional theories in mathe-
matics. The first result on fixed points for contractive type mapping was the
much celebrated Banach’s contraction principle by Banach [5] in 1922. After
the classical result, Kannan [24] gave a subsequently new contractive mapping
to prove the fixed point theorem. Since then a number of mathematicians have
been working on fixed point theory dealing with mappings satisfying various
type of contractive conditions. In 2002, Branciari [8] analyzed the existence of
fixed point for mapping defined on a complete metric space (X, d) satisfying
a general contractive condition of rational type(see [25, 27]).

In recent years, the study of random fixed points has attracted much atten-
tion. Some random fixed point theorems play an important role in the theory
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of random differential and random integral equations(see [23, 29]). Random
fixed point theorems for contractive mappings on separable complete metric
spaces have been proved by several authors [1, 3, 6, 13, 18, 26]. Sehgal and
Singh [38] have proved different stochastic versions of well-known Schauder
fixed point theorem. Fixed point theorems for monotone operators in ordered
Banach spaces have been investigated and have found various applications in
differential and integral equations ( see [4, 11, 19]). Bhaskar and Lakshmikan-
tham [7] introduced the concept of mixed monotone mappings and obtained

some coupled fixed point results. Recently Ćirić and Lakshmikantham [14]
and Zhu and Xiao [42] proved some coupled random fixed point and coupled
random coincidence results in partially ordered complete metric spaces.

Ishikawa [22] and Mann [31] iteration schemes have been successfully applied
in linear spaces to fixed point problem of operators and also for obtaining
solution of operator equations. In [2, 16, 34, 35, 40], it has shown that for
a mapping T satisfying certain conditions, if the sequence of Mann iterates
converges, then it converges to a fixed point of T . Singh et al. in [39] defined
an iteration scheme called I-scheme to find common fixed point theorem in
Hilbert spaces using rational inequality. The purpose of this article is to
improve these results for a pair of random operators F : Ω × (X ×X) → X
and g : Ω×X → X, where F and g satisfying contractive condition of rational
type. Presented results are the extension and improvment of the corresponding
results in [9, 10, 39] and many others.

2. Preliminaries

Recall that if (X,≤) is a partially ordered set and F : X → X is such that
for x, y ∈ X, x ≤ y implies F (x) ≤ F (y), then a mapping F is said to be
a non-decresing. Similarly, a non-increasing map may be defined. Bhaskar
and Lakshmikantham [7] intrduced the following notions of a mixed monotone
mapping and a coupled fixed point.

Definition 2.1. ([7]) Let (X,≤) be a partially ordered set and F : X ×
X → X. The mapping F is said to has the mixed monotone property if F is
monotone non-decreasing in its first argument and is monotone non-increasing
in its second argument, that is , for any x, y ∈ X,

x1, x2 ∈ X;x1 ≤ x2 ⇒ F (x1, y) ≤ F (x2, y)

and

y1, y2 ∈ X; y1 ≤ y2 ⇒ F (x, y1) ≥ F (x, y2) .

The concept of the mixed monotone property is generalized in [28].
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Definition 2.2. ([28]) Let (X,≤) be a partially ordered set and F : X×X →
X and g : X×X. The mapping F is said to has the mixed g-monotone property
if F is monotone g-non-decreasing in its first argument and is monotone g-
non-increasing in its second argument, that is, for any x, y ∈ X,

x1, x2 ∈ X; g (x1) ≤ g (x2)⇒ F (x1, y) ≤ F (x2, y)

and

y1, y2 ∈ X; g (y1) ≤ g (y2)⇒ F (x, y1) ≥ F (x, y2) .

Definition 2.3. ([7]) An element (x, y) ∈ X × X is called a coupled fixed
point of the mapping F : X ×X → X if

F (x, y) = x, F (y, x) = y.

Definition 2.4. An element (x, y) ∈ X × X is called a coupled coincidence
point of the mappings F : X ×X → X and g : X → X if

F (x, y) = g (x) , F (y, x) = g (y) .

Definition 2.5. Let (X, d) be a metric space. The mappings F : X → X and
g : X → X are said to be commute if

F (gx, gy) = g (F (x, y)) for all x, y ∈ X.

Definition 2.6. Two mappings F : X ×X → X and g : X → X are said to
be compatible if

limn→∞ d (g (F (xn, yn)) , F (g (xn) , g (yn))) = 0

and

limn→∞ d (g (F (yn, xn)) , F (g (yn) , g (xn))) = 0,

whenever {xn}, {yn} are sequences in X such that

lim
n→∞

F (xn, yn) = lim
n→∞

g (xn) = x

and

lim
n→∞

F (yn, xn) = lim
n→∞

g (yn) = y

for all x, y ∈ X.

Using the concept of mixed g-monotone property Chandok et al. [9] proved
the following theorem.
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Theorem 2.7. ([9]) Let (X,4) ba a partially ordered set and suppose that
there exist a metric d on X such that (X, d) is a complete metric space. Sup-
pose that F : X × X → X and g : X → X are self mappings on X such
that F has the mixed g-monotone property on X such that there exists two
x0, y0 ∈ X with g (x0) 4 F (x0, y0) and g (y0) < F (y0, x0). Suppose that there
exists α ∈ [0, 1) such that

d (F (x, y) , F (u, v))

≤ αmax

{
d (gx, gu) , d (gy, gv) , d(gx,F (x,y))d(gu,F (u,v))

d(gx,gu) ,

d(gx,F (u,v))d(gu,F (x,y))
d(gx,gu) , d(gy,F (y,x))d(gv,F (v,u))

d(gy,gv) ,

d(gy,F (v,u))d(gv,F (y,x))
d(gy,gv)

}

satisfies for all x, y, u, v ∈ X, gx 6= gu,gy 6= gv with gx < gu and gy 4 gv.
Further suppose that F is continuous, F (X × X) ⊆ g (X), g is continuous
non-decreasing and commutes with F . Then there exist x, y ∈ X such that
either gx = F (x, y) or gy = F (y, x) or gx = F (x, y) and gy = F (y, x) i,e.,
F and g have a coupled coincidence point (x, y) ∈ X ×X.

Doric et al. [15] showed that a mixed monotone property in coupled fixed
point results for mappings in ordered metric spaces can be replaced by another
property. If x, y are elements of a partially ordered set (X,≤) are comparable

(i.e., x ≤ y or y ≤ x hold) we will write x
<
=
>
y. Let g : X → X and

F : X ×X → X. We will consider the following condition:

if x, y, u, v ∈ X are such that gx
<
=
>
F (x, y) = gu, then F (x, y)

<
=
>
F (u, v).

If g is an identity mapping, for all x, y, v if x
<
=
>
F (x, y) , then F (x, y)

<
=
>

F (F (x, y) , v) .

Chandok et al. [10] also proved the following theorem without mixed mono-
tonicity.

Theorem 2.8. ([10]) Let (X, d,≤) be a complete partially ordered metric space
and let F : X ×X → X and g : X → X. Suppose that the following hold:

(i) g is continuous and g (X) is closed;
(ii) F (X ×X) ⊆ g (X) and g and F are compatible;

(iii) for all x, y, u, v ∈ X, if g (x)
<
=
>
F (x, y) = gu, then F (x, y)

<
=
>
F (u, v) ;

(iv) there exist x0, y0 ∈ X such that gx0
<
=
>
F (x0, y0) and gy0

<
=
>
F (y0, x0) ;
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(v) there exists α ∈ [0, 1) such that for all x, y, u, v ∈ X with gx
<
=
>
gu and

gy
<
=
>
gvsatisfies

d (F (x, y) , F (u, v))

≤ αmax

{
d (gx, gu) , d (gy, gv) , d(gx,F (x,y))d(gu,F (u,v))

d(gx,gu) ,

d(gx,F (u,v))d(gu,F (x,y))
d(gx,gu) , d(gy,F (y,x))d(gv,F (v,u))

d(gy,gv) ,

d(gy,F (v,u))d(gv,F (y,x))
d(gy,gv)

}
;

(vi) F is continuous.

Then there exist x, y ∈ X such that F (x, y) = g (x) and gy = F (y, x), that is,
F and g have a coupled coincidence point (x, y) ∈ X ×X.

Let C be a non-empty convex subset of a normed space E and T : C → C
be a mapping. The Mann iteration process is defined by the sequence {xn} in
[31],

x1 = x ∈ C,
xn+1 = (1− bn)xn + bnTxn, n ∈ N,

where N denote the set of all positive integers and {bn} is a sequence in [0, 1].
Liu [30] introduced the concept of Mann iteration process with errors by the
sequence {xn} defined as follows:

x1 = x ∈ C,
xn+1 = (1− bn)xn + bnTxn + un, n ∈ N,

where {bn} is a sequence in [0, 1] and {un} satisfy
∞∑
n=1
‖un‖ <∞. Singh et al.

[39] introduced the iteration scheme called I -scheme are defined as follows:

Definition 2.9. Let X be a Banach space and C be a non-empty subset of
X. Let T1, T2 : C → C be two mappings. The I -scheme is defined as follows:

x0 ∈ C, (2.1)

y2n = β2nT1x2n + (1− β2n)x2n,
x2n+1 = (1− α2n)x2n + α2nT2y2n,

(2.2)

y2n+1 = β2n+1T1x2n+1 + (1− β2n+1)x2n+1,
x2n+2 = (1− α2n+1)x2n+1 + α2n+1T2y2n+1, n ≥ 0

(2.3)

where {α2n}, {β2n} satisfying the following conditions

(i) 0 ≤ α2n ≤ β2n ≤ 1, for all n,
(ii) limn→∞ α2n = α2n > 0, and
(iii) limn→∞ β2n = β2n < 1.
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Definition 2.10. Let X be a Banach space and C be a non-empty subset of
X. Let T1, T2 : C → C be two mappings. The I -scheme is defined as follows:

x0 ∈ C, (2.4)

y2n = β2nT1x2n + (1− β2n)x2n,
x2n+1 = (1− α2n)x2n + α2nT2y2n,

(2.5)

y2n+1 = β2n+1T1x2n+1 + (1− β2n+1)x2n+1,
x2n+2 = (1− α2n+1)x2n+1 + α2n+1T2y2n+1, n ≥ 0,

(2.6)

where {α2n}, {β2n} satisfying the following conditions

(i) 0 ≤ α2n ≤ β2n ≤ 1, for all n,
(ii) limn→∞ α2n = α2n > 0, and
(iii) limn→∞ β2n = β2n < 1.

Theorem 2.11. ([39]) Let X be Hilbert space and C be closed convex subset
of X. Let T1 and T2 be two sets of mapping satisfying

‖T1x− T2y‖

≤ K max

{
‖y − T2y‖2 , 14

(
‖x− T2y‖2 + ‖y − T1x‖2

)
,

1
2

(
‖x− T1x‖2 + ‖y − T2y‖2

)
, ‖y−T2y‖

2[1+‖x−T1x‖2]
1+‖x−y‖2 ,

‖x−T1x‖2[1+‖x−y‖2]
1+‖y−T2y‖2

, ‖x−y‖
2[1+‖x−T1x‖2]

1+‖y−T2y‖2
, ‖x−T1x‖

2[1+‖y−T2y‖2]
1+‖x−y‖2 ,

(1+‖y−T2y‖2)[1+‖x−T1x‖2]
1+‖x−y‖2

}
,

where, o ≤ k < 1
4 . If there exist a point x0 such that the I-scheme for point

of T1 and T2 defined by (2.5) and (2.6), converges to a point p, then p is a
common fixed point of T1 and T2.

3. Main Results

Let (Ω,Σ) be a measurable space with Σ being a sigma algebra of subsets
of Ω and let (X, d) be a metric space. A mapping T : Ω → X is called Σ-
measurable if for any open subset U of X, T−1 (U) = {ω : T (ω) ∈ U} ∈ Σ. In
what follows, when we speak of measurability we will mean Σ-measurability.
A mapping T : Ω × X → X is called a random operator if for any x ∈ X,
T (·, x) is measurable. A measurable mapping ζ : Ω→ X is called a random
fixed point of a random function T : Ω × X → X if ζ (ω) = T (ω, ζ (ω)) for
every ω ∈ Ω. A measurable mapping ζ : Ω→ X is called a random coincidence
of T : Ω ×X → X and g : Ω ×X → X if g (ω, ζ (ω)) = T (ω, ζ (ω)) for every
ω ∈ Ω.
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Definition 3.1. Let (X, d) be a separable metric space, (Ω,Σ) be a measur-
able space and F : Ω× (X ×X)→ X and g : Ω×X → X be mappings. We
say that F and g are said to be commute if

F (ω, (g (ω, x) , g (ω, y))) = g (ω, F (ω, (x, y))) for all x, y ∈ X and ω ∈ Ω.

Definition 3.2. Let (X, d) be a separable metric space, (Ω,Σ) be a measurable
space and F : Ω × (X ×X) → X and g : Ω ×X → X be mappings. We say
F and g are compatible if

lim
n→∞

d (g (ω, F (ω, (xn, yn))) , F (ω, (g (ω, xn) , g (ω, yn)))) = 0

and

lim
n→∞

d (g (ω, F (ω, (yn, xn))) , F (ω, (g (ω, yn) , g (ω, xn)))) = 0

whenever {xn}, {yn} are sequences in X, such that

lim
n→∞

F (ω, (xn, yn)) = lim
n→∞

g(ω, xn) = x

and

lim
n→∞

F (ω, (yn, xn)) = lim
n→∞

g (ω, yn) = y

for all ω ∈ Ω and x, y ∈ X are satisfied.

Theorem 3.3. Let (X,4, d) be a complete separable partially ordered metric
space, (Ω,Σ) be a measurable space and F : Ω×(X ×X)→ X and g : X → X
be mappings such that

(i) g (ω, ·) is continuous for all ω ∈ Ω;
(ii) F (·, v) and g (·, x) are measurable for all v ∈ X × X and x ∈ X

respectively;
(iii) F (ω, ·) has the mixed g (ω, ·)-monotone property for each ω ∈ Ω and

there exists α ∈ [0, 1) such that

d (F (ω, (x, y)) , F (ω, (u, v)))

≤ αmax

{
d (g (ω, x) , g (ω, u)) , d (g (ω, y) , g (ω, v)) ,

d(g(ω,x),F (ω,(x,y)))d(g(ω,u),F (ω,(u,v)))
d(g(ω,x),g(ω,u)) , d(g(ω,x),F (ω,(u,v)))d(g(ω,u),F (ω,(x,y)))

d(g(ω,x),g(ω,u)) ,

d(g(ω,y),F (ω,(y,x)))d(g(ω,v),F (ω,(v,u)))
d(g(ω,y),g(ω,v)) , d(g(ω,y),F (ω,(v,u)))d(g(ω,v),F (ω,(y,x)))

d(g(ω,y),g(ω,v))

}
(3.1)

holds for all x, y, u, v ∈ X, g (ω, x) 6= g (ω, u), g (ω, y) 6= g (ω, v) with
g (ω, x) < g (ω, u) and g (ω, y) 4 g (ω, v) for all ω ∈ Ω.
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Further, suppose that F is continuous, F (ω,X ×X) ⊆ g (ω,X), g is mono-
tone increasing and commute with F . If there exist measurable mappings
ζ0, η0 : Ω→ X such that

g (ω, ζ0 (ω)) 4 F (ω, (ζ0 (ω) , η0 (ω)))

and

g (ω, η0 (ω)) < F (ω, (η0 (ω) , ζ0 (ω)))

for all ω ∈ Ω, then there are measurable mappings ζ, θ : Ω → X such that
F (ω, (ζ (ω) , θ (ω))) = g (ω, ζ (ω)) and F (ω, (θ (ω) , ζ (ω))) = g (ω, θ (ω)) for
all ω ∈ Ω, that is, F and g have a coupled random coincidence point.

Proof. Let Θ = {ζ : Ω→ X} be a family of measurable mappings. Define a
function h : Ω×X → R+ as follows

h (ω, x) = d (x, g (ω, x)) .

Since x → g (ω, x) is continuous for all ω ∈ Ω, we conclude that h (ω, ·) is
continuous for all ω ∈ Ω. Also, since x→ g (ω, x) is measurable for all x ∈ X,
we conclude that h (·, x) is measurable for all ω ∈ Ω (see Wagner [41], p. 868).
Thus, h (ω, x) is the Caratheodory function. Therefore, if ζ : Ω → X is a
measurable mapping, then ω → h (ω, ζ (ω)) is also measurable(see [36]). Also,
for each ζ ∈ Θ the function η : Ω → X defined by η (ω) = g (ω, ζ (ω)) is
measurable, that is, η ∈ Θ.

Now we shall construct two sequences of measurable mappings {ζn} and
{ηn} in Θ, and two sequences {g (ω, ζn (ω))} and {g (ω, ηn (ω))} in X as
follows. Let ζ0, η0 ∈ Θ such that g (ω, ζ0 (ω)) 4 F (ω, (ζ0 (ω) , η0 (ω))) and
g (ω, η0 (ω)) < F (ω, (η0 (ω) , ζ0 (ω))) for all ω ∈ Ω. Since

F (ω, (ζ0 (ω) , η0 (ω))) ∈ X = g (ω ×X) ,

by a sort of Filippov measurable implicit function theorem [14, 17, 23, 32],
there is ζ1 ∈ Θ such that g (ω, ζ1 (ω)) = F (ω, (ζ0 (ω) , η0 (ω))) . Similarly as
F (ω, (η0 (ω) , ζ0 (ω))) ∈ g (ω ×X), there is η1 (ω) ∈ Θ such that g (ω, η1 (ω)) =
F (ω, (η0 (ω) , ζ0 (ω))). Now F (ω, (ζ1 (ω) , η1 (ω))) and F (ω, (η1 (ω) , ζ1 (ω)))
are well defined. Again from

F (ω, (ζ1 (ω) , η1 (ω))) , F (ω, (η1 (ω) , ζ1 (ω))) ∈ g (ω ×X) ,

there are ζ2, η2 ∈ Θ such that

g (ω, ζ2 (ω)) = F (ω, (ζ1 (ω) , η1 (ω)))

and

g (ω, η2 (ω)) = F (ω, (η1 (ω) , ζ1 (ω))) .



Coupled random coincidence point for random operators 609

Continuing this process we can construct sequences {ζn (ω)} and {ηn (ω)} in
X such that

g (ω, ζn+1 (ω)) = F (ω, (ζn (ω) , ηn (ω))) ,

g (ω, ηn+1 (ω)) = F (ω, (ηn (ω) , ζn (ω)))
(3.2)

for all n ≥ 0. We shall prove that

g (ω, ζn (ω)) 4 g (ω, ζn+1 (ω)) for all n ≥ 0 (3.3)

and

g (ω, ηn (ω)) < g (ω, ηn+1 (ω)) for all n ≥ 0. (3.4)

The proof will be given by the mathematical induction. Let n = 0. By
assumption we have g (ω, ζ0 (ω)) 4 F (ω, (ζ0 (ω) , η0 (ω))) and g (ω, η0 (ω)) <
F (ω, (η0 (ω) , ζ0 (ω))) . Since

g (ω, ζ1 (ω)) = F (ω, (ζ0 (ω) , η0 (ω)))

and

g (ω, η1 (ω)) = F (ω, (η0 (ω) , ζ0 (ω))) ,

we have

g (ω, ζ0 (ω)) 4 g (ω, ζ1 (ω)) and g (ω, η0 (ω)) < g (ω, η1 (ω)) .

Therefore (3.3) and (3.4) hold for n = 0. Suppose that (3.3) and (3.4) hold for
some fixed n ≥ 0. Then, since g (ω, ζn (ω)) 4 g (ω, ζn+1 (ω)) , g (ω, ηn (ω)) <
g (ω, ηn+1 (ω)) and F is monotone g-non-decreasing in its first argument, from
(3.2), we get

F (ω, (ζn (ω) , ηn (ω))) 4 F
(
ω,
(
ζn+1 (ω) , ηn (ω)

))
F (ω, (ηn+1 (ω) , ζn (ω))) 4 F (ω, (ηn (ω) , ζn (ω))) .

(3.5)

Similarly, from (3.2), as

g (ω, ηn+1 (ω)) 4 g (ω, ηn (ω)) and g (ω, ζn (ω)) 4 g (ω, ζn+1 (ω)) ,

F (ω, (ζn+1 (ω) , ηn+1 (ω))) < F
(
ω,
(
ζn+1 (ω) , ηn (ω)

))
F (ω, (ηn+1 (ω) , ζn+1 (ω))) < F (ω, (ηn+1 (ω) , ζn+1 (ω))) .

(3.6)

Now from (3.2),(3.5) and (3.6), we get

g (ω, ζn+1 (ω)) 4 g (ω, ζn+2 (ω)) (3.7)

and

g (ω, ηn+1 (ω)) < g (ω, ηn+2 (ω)) . (3.8)



610 N. Shafqat and N. Yasmin

Thus, by the mathematical induction we conclude that (3.3) and (3.4) hold
for all n ≥ 0. From (3.3) and (3.4), we have g (ω, ζn−1 (ω)) 4 g (ω, ζn (ω)) and
g (ω, ηn−1 (ω)) < g (ω, ηn (ω)) . Therefore, from (3.1) and (3.2), we have

d (g (ω, ζn+1 (ω)) , g (ω, ζn (ω)))
= d (F (ω, (ζn (ω) , ηn (ω))) , F (ω, (ζn−1 (ω) , ηn−1 (ω))))

≤ αmax

{
d (g (ω, ζn (ω)) , g (ω, ζn−1 (ω))) , d (g (ω, ηn (ω)) , g (ω, ηn−1 (ω))) ,

d(g(ω,ζn(ω)),F (ω,(ζn(ω),ηn(ω))))d(g(ω,ζn−1(ω)),F (ω,(ζn−1(ω),ηn−1(ω))))
d(g(ω,ζn(ω)),g(ω,ζn−1(ω)))

,
d(g(ω,ζn(ω)),F (ω,(ζn−1(ω),ηn−1(ω))))d(g(ω,ζn−1(ω)),F (ω,(ζn(ω),ηn(ω))))

d(g(ω,ζn(ω)),g(ω,ζn−1(ω)))
,

d(g(ω,ηn(ω)),F (ω,(ηn(ω),ζn(ω))))d(g(ω,ηn−1(ω)),F (ω,(ηn−1(ω),ζn−1(ω))))
d(g(ω,ηn(ω)),g(ω,ηn−1(ω)))

,

d(g(ω,ηn(ω)),F (ω,(ηn−1(ω),ζn−1(ω))))d(g(ω,ηn−1(ω)),F (ω,(ηn(ω),ζn(ω))))
d(g(ω,ηn(ω)),g(ω,ηn−1(ω)))

}
.

= αmax

{
d (g (ω, ζn (ω)) , g (ω, ζn−1 (ω))) , d (g (ω, ηn (ω)) , g (ω, ηn−1 (ω))) ,

d(g(ω,ζn(ω)),g(ω,ζn+1(ω)))d(g(ω,ζn−1(ω)),g(ω,ζn(ω)))
d(g(ω,ζn(ω)),g(ω,ζn−1(ω)))

,
d(g(ω,ζn(ω)),g(ω,ζn(ω)))d(g(ω,ζn−1(ω)),g(ω,ζn+1(ω)))

d(g(ω,ζn(ω)),g(ω,ζn−1(ω)))
,

d(g(ω,ηn(ω)),g(ω,ηn+1(ω)))d(g(ω,ηn−1(ω)),g(ω,ηn(ω)))
d(g(ω,ηn(ω)),g(ω,ηn−1(ω)))

,

d(g(ω,ηn(ω)),g(ω,ηn(ω)))d(g(ω,ηn−1(ω)),g(ω,ηn+1(ω)))
d(g(ω,ηn(ω)),g(ω,ηn−1(ω)))

}
= αmax

{
d (g (ω, ζn (ω)) , g (ω, ζn−1 (ω))) , d (g (ω, ηn (ω)) , g (ω, ηn−1 (ω))) ,

d (g(ω, ζn (ω)) , g(ω, ζn+1 (ω))) , d (g(ω, ηn (ω)) , g(ω, ηn+1 (ω)))

}
.

Which implies that

d (g (ω, ζn+1 (ω)) , g (ω, ζn (ω)))
≤ αmax{d (g (ω, ζn (ω)) , g (ω, ζn−1 (ω))) ,

d (g (ω, ηn (ω)) , g (ω, ηn−1 (ω))) , d (g (ω, ζn (ω)) , g (ω, ζn+1 (ω))) ,
d (g (ω, ηn (ω)) , g (ω, ηn+1 (ω)))}.

(3.9)

Similarly, we can prove that

d (g (ω, ηn+1 (ω)) , g (ω, ηn (ω)))
≤ αmax{d (g (ω, ζn (ω)) , g (ω, ζn−1 (ω))) ,

d (g (ω, ηn (ω)) , g (ω, ηn−1 (ω))) , d (g (ω, ζn (ω)) , g (ω, ζn+1 (ω))) ,
d (g (ω, ηn (ω)) , g (ω, ηn+1 (ω)))}.

(3.10)
Set

ρn = max {d (g (ω, ζn+1 (ω)) , g (ω, ζn (ω))) ,
d (g (ω, ηn+1 (ω)) , g (ω, ηn (ω)))} . (3.11)
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Hence

max {d (g(ω, ζn+1 (ω)) , g(ω, ζn (ω))) , d (g(ω, ηn+1 (ω)) , g(ω, ηn (ω)))}
≤ αmax {d (g (ω, ζn (ω)) , g (ω, ζn−1 (ω))) , d (g (ω, ηn (ω)) , g (ω, ηn−1 (ω)))}
= αρn−1.

(3.12)
By induction, we have

max {d (g (ω, ζn+1 (ω)) , g (ω, ζn (ω))) , d (g (ω, ηn+1 (ω)) , g (ω, ηn (ω)))}
≤ αnρ0.

(3.13)
It easily follows that for each m,n ∈ N,m < n, we have

d (g (ω, ζm (ω)) , g (ω, ζn (ω))) ≤ αm

1−αρ0 (3.14)

and
d (g (ω, ηm (ω)) , g (ω, ηn (ω))) ≤ αm

1−αρ0. (3.15)

Therefore {g (ω, ζn (ω))} and {g (ω, ηn (ω))} are Cauchy sequences in X. Since
X is complete and g (ω ×X) = X, there exist ζ0, θ0 ∈ Θ such that

lim
n→∞

g (ω, ζn (ω)) = g (ω, ζ0 (ω))

and
lim
n→∞

g (ω, ηn (ω)) = g (ω, θ0 (ω)) .

Since g (ω, ζ0 (ω)) and g (ω, θ0 (ω)) are measurable, the functions ζ (ω) and
θ (ω), defined by ζ (ω) = g (ω, ζ0 (ω)) and θ (ω) = g (ω, θ0 (ω)) are measurable.
Thus

limn→∞ F (ω, (ζn (ω) , ηn (ω))) = limn→∞ g (ω, ζn (ω)) = ζ (ω) ,
limn→∞ F (ω, (ηn (ω) , ζn (ω))) = limn→∞ g (ω, ηn (ω)) = θ (ω) .

(3.16)

Since g is continuous, we have

limn→∞ g (ω, (g (ω, ζn (ω)))) = g (ω, (g (ω, ζ0 (ω)))) = g (ω, ζ (ω)) ,
limn→∞ g (ω, (g (ω, ηn (ω)))) = g (ω, (g (ω, θ0 (ω)))) = g (ω, θ (ω)) .

(3.17)

From (3.2) and commutativity of F and g,

g (ω, (g (ω, ζn+1 (ω)))) = g (ω, (F (ω, (ζn (ω) , ηn (ω)))))
= F (ω, (g (ω, ζn (ω)) , g (ω, ηn (ω))))

(3.18)

and

g (ω, (g (ω, ηn+1 (ω)))) = g (ω, (F (ω, (ηn (ω) , ζn (ω)))))
= F (ω, (g (ω, ηn (ω)) , g (ω, ζn (ω)))) .

(3.19)

Now, we show that

g (ω, ζ (ω)) = F (ω, (ζ (ω) , θ (ω)))

and
g (ω, θ (ω)) = F (ω, (θ (ω) , ζ (ω))) .
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Taking the limit as n → ∞ in (3.18) and (3.19), by (3.16) and (3.17) and as
F is continuous, we have

g (ω, ζ (ω)) = lim
n→∞

g (ω, (g (ω, ζn+1 (ω))))

= lim
n→∞

F (ω, (g (ω, ζn (ω)) , g (ω, ηn (ω))))

= F
(
ω, lim

n→∞
(g (ω, ζn (ω)) , g (ω, ηn (ω)))

)
= F (ω, (ζ (ω) , θ (ω)))

and
g (ω, θ (ω)) = lim

n→∞
g (ω, (g (ω, ηn+1 (ω))))

= lim
n→∞

F (ω, (g (ω, ηn (ω)) , g (ω, ζn (ω))))

= F
(
ω, lim

n→∞
(g (ω, ηn (ω)) , g (ω, ζn (ω)))

)
= F (ω, (θ (ω) , ζ (ω))) .

Thus, we proved that F and g have a coupled random coincidence point. �

Theorem 3.4. In addition to hypotheses of Theorem 3.3, if g (ω, ζ0 (ω)) and
g (ω, η0 (ω)) are compareable. Then F and g have a coupled random coin-
cidence point, that is, for measurable mappings ζ, θ : Ω → X, there exist
ζ (ω) , θ (ω) for all ω ∈ Ω such that either

g (ω, ζ (ω)) = F (ω, (ζ (ω) , θ (ω))) or g (ω, θ (ω)) = F (ω, (θ (ω) , ζ (ω)))

or

g (ω, ζ (ω)) = F (ω, (ζ (ω) , θ (ω))) = F (ω, (θ (ω) , ζ (ω))) = g (ω, θ (ω)) .

Proof. As in Theorem 3.3, we can construct two sequences {g (ω, ζn (ω))} and
{g (ω, ηn (ω))} in X such that g (ω, ζn (ω)) → g (ω, ζ (ω)) and g (ω, ηn (ω)) →
g (ω, θ (ω)), where (ζ (ω) , θ (ω)) is a random coincidence point of F and g.
Suppose g (ω, ζ0 (ω)) 4 g (ω, η0 (ω)). We shall show that

g (ω, ζn (ω)) 4 g (ω, ηn (ω)) ,

where
g (ω, ζn (ω)) = F (ω, (ζn−1 (ω) , ηn−1 (ω))) ,
g (ω, ηn (ω)) = F (ω, (ηn−1 (ω) , ζn−1 (ω))) ,

for all n. Suppose that it holds for some n ≥ 0. Then by mixed g-monotone
property of F , we have

g (ω, ζn+1 (ω)) = F (ω, (ζn (ω) , ηn (ω)))
4 F (ω, (ηn (ω) , ζn (ω))) = g (ω, ηn+1 (ω)) .
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Now from (3.1), we have

d (g (ω, ζn+1 (ω)) , g (ω, ηn+1 (ω)))
= d (F (ω, (ζn (ω) , ηn (ω))) , F (ω, (ηn (ω) , ζn (ω))))

≤ αmax

{
d (g (ω, ζn (ω)) , g (ω, ηn (ω))) , d (g (ω, ηn (ω)) , g (ω, ζn (ω))) ,

d(g(ω,ζn(ω)),F (ω,(ζn(ω),ηn(ω))))d(g(ω,ηn(ω)),F (ω,(ηn(ω),ζn(ω))))
d(g(ω,ζn(ω)),g(ω,ηn(ω)))

,
d(g(ω,ζn(ω)),F (ω,(ηn(ω),ζn(ω))))d(g(ω,ηn(ω)),F (ω,(ζn(ω),ηn(ω))))

d(g(ω,ζn(ω)),g(ω,ηn(ω)))
,

d(g(ω,ηn(ω)),F (ω,(ηn(ω),ζn(ω))))d(g(ω,ζn(ω)),F (ω,(ζn(ω),ηn(ω))))
d(g(ω,ηn(ω)),g(ω,ζn(ω)))

,

d(g(ω,ηn(ω)),F (ω,(ζn(ω),ηn(ω))))d(g(ω,ζn(ω)),F (ω,(ηn(ω),ζn(ω))))
d(g(ω,ηn(ω)),g(ω,ζn(ω)))

}
.

On taking limt as n→∞, we obtain

d (g (ω, ζ (ω)) , g (ω, θ (ω))) ≤ αd (g (ω, ζ (ω)) , g (ω, θ (ω))) .

Since α < 1, we have d (g (ω, ζ (ω)) , g (ω, θ (ω))) = 0. Hence

F (ω, (ζ (ω) , θ (ω))) = g (ω, ζ (ω)) = g (ω, θ (ω)) = F (ω, (θ (ω) , ζ (ω))) .

A similar argument can be used if g (ω, η0 (ω)) 4 g (ω, ζ0 (ω)) . �

If F : Ω× (X ×X)→ X and g : X → X are compatible random operators,
we have the following theorem.

Theorem 3.5. Let (X,4, d) be a complete separable partially ordered metric
space, (Ω,Σ) be a measurable space and F : Ω×(X ×X)→ X and g : X → X
be mapping such that

(i) g (ω, ·) is continuous for all ω ∈ Ω;
(ii) F (·, v) and g (·, x) are measurable for all v ∈ X × X and x ∈ X

respectivly;
(iii) F (ω, ·) has the mixed g (ω, ·)-monotone property for each ω ∈ Ω and

there exist α ∈ [0, 1) such that

d (F (ω, (x, y)) , F (ω, (u, v)))
≤ αmax{d (g (ω, x) , g (ω, u)) , d (g (ω, y) , g (ω, v)) ,
d(g(ω,x),F (ω,(x,y)))d(g(ω,u),F (ω,(u,v)))

d(g(ω,x),g(ω,u)) , d(g(ω,x),F (ω,(u,v)))d(g(ω,u),F (ω,(x,y)))
d(g(ω,x),g(ω,u)) ,

d(g(ω,y),F (ω,(y,x)))d(g(ω,v),F (ω,(v,u)))
d(g(ω,y),g(ω,v)) , d(g(ω,y),F (ω,(v,u)))d(g(ω,v),F (ω,(y,x)))

d(g(ω,y),g(ω,v)) }

(3.20)

holds for all x, y, u, v ∈ X, g (ω, x) 6= g (ω, u), g (ω, y) 6= g (ω, v) with
g (ω, x) < g (ω, u) and g (ω, y) 4 g (ω, v) for all ω ∈ Ω.

Further, suppose that F is continuous, F (ω,X ×X) ⊆ g (ω,X), g is mono-
tone increasing and F and g are compatible random operators. If there exist
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measurable mappings ζ0, η0 : Ω→ X such that

g (ω, ζ0 (ω)) 4 F (ω, (ζ0 (ω) , η0 (ω)))

and
g (ω, η0 (ω)) < F (ω, (η0 (ω) , ζ0 (ω)))

for all ω ∈ Ω, then there are measurable mappings ζ, θ : Ω → X such that
F (ω, (ζ (ω) , θ (ω))) = g (ω, ζ (ω)) and F (ω, (θ (ω) , ζ (ω))) = g (ω, θ (ω)) for
all ω ∈ Ω, that is, F and g have a coupled random coincidence point.

Proof. We can construct two sequences {g (ω, ζn (ω))} and {g (ω, ηn (ω))} in
X and proved by the same arguments of Theorem 3.3 that {g (ω, ζn (ω))}
and {g (ω, ηn (ω))} are Cauchy sequences in X. Since X is complete and
g (ω ×X) = X, there exist ζ0, θ0 ∈ Θ such that limn→∞ g (ω, ζn (ω)) =
g (ω, ζ0 (ω)) and limn→∞ g (ω, ηn (ω)) = g (ω, θ0 (ω)). Since g (ω, ζ0 (ω)) and
g (ω, θ0 (ω)) are measurable, then the functions ζ (ω) and θ (ω), defined by
ζ (ω) = g (ω, ζ0 (ω)) and θ (ω) = g (ω, θ0 (ω)) are measurable. Thus

limn→∞ F (ω, (ζn (ω) , ηn (ω))) = limn→∞ g (ω, ζn (ω)) = ζ (ω) ,
limn→∞ F (ω, (ηn (ω) , ζn (ω))) = limn→∞ g (ω, ηn (ω)) = θ (ω) .

(3.21)

Since F and g are compatible mappings, by (3.21), we have

lim
n→∞

d (g (ω, F (ω, (ζn (ω) , ηn (ω)))) , F (ω, (g (ω, ζn (ω)) , g (ω, ηn (ω))))) = 0,

(3.22)
lim
n→∞

d (g (ω, F (ω, (ηn (ω) , ζn (ω)))) , F (ω, (g (ω, ηn (ω)) , g (ω, ζn (ω))))) = 0.

(3.23)
As F is continuous, we have

d (g (ω, ζ (ω)) , F (ω, (g (ω, ζn (ω)) , g (ω, ηn (ω)))))
≤ d (g (ω, ζ (ω)) , g (ω, F (ω, (ζn (ω) , ηn (ω)))))

+d (g (ω, F (ω, (ζn (ω) , ηn (ω)))) , F (ω, (g (ω, ζn (ω)) , g (ω, ηn (ω))))) .

Taking the limit as n→∞, using (3.1), (3.21) and (3.22) and the fact that F
and g are continuous, we have

d (g (ω, ζ (ω)) , F (ω, (ζ (ω) , θ (ω)))) = 0.

Similarly, from (3.1), (3.21) and (3.23) and the continuity of F and g, we have

d (g (ω, θ (ω)) , F (ω, (θ (ω) , ζ (ω)))) = 0.

�

Theorem 3.6. Let (X,≤, d) be complete separable partially ordered metric
space, (Ω,Σ) be a measurable space and F : Ω×(X ×X)→ X and g : X → X
be mapping such that

(i) F (ω, ·) and g (ω, ·) are continuous for all ω ∈ Ω;
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(ii) F (·, v) and g (·, x) are measurable for all v ∈ X × X and x ∈ X
respectivly;

(iii) for all x, y, u, v ∈ X, if g(ω, x)
<
=
>
F (ω, (x, y))=g(ω, u) , then

F (ω, (x, y))
<
=
>
F (ω, (u, v)) .

If there exist α ∈ [0, 1) such that

d (F (ω, (x, y)) , F (ω, (u, v)))
≤ αmax{d (g (ω, x) , g (ω, u)) , d (g (ω, y) , g (ω, v)) ,
d(g(ω,x),F (ω,(x,y)))d(g(ω,u),F (ω,(u,v)))

d(g(ω,x),g(ω,u)) , d(g(ω,x),F (ω,(u,v)))d(g(ω,u),F (ω,(x,y)))
d(g(ω,x),g(ω,u)) ,

d(g(ω,y),F (ω,(y,x)))d(g(ω,v),F (ω,(v,u)))
d(g(ω,y),g(ω,v)) , d(g(ω,y),F (ω,(v,u)))d(g(ω,v),F (ω,(y,x)))

d(g(ω,y),g(ω,v)) }

(3.24)

such that for all x, y, u, v ∈ X with g (ω, x)
<
=
>
g (ω, u) and g (ω, y)

<
=
>
g (ω, v) for

all ω ∈ Ω. Suppose g (ω ×X) = X for each ω ∈ Ω and F and g are compatible
random operators. If there exist measurable mappings ζ0, η0 : Ω→ X such that

g (ω, ζ0 (ω))
<
=
>
F (ω, (ζ0 (ω) , η0 (ω))) and g (ω, η0 (ω))

<
=
>
F (ω, (η0 (ω) , ζ0 (ω)))

for all ω ∈ Ω, then there are measurable mappings ζ, θ : Ω → X such that
F (ω, (ζ (ω) , θ (ω))) = g (ω, ζ (ω)) and F (ω, (θ (ω) , ζ (ω))) = g (ω, θ (ω)) for
all ω ∈ Ω, that is, F and g have a coupled random coincidence point.

Proof. Let Θ = {ζ : Ω→ X} be a family of measurable mappings. Define a
function h : Ω×X → R+ as follows

h (ω, x) = d (x, g (ω, x)) .

Since x → g (ω, x) is continuous for all ω ∈ Ω, we conclude that h (ω, ·) is
continuous for all ω ∈ Ω. Also, since x→ g (ω, x) is measurable for all x ∈ X,
we conclude that h (·, x) is measurable for all ω ∈ Ω(see Wagner [41], p. 868).
Thus, h (ω, x) is the Caratheodory function. Therefore, if ζ : Ω → X is a
measurable mapping, then ω → h (ω, ζ (ω)) is also measurable (see [36]).
Also, for each ζ ∈ Θ the function η : Ω→ X defined by η (ω) = g (ω, ζ (ω)) is
measurable, that is, η ∈ Θ.

Now we shall construct two sequences of measurable mappings {ζn} and
{ηn} in Θ, and two sequences {g (ω, ζn (ω))} and {g (ω, ηn (ω))} in X as

follows. Let ζ0, η0 ∈ Θ such that g (ω, ζ0 (ω))
<
=
>
F (ω, (ζ0 (ω) , η0 (ω))) and

g (ω, η0 (ω))
<
=
>
F (ω, (η0 (ω) , ζ0 (ω))) for all ω ∈ Ω. Since F (ω, (ζ0 (ω) , η0 (ω)))

∈ X = g (ω ×X) , by a sort of Filippov measurable implicit function theorem
[14, 17, 23, 32], there is ζ1 ∈ Θ such that g (ω, ζ1 (ω)) = F (ω, (ζ0 (ω) , η0 (ω))) .
Similarly as F (ω, (η0 (ω) , ζ0 (ω))) ∈ g (ω ×X), there is η1 (ω) ∈ Θ such
that g (ω, η1 (ω)) = F (ω, (η0 (ω) , ζ0 (ω))). Now F (ω, (ζ1 (ω) , η1 (ω))) and
F (ω, (η1 (ω) , ζ1 (ω))) are well defined. Again from F (ω, (ζ1 (ω) , η1 (ω))) ,
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F (ω, (η1 (ω) , ζ1 (ω))) ∈ g (ω ×X), there are ζ2, η2 ∈ Θ such that g (ω, ζ2 (ω)) =
F (ω, (ζ1 (ω) , η1 (ω))) and g (ω, η2 (ω)) = F (ω, (η1 (ω) , ζ1 (ω))). Continuing
this process we can construct sequences {ζn (ω)} and {ηn (ω)} in X such that

g (ω, ζn+1 (ω)) = F (ω, (ζn (ω) , ηn (ω))) ,
g (ω, ηn+1 (ω)) = F (ω, (ηn (ω) , ζn (ω))) ,

(3.25)

for all n ≥ 0.
Now, we shall prove that

g (ω, ζn (ω))
<
=
>
g (ω, ζn+1 (ω)) for all n ≥ 0 (3.26)

and

g (ω, ηn (ω))
<
=
>
g (ω, ηn+1 (ω)) for all n ≥ 0. (3.27)

The proof will be given by the mathematical induction. Let n = 0. By
assumption we have

g (ω, ζ0 (ω))
<
=
>
F (ω, (ζ0 (ω) , η0 (ω))) = g (ω, ζ1 (ω))

and

g (ω, η0 (ω))
<
=
>
F (ω, (η0 (ω) , ζ0 (ω))) = g (ω, η1 (ω)) .

Therefore (3.26) and (3.27) hold for n = 0. Since

g (ω, ζ0 (ω))
<
=
>
F (ω, (ζ0 (ω) , η0 (ω))) = g (ω, ζ1 (ω))

and condition (iii) implies that

g (ω, ζ1 (ω)) = F (ω, (ζ0 (ω) , η0 (ω)))
<
=
>
F (ω, (ζ1 (ω) , η1 (ω))) = g (ω, ζ2 (ω)) .

Similarly, if

g (ω, η0 (ω))
<
=
>
F (ω, (η0 (ω) , ζ0 (ω))) = g (ω, η1 (ω)) ,

then condition (iii) implies that

g (ω, η1 (ω)) = F (ω, (η0 (ω) , ζ0 (ω)))
<
=
>
F (ω, (η1 (ω) , ζ1 (ω))) = g (ω, η2 (ω)) .

Thus, we have

g (ω, ζ1 (ω))
<
=
>
g (ω, ζ2 (ω))

and

g (ω, η1 (ω))
<
=
>
g (ω, η2 (ω)) .

Proceeding by induction, we get

g (ω, ζn (ω))
<
=
>
g (ω, ζn+1 (ω)) (3.28)
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and

g (ω, ηn (ω))
<
=
>
g (ω, ηn+1 (ω)) . (3.29)

Using (3.24), (3.25) and the same arguments of Theorem 3.3, we can prove
that {g (ω, ζn (ω))} and {g (ω, ηn (ω))} are Cauchy sequences in X. Since X
is complete and g (ω ×X) = X, there exist ζ0, θ0 ∈ Θ such that

lim
n→∞

g (ω, ζn (ω)) = g (ω, ζ0 (ω))

and

lim
n→∞

g (ω, ηn (ω)) = g (ω, θ0 (ω)) .

Since g (ω, ζ0 (ω)) and g (ω, θ0 (ω)) are measurable, then the functions ζ (ω)
and θ (ω), defined by ζ (ω) = g (ω, ζ0 (ω)) and θ (ω) = g (ω, θ0 (ω)) are mea-
surable. Thus

lim
n→∞

F (ω, (ζn (ω) , ηn (ω))) = limn→∞ g (ω, ζn (ω)) = ζ (ω) ,

lim
n→∞

F (ω, (ηn (ω) , ζn (ω))) = limn→∞ g (ω, ηn (ω)) = θ (ω) .
(3.30)

Since F and g are compatible mappings, we have by (3.30)

lim
n→∞

d (g (ω, F (ω, (ζn (ω) , ηn (ω)))) , F (ω, (g (ω, ζn (ω)) , g (ω, ηn (ω))))) = 0,

(3.31)

lim
n→∞

d (g (ω, F (ω, (ηn (ω) , ζn (ω)))) , F (ω, (g (ω, ηn (ω)) , g (ω, ζn (ω))))) = 0.

(3.32)
As F is continuous, we have

d (g (ω, ζ (ω)) , F (ω, (g (ω, ζn (ω)) , g (ω, ηn (ω)))))
≤ d (g (ω, ζ (ω)) , g (ω, F (ω, (ζn (ω) , ηn (ω)))))

+d (g (ω, F (ω, (ζn (ω) , ηn (ω)))) , F (ω, (g (ω, ζn (ω)) , g (ω, ηn (ω))))) .

Taking the limit as n → ∞, using (3.25), (3.30) and (3.31) and the fact that
F and g are continuous, we have

d (g (ω, ζ (ω)) , F (ω, (ζ (ω) , θ (ω)))) = 0.

Similarly, from (3.25), (3.30) and (3.32) and the continuity of F and g, we
have

d (g (ω, θ (ω)) , F (ω, (θ (ω) , ζ (ω)))) = 0.

Thus, we have F and g have a coupled random coincidence point. �

If g is the identity mapping in above theorem we have the following result.
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Corollary 3.7. Let (X,≤, d) be complete separable partially ordered metric
space, (Ω,Σ) be a measurable space and F : Ω × (X ×X) → X be mapping
such that

(i) F (ω, ·) is continuous for all ω ∈ Ω;
(ii) F (·, v) is measurable for all v ∈ X ×X and x ∈ X respectivly;

(iii) for all x, y, u, v ∈ X, if x
<
=
>
F (ω, (x, y)) = u, then

F (ω, (x, y))
<
=
>
F (ω, (u, v)) .

If there exist α ∈ [0, 1) such that

d (F (ω, (x, y)) , F (ω, (u, v)))

≤ αmax

{
d (x, u) , d (y, v) , d(x,F (ω,(x,y)))d(u,F (ω,(u,v)))

d(x,u) ,

d(x,F (ω,(u,v)))d(u,F (ω,(x,y)))
d(x,u) , d(x,F (ω,(x,y)))d(u,F (ω,(u,v)))

d((ω,x),(ω,u)) ,

d(x,F (ω,(x,y)))d(u,F (ω,(u,v)))
d((ω,x),(ω,u)) , d(y,F (ω,(v,u)))d(v,F (ω,(y,x)))

d(y,v)

}
for all x, y, u, v ∈ X with x

<
=
>
u and y

<
=
>
v. If there exist measurable mappings

ζ0, η0 : Ω→ X such that

ζ0 (ω)
<
=
>
F (ω, (ζ0 (ω) , η0 (ω))) and η0 (ω)

<
=
>
F (ω, (η0 (ω) , ζ0 (ω)))

for all ω ∈ Ω, then there are measurable mappings ζ, θ : Ω→ X such that

F (ω, (ζ (ω) , η (ω))) = g (ω, ζ (ω))

and
F (ω, (η (ω) , ζ (ω))) = g (ω, η (ω))

for all ω ∈ Ω, that is, F has a coupled random fixed point.

4. Random common fixed point in Hilbert space using rational
inequality

We define the random I scheme in an analogous manner as follows: Let
T1, T2 : Ω × C → C be two operators on a nonempty convex subset C of
a separable Hilbert space X. Then the sequence {xn} of random I-scheme
associated with T1 and T2 is defined as follows:

Let x0 : Ω→ C by any given measurable mapping. (4.1)

y2n (t) = β2nT1 (t, x2n) + (1− β2n)x2n (t) ,
x2n+1 (t) = (1− α2n)x2n (t) + α2nT2 (t, y2n) ,

(4.2)

y2n+1 (t) = β2n+1T1 (t, x2n+1) + (1− β2n+1)x2n+1 (t) ,
x2n+2 (t) = (1− α2n+1)x2n+1 (t) + α2n+1T2 (t, y2n+1) ,

(4.3)
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for n ≥ 0, t ∈ Ω, where {α2n}, {β2n} satisfying the following conditions

(i) 0 ≤ α2n ≤ β2n ≤ 1, for all n,
(ii) limn→∞ α2n = α2n > 0, and

(iii) limn→∞ β2n = β2n < 1.

We know that Banach space is Hilbert if and only if its norm satisfies the
parallelogram law i.e., for every x, y ∈ X(:Hilbert space),

‖x+ y‖2 + ‖x− y‖2 = 2 ‖x‖2 + 2 ‖y‖2

which implies

‖x+ y‖2 ≤ 2 ‖x‖2 + 2 ‖y‖2 .
We often use this inequality through the result.

Motivated by [33], we prove the following random fixed point theorem.

Theorem 4.1. Let C be nonempty, closed and convex subset of a seperable
Hilbert space X. Let T1, T2 : Ω× C → C be two random operators defined on
C satisfying the contractive condition

‖T1 (ω, x)− T2 (ω, y)‖

≤ K max

{
‖y − T2 (ω, y)‖2 , 14

(
‖x− T2 (ω, y)‖2 + ‖y − T1 (ω, x)‖2

)
,

1
2

(
‖x− T1 (ω, x)‖2 + ‖y − T2 (ω, y)‖2

)
, ‖y−T2(ω,y)‖

2[1+‖x−T1(ω,x)‖2]
1+‖x−y‖2 ,

‖x−T1(ω,x)‖2[1+‖x−y‖2]
1+‖y−T2(ω,y)‖2

, ‖x−y‖
2[1+‖x−T1(ω,x)‖2]

1+‖y−T2(ω,y)‖2
, ‖x−T1(ω,x)‖

2[1+‖y−T2(ω,y)‖2]
1+‖x−y‖2 ,

(1+‖y−T2(ω,y)‖2)[1+‖x−T1(ω,x)‖2]
1+‖x−y‖2

}
(4.4)

where, ω ∈ Ω and 0 ≤ K < 1
4 . If there exist a point ζ0 such that the random

I-scheme for point of T1 and T2 defined by (4.2) and (4.3), converges to a point
λ, then λ (ω) is a common random fixed point of T1 and T2.

Proof. We may assume that the sequence {xn} defind by (4.2) is a pointwise
convergent, that is, for all ω ∈ Ω,

lim
n→∞

xn (ω) = λ (ω) .

Since X is seperable Hilberet space, for any random operator A : Ω → X
and measurable mapping f : Ω → C, the mapping x (ω) = A (ω, f (ω)), is
measuable mapping [17]. Since x (ω) is measurable and C is convex, then
the sequence {xn} constructed in the random iteration form (4.2), (4.3) is a
sequence of measurable mappings. Hence x : Ω→ C being limit of measurable
mapping sequence is also measurable. Now, let {xn} be a sequence of I-scheme
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associated with T2 such that limn→∞ xn (ω) = u(ω). From (4.2),

x2n+1 (ω)− x2n (ω) = α2n (T2 (ω, y2n)− x2n (ω)) .

Since x2n (ω)→ λ (ω) ,

‖x2n+1 (ω)− x2n (ω)‖ → 0

and {α2n} is bounded away from zero, ‖T2 (ω, y2n)− x2n (ω)‖ → 0. It follows
that ‖λ (ω)− T2 (ω, y2n)‖ → 0. Since T1 and T2 satisfies (4.4), we have

‖T1 (ω, x2n (ω))− T2 (ω, y2n (ω))‖

≤ K max

{
‖y2n (ω)− T2 (ω, y2n (ω))‖2 ,

1
4

(
‖x2n (ω)− T2 (ω, y2n (ω))‖2 + ‖y2n (ω)− T1 (ω, x2n (ω))‖2

)
,

1
2

(
‖x2n (ω)− T1 (ω, x2n (ω))‖2 + ‖y2n (ω)− T2 (ω, y2n (ω))‖2

)
,

‖y2n(ω)−T2(ω,y2n(ω))‖2[1+‖x2n(ω)−T1(ω,x2n(ω))‖2]
1+‖x2n(ω)−y2n(ω)‖2

,

‖x2n(ω)−T1(ω,x2n(ω))‖2[1+‖x2n(ω)−y2n(ω)‖2]
1+‖y2n(ω)−T2(ω,y2n(ω)‖2

,

‖x2n(ω)−y2n(ω)‖2[1+‖x2n(ω)−T1(ω,x2n(ω))‖2]
1+‖y2n(ω)−T2(ω,y2n(ω))‖2

,

‖x2n(ω)−T1(ω,x2n(ω))‖2[1+‖y2n(ω)−T2(ω,y2n(ω))‖2]
1+‖x2n(ω)−y2n(ω)‖2

,

(1+‖y2n(ω)−T2(ω,y2n(ω))‖2)[1+‖x2n(ω)−T1(ω,x2n(ω))‖2]
1+‖x2n(ω)−y2n(ω)‖2

}
.

(4.5)

Now consider,

‖y2n(ω)− x2n (ω)‖2

= ‖β2nT1 (ω, x2n (ω)) + (1− β2n)x2n (ω)− x2n (ω)‖2

= ‖β2nT1 (ω, x2n (ω)) + x2n (ω)− β2nx2n (ω)− x2n (ω)‖2

= ‖β2n (T1 (ω, x2n (ω))− x2n (ω))‖2
= β22n ‖(T1 (ω, x2n (ω))− T2 (ω, y2n (ω)))

+ (T2 (ω, y2n (ω))− x2n (ω))‖2

≤ 2β22n ‖T1 (ω, x2n (ω))− T2 (ω, y2n (ω))‖2

+2β22n ‖T2 (ω, y2n (ω))− x2n (ω)‖2

≤ 2 ‖T1 (ω, x2n (ω))− T2 (ω, y2n (ω))‖2

+2 ‖T2 (ω, y2n (ω))− x2n (ω)‖2 ,

(4.6)

‖y2n(ω)− T2 (ω, y2n (ω))‖2

= ‖β2nT1 (ω, x2n (ω)) + (1− β2n)x2n (ω)− T2 (ω, y2n (ω))‖2

=

∥∥∥∥ β2nT1 (ω, x2n (ω)) + (1− β2n)x2n (ω)− T2 (ω, y2n (ω))
+β2nT2 (ω, y2n (ω))− β2nT2 (ω, y2n (ω))

∥∥∥∥2
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=

∥∥∥∥ β2n(T1 (ω, x2n (ω))− T2 (ω, y2n (ω)))
+(1− β2n)(x2n(ω)− T2 (ω, y2n (ω))

∥∥∥∥2
≤ 2β22n ‖T1 (ω, x2n (ω))− T2 (ω, y2n (ω))‖2

+2(1− β2n) ‖x2n (ω)− T2 (ω, y2n (ω))‖2

≤ 2 ‖T1 (ω, x2n (ω))− T2 (ω, y2n (ω))‖2

+2 ‖x2n (ω)− T2 (ω, y2n (ω))‖2

(4.7)

and

‖y2n(ω)− T1 (ω, x2n (ω))‖2

= ‖β2nT1 (ω, x2n (ω)) + (1− β2n)x2n (ω)− T1 (ω, y2n (ω))‖2

= ‖β2nT1 (ω, x2n (ω)) + x2n (ω)− β2nx2n (ω)− T1 (ω, y2n (ω))‖2

= ‖(1− β2n) (x2n (ω))− T1x2n (ω))‖2

= (1− β2n)2 ‖x2n (ω)− T1x2n (ω)‖2

= (1− β2n)2 ‖(x2n (ω)− T2 (ω, y2n (ω)))

+ (T2 (ω, y2n (ω))− T1x2n (ω))‖2

≤ 2 (1− β2n)2 ‖(x2n (ω))− T2 (ω, y2n (ω))‖2

+2 (1− β2n)2 ‖T2 (ω, y2n (ω))− T1x2n (ω)‖2

≤ 2 ‖x2n (ω)− T2 (ω, y2n (ω))‖2 + 2 ‖T2 (ω, y2n (ω))− T1x2n (ω)‖2 .

(4.8)

Using (4.6), (4.7) and (4.8) in (4.5), we have

‖T1 (ω, x2n (ω))− T2 (ω, y2n (ω))‖2

≤ Kmax

{(
2 ‖T1(ω, x2n (ω))−T2(ω, y2n (ω))‖2+2 ‖T2(ω, y2n (ω))−x2n (ω)‖2

)
,

1

4

(
2 ‖T1 (ω, x2n (ω))− T2 (ω, y2n (ω))‖2 + 3 ‖T2 (ω, y2n (ω))− x2n (ω)‖2

)
,

1

2

(
‖x2n (ω)− T1 (ω, x2n (ω))‖2 + 2 ‖T1 (ω, x2n (ω))− T2 (ω, y2n (ω))‖2

+ 2 ‖T2 (ω, y2n (ω))− x2n (ω)‖2
)
,

(2‖T1(ω,x2n(ω))−T2(ω,y2n(ω))‖2+2‖x2n(ω)−T2(ω,y2n(ω))‖2)(1+‖T1(ω,x2n(ω))−x2n(ω)‖2)
(1+2‖T1(ω,x2n(ω))−T2(ω,y2n(ω))‖2+2‖T2(ω,y2n(ω))−x2n(ω)‖2)

,

‖x2n(ω)−T1(ω,x2n(ω))‖2[1+2‖T1(ω,x2n(ω))−T2(ω,y2n(ω))‖2+2‖T2(ω,y2n(ω))−x2n(ω)‖2]
(1+2‖T1(ω,x2n(ω))−T2(ω,y2n(ω))‖2+2‖T2(ω,y2n(ω))−x2n(ω)‖2)

,

(2‖T1(ω,x2n(ω))−T2(ω,y2n(ω))‖2+2‖T2(ω,y2n(ω))−x2n(ω)‖2)[1+‖x2n(ω)−T1(ω,x2n(ω))‖2]
(1+2‖T1(ω,x2n(ω))−T2(ω,y2n(ω))‖2+2‖T2(ω,y2n(ω))−x2n(ω)‖2)

,

‖x2n(ω)−T1(ω,x2n(ω))‖2[1+2‖T1(ω,x2n(ω))−T2(ω,y2n(ω))‖2+2‖T2(ω,y2n(ω))−x2n(ω)‖2]
(1+2‖T1(ω,x2n(ω))−T2(ω,y2n(ω))‖2+2‖T2(ω,y2n(ω))−x2n(ω)‖2)

,

(1+2‖T1(ω,x2n(ω))−T2(ω,y2n(ω))‖2+2‖T2(ω,y2n(ω))−x2n(ω)‖2)(1+‖x2n(ω)−T1(ω,x2n(ω))‖2)
[1+2‖T1(ω,x2n(ω))−T2(ω,y2n(ω))‖2+2‖T2(ω,y2n(ω))−x2n(ω)‖2]

}
≤ K

(
2 ‖T1 (ω, x2n (ω))− T2 (ω, y2n (ω))‖2 + 2 ‖T2 (ω, y2n (ω))− x2n (ω)‖2

)
.
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Taking limit as n→∞, we get

‖T1 (ω, x2n (ω))− T2 (ω, y2n (ω))‖2 → 0. (4.9)

It follows that

‖x2n (ω)− T1 (ω, x2n (ω))‖2

≤ 2 ‖x2n (ω)− T2 (ω, y2n (ω))‖2 + 2 ‖T2 (ω, y2n (ω))− T1 (ω, x2n (ω))‖2

→ 0

and

‖λ (ω)− T1 (ω, x2n (ω))‖2

≤ 2 ‖λ (ω)− x2n (ω)‖2 + 2 ‖x2n (ω)− T1 (ω, x2n (ω))‖2
→ 0 as n→∞.

(4.10)

If x2n (ω) , λ (ω) satisfies (4.4), we have

‖T1 (ω, x2n (ω))− T2 (ω, λ (ω))‖2

≤ K max

{
‖λ (ω)− T2 (ω, λ (ω))‖2 ,

1

4

(
‖x2n (ω)− T2 (ω, λ (ω))‖2 + ‖λ (ω)− T1 (ω, x2n (ω))‖2

)
,

1

2

(
‖x2n (ω)− T1 (ω, x2n (ω))‖2 + ‖λ (ω)− T2 (ω, λ (ω))‖2

)
,

‖λ (ω)− T2 (ω, λ (ω))‖2 [1 + ‖x2n (ω)− T1 (ω, x2n (ω))‖2]
1 + ‖x2n (ω)− λ (ω)‖2

,

‖x2n (ω)− T1 (ω, x2n (ω))‖2 [1 + ‖x2n (ω)− λ (ω)‖2]
1 + ‖λ (ω)− T2 (ω, λ (ω))‖2

,

‖x2n (ω)− λ (ω)‖2 [1 + ‖x2n (ω)− T1 (ω, x2n (ω))‖2]
1 + ‖λ (ω)− T2 (ω, λ (ω))‖2

,

‖x2n (ω)− T1 (ω, x2n (ω))‖2 [1 + ‖λ (ω)− T2 (ω, λ (ω))‖2]
1 + ‖x2n (ω)− λ (ω)‖2

,(
1 + ‖λ (ω)− T2 (ω, λ (ω))‖2

)
[1 + ‖x2n (ω)− T1 (ω, x2n (ω))‖2]

1 + ‖x2n (ω)− λ (ω)‖2

}
.
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Using parallelograme, we have

‖T1 (ω, x2n (ω))− T2 (ω, λ (ω))‖2

≤ K max

{(
2 ‖λ (ω)− x2n (ω)‖2 + 2 ‖x2n (ω)− T2λ (ω)‖2

)
,

1
4(2 ‖x2n (ω)− T1 (ω, x2n (ω))‖2 + 2 ‖T1 (ω, x2n (ω))− T2 (ω, λ (ω))‖2)
+ ‖λ (ω)− T1 (ω, x2n (ω))‖2 , 12(2 ‖x2n (ω)− T1 (ω, x2n (ω))‖2

+2 ‖λ (ω)− x2n (ω)‖2 + 2 ‖T2 (ω, λ (ω))− x2n (ω)‖2),
(2‖λ(ω)−x2n(ω)‖2+2‖T2(ω,λ(ω))−x2n(ω)‖2)(1+‖x2n(ω)−T1(ω,x2n(ω))‖2)

(1+‖λ(ω)−x2n(ω)‖2)
,

‖x2n(ω)−T1(ω,x2n(ω))‖2(1+‖x2n(ω)−λ(ω)‖2)
1+2‖λ(ω)−x2n(ω)‖2+2‖T2(ω,λ(ω))−x2n(ω)‖2

,

‖x2n(ω)−λ(ω)‖2(1+‖x2n(ω)−T1(ω,x2n(ω))‖2)
1+2‖λ(ω)−x2n(ω)‖2+2‖T2(ω,λ(ω))−x2n(ω)‖2

,

‖x2n(ω)−T1(ω,x2n(ω))‖2(1+2‖λ(ω)−x2n(ω)‖2+2‖x2n(ω)−T2(ω,λ(ω))‖2]
1+‖x2n(ω)−λ(ω)‖2

,

[1+2‖λ(ω)−x2n(ω)‖2+2‖T2(ω,λ(ω))−x2n(ω)‖2(1+‖x2n(ω)−T1(ω,x2n(ω))‖2)]
1+‖x2n(ω)−λ(ω)‖2

}
.

Taking the limit as n → ∞, we get ‖T1 (ω, x2n (ω))− T2 (ω, λ (ω))‖ → 0.
Finally, we have

‖λ (ω)− T2 (ω, λ (ω))‖2

= ‖λ (ω)− T1 (ω, x2n (ω)) + T1 (ω, x2n (ω))− T2 (ω, λ (v))‖2

≤ 2 ‖λ (ω)− T1 (ω, x2n (ω))‖2 + 2 ‖T1 (ω, x2n (ω))− T2 (ω, λ (ω))‖2

→ 0 as n→∞.

This showing that

λ (ω) = T2 (ω, λ (ω)) .

Similarly, we can prove that

λ (ω) = T1 (ω, λ (ω)) .

Thus, λ (ω) is a common random fixed point of T1 and T2. If T1 = T2 in
obtain theorem, we obtain the following result. �

Corollary 4.2. Let C be nonempty, closed and convex subset of a seperable
Hilbert space X. Let T : Ω×C → C be random operator defined on C satisfying
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the contractive condition

‖T (ω, x)− T (ω, y)‖

≤ K max

{
‖y − T (ω, y)‖2 , 1

4

(
‖x− T (ω, y)‖2 + ‖y − T (ω, x)‖2

)
,

1

2

(
‖x− T (ω, x)‖2 + ‖y − T (ω, y)‖2

)
,
‖y − T (ω, y)‖2 [1 + ‖x− T (ω, x)‖2]

1 + ‖x− y‖2
,

‖x− T (ω, x)‖2 [1 + ‖x− y‖2]
1 + ‖y − T (ω, y)‖2

,
‖x− y‖2 [1 + ‖x− T (ω, x)‖2]

1 + ‖y − T (ω, y)‖2
,

‖x− T (ω, x)‖2 [1 + ‖y − T (ω, y)‖2]
1 + ‖x− y‖2

,(
1 + ‖y − T (ω, y)‖2

)
[1 + ‖x− T (ω, x)‖2]

1 + ‖x− y‖2

}
where, ω ∈ Ω and 0 ≤ K < 1

4 . If there exist a point ζ0 such that the random
I-scheme for point of T defined by

yn (t) = βnT (t, xn) + (1− βn)xn (t) ,

xn+1 (t) = (1− αn)xn (t) + αnT (t, y2n) , n ≥ 0

converges to a point λ, then λ (ω) is a common random fixed point of T .
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