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Abstract. In this paper we consider a class of semilinear stochastic partial differential

equations with nonhomogeneous boundary conditions including noise and (boundary) con-

trol. The system is formulated as an abstract evolution equation in a suitable Hilbert space.

We prove existence and regularity of mild solutions. We consider Bolza problem and prove

existence of optimal controls for two classes of admissible controls, one being the class of

Gt-adapted measurable stochastic processes with values in a weakly compact subset of a suit-

able Hilbert space, and the other being the class weak star measurable Gt-adapted signed

Borel measures containing point controls (or Dirac measures) as a special case.

1. Introduction

In recent years intensive research has been carried out in the area of nec-
essary conditions of optimality for stochastic systems of finite and some for
infinite dimensions along the line of the Pontryagin minimum principle [1-2],
[9,11,13,14,18]. See also the extensive references given therein. In [2] we con-
sider semi-linear neutral stochastic evolution equations with controls in the
drift and the diffusion operators and present necessary conditions of optimal-
ity. In [11] Duncan and Pasic-Duncan consider linear stochastic differential
equations on Hilbert spaces with exponential-quadratic cost functionals giving
differential operator Ricatti equations. They present also several interesting
examples from initial boundary value problems. Fuhrman, Hu and Tessitore
[13] present maximum principle for a class of stochastic partial differential
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equations subject to finite dimensional Brownian motion with controls ap-
pearing in the drift and the diffusion coefficients. The cost functional is of
Bolza type. Fuhrman et. al. consider regular controls and they develop
second order necessary conditions. In [14] Hu and Peng develop some fun-
damental results on the question of existence and uniqueness of solutions for
a large class of backward stochastic evolution equations (BSDE) on Hilbert
spaces. In [18] Zhou develops necessary conditions of optimality (maximum
principle) for a very general class of linear non-degenerate (strictly elliptic)
second order partial differential equations on a d-dimensional space with all
the coefficients containing control. Except [11], the above mentioned papers do
not consider boundary value problems which arise so naturally in all physical
problems. For example, see [9] where Clason, Kaltenbacher, and Veljovic use
boundary controls for Westervelt-Kuznetsov equation arising in acoustic and
vibration problems. In [7] boundary controls were considered and left point
controls as an open problem. Here we consider both boundary controls and
point controls.

Most of the papers mentioned above develop necessary conditions of op-
timality. Very often the question of existence of optimal policies are either
ignored or taken for granted. Necessary conditions without existence may
turn out to be vacuous. Here in this paper we concentrate on this question
using regular as well as relaxed controls. We consider a general class of sto-
chastic semilinear initial boundary value problems with noise appearing both
in the interior of the spatial domain as well as on some part of its boundary.
The control is exercised on the remaining part of the boundary. The nonlinear
drift and the diffusion coefficients (operators) are allowed to contain differen-
tial expressions. In other words, these operators map from a smaller space
to a larger one and therefore not bounded in the state space. Using the the-
ory of analytic semigroups, we reformulate the stochastic partial differential
equation (SPDE) as a stochastic evolution equation on a Hilbert space with
the boundary noise term including the boundary control containing the same
unbounded operator. The author is not aware of any work in the literature
where noise appears both in the interior and a part of the boundary with con-
trols appearing in the complementary part of the boundary. This is one of the
motivations of this paper. The second motivation comes from the necessity of
allowing nonlinearities which are unbounded on the state space. Further, we
consider partially observed regular controls (measurable stochastic processes
adapted to a subsigma algebra) and prove existence of optimal controls. We
also consider weak star adapted Borel measures as controls (Borel measure
valued random processes) and again prove existence of optimal controls.
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The paper is organized as follows. In section 2, we present the mathematical
model of the system and reformulate this as an abstract stochastic evolution
equation on Hilbert space. In section 3, after basic assumptions are introduced,
we prove the existence and regularity of mild solutions. Existence of optimal
control is proved in section 4 giving two results, one for regular controls,
and the other for measure valued controls containing point controls (Dirac
measures). For illustration, the paper is concluded with some examples and
certain comments on open problems.

2. System model with distributed and boundary forces

Large class of dynamic systems arising in physical sciences and engineering
can be described by the following class of partial differential equations:

∂ϕ/∂t+Aϕ = f(t, ξ, ϕ) + σ(t, ξ, ϕ)Vd(t, ξ), (t, ξ) ∈ I × Σ,

(Bϕ)(t, ξ) = Vb(t, ξ), (t, ξ) ∈ I × ∂Σn,

(Bϕ)(t, ξ) = ub(t, ξ), (t, ξ) ∈ I × ∂Σc, (2.1)

ϕ(0, ξ) = ϕ0(ξ), ξ ∈ Σ,

subject to distributed and boundary noise {Vd, Vb} defined on the domain
Σ ⊂ Rn and part of its boundary ∂Σn respectively. The control is applied on
the boundary ∂Σc while the full boundary ∂Σ is given by the union ∂Σn∪∂Σc

of the two disjoint parts ∂Σn and ∂Σc. The domain Σ is an open bounded set
with smooth boundary and I = [0, T ] is an interval. The operator A is

(Aϕ)(ξ) ≡
∑
|θ|≤2m

aθ(ξ)D
θϕ, (2.2)

on Σ, with multi index θ = {θi}ni=1, |θ| ≡
∑n

i=1 θi, θi ∈ N0 ≡ {0, 1, 2, · · · }.
The boundary operator B is also a partial differential operator of order at
most 2m− 1, given by

Bϕ = {Bj , j = 1, 2, · · · ,m},

(Bjϕ)(ξ) ≡
∑

|ϑ|≤mj≤2m−1

bjϑ(ξ)Dϑϕ, ξ ∈ ∂Σ, (2.3)

where ϑ = {ϑi}ni=1, |ϑ| ≡
∑
ϑi, ϑi ∈ N0, i = 1, 2, · · · , n. The nonlinear

operators {f, σ} are defined shortly. For nonhomogeneous boundary condi-
tions one needs the trace theorem which states that under sufficient smooth-
ness conditions on the boundary ∂Σ and the coefficients {bϑ, |ϑ| ≤ 2m − 1},
the boundary operator B|KerA is an isomorphism of W 2m

2 (Σ)/KerB on to

Y (∂Σ) ≡ Πm
j=1W

2m−mj−1/2
2 (∂Σ) called the trace space. Thus it has a bounded

(right) inverse denoted by R ≡ (B|KerA)−1. For details on this topic the reader
is referred to [4, pp.59-63] and [15,Vol.1, Theorem 5.4, p.165, Theorem 6.6,
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p.177]. We denote byRn the restriction of the operatorR to the space Y (∂Σn)
and Rc the restriction of R to the space Y (∂Σc). Then, under fairly general as-
sumptions on the coefficients {aθ, bϑ} and the principal part of A and smooth-
ness of the boundary ∂Σ, one can prove that the negative of the operator
A ≡ A|Ker(B) with domain given by

D(A) ≡ {ψ ∈ L2(Σ) : Aψ ∈ L2(Σ) & Bψ = 0}

generates an analytic semigroup {S(t), t ≥ 0} on the Hilbert space E ≡ L2(Σ).
For details see [4, p.60] and [5, p.85, Theorems 3.2.8 A-D]. Using this semi-
group the (nonhomogeneous boundary value problem) system (2.1) can be
formulated as an integral equation on the Hilbert space E,

ϕ(t) = S(t)ϕ0+

∫ t

0
S(t− τ)f(τ, ϕ(τ))dτ+

∫ t

0
S(t− τ)σ(τ, ϕ(τ))Vd(τ)dτ

+

∫ t

0
AS(t− τ)RnVb(τ)dτ +

∫ t

0
AS(t− τ)Rcub(τ)dτ, (2.4)

for t ≥ 0. Note that the unbounded operator −A, that generates the semi-
group S(t), t ≥ 0, also appears in the integral equation (2.4). This integral
equation is our starting point and using this equation we construct a rigor-
ous model for the stochastic initial boundary value problem. First, we define
the admissible controls. For α ∈ (0, 1] introduce the family of trace spaces

Yα(∂Σc) =
∏m
j=1W

2αm−mj−1/2
2 (∂Σc) and let U be a closed bounded convex

subset of the trace space Yα(∂Σc). For admissible controls we choose Uad ≡
L2(I, U) ⊂ L2(I, Yα(∂Σc)). For a rigorous mathematical model of the noise
processes we consider the complete filtered probability space (Ω,F ,Ft≥0, P )
where Ft≥0 ⊂ F is a nondecreasing family of subsigma algebras of the sigma
algebra F and P is the probability measure on Ω. Let Σ0 be any open subset of
the set Σ and denote by H the Hilbert space L2(Σ0). Let Wd ≡ {Wd(t), t ≥ 0}
with P{Wd(0) = 0} = 1, denote an Ft-adapted H-valued Brownian motion
with Vd being its distributional derivative. Similarly, let Wb ≡ {Wb(t), t ≥ 0}
with P{Wb(0) = 0} = 1, denote an Ft-adapted Brownian motion taking val-

ues from the vector space Yα(∂Σn) ≡
∏m
j=1W

2αm−mj−1/2
2 (∂Σn) with distribu-

tional derivative Vb. Using this formalism we can write the stochastic integral
equation (2.4) in the canonical form as follows

x(t) = S(t)x0+

∫ t

0
S(t− τ)f(τ, x(τ))dτ+

∫ t

0
S(t− τ)σ(τ, x(τ))dWd(τ)

+

∫ t

0
AS(t− τ)RndWb(τ) +

∫ t

0
AS(t− τ)Rcub(τ)dτ, (2.5)
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for t ≥ 0, where ϕ0 = x0. For detailed proof leading to the above results and
more on nonhomogeneous nonlinear boundary value problems see [4, Chapter
3, p.59] and [5, Example 3.2.8, p.85].

Before we can proceed with the analysis of the integral equation (2.5) we
must introduce a family of suitable vector spaces. We have already noted that
the operator

B/Ker(A) ∈ iso
(
W 2m

2 (Σ)/Ker(B), Y (∂Σ)
)
.

For α ∈ [0, 1], let us introduce the following interpolation spaces

Xα ≡W 2αm
2 (Σ)/Ker(B) and Yα ≡ Πm

j=1W
2αm−mj−1/2
2 (∂Σ).

Note that for 0 ≤ α < β ≤ 1,

W 2m
2 (Σ)/Ker(B) = X1 ↪→ Xβ ↪→ Xα ↪→ X0 ⊂ E

and

Πm
j=1W

2m−mj−1/2
2 (∂Σ) = Y1 ↪→ Yβ ↪→ Yα ↪→ Y0 =

m∏
j=1

W
−mj−1/2
2 (∂Σ).

Clearly, for each α ∈ (0, 1], the operator B/Ker(A) ∈ iso
(
Xα, Yα). Hence it

has a continuous inverse, (B/Ker(A))−1 ≡ R ∈ L(Yα, Xα). The state space
for the Brownian motion Wb can then be chosen as any of the interpolation
spaces Yα with α ∈ (0, 1] in the sense that, for any t ≥ 0 and y∗ ∈ Y ∗α (the
dual of Yα), we have

P{|(Wb(t), y
∗)Yα,Y ∗α | <∞} = 1

and (Wb(t), y
∗)Yα,Y ∗α is an Ft-adapted real valued Gaussian random process

with mean zero and variance t(Qby
∗, y∗) with Qb being a positive nuclear

operator from Y ∗α to Yα.

3. Basic assumptions and system analysis

Now we are prepared to introduce the basic assumptions. In order to study
control problems involving the system (2.5) we must now define the drift and
the diffusion operators {f, σ} including the semigroup generator. For any
γ ∈ [0, 1] define the family of Hilbert spaces Eγ ≡ {x ∈ E : Aγx ∈ E}
equipped with the graph norm topology given by

|x|γ ≡ |Aγx|E .
Since A is a closed operator its fractional powers are also closed and hence
with respect to the given norm topology these are Banach spaces. Clearly, for
0 ≤ γ ≤ α ≤ 1, we have the continuous embeddings

[D(A)] ≡ E1 ↪→ Eα ↪→ Eγ ↪→ E0 ≡ E ↪→ E−γ ↪→ E−α ↪→ E−1.
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The spaces with negative indices are defined as the completion of E with
respect to the norm topology |x|r ≡ |A−rx|E for all r ≥ 0 (see assumption
(A1) below). In addition to these spaces we have the family of fractional
(quotient) Sobolev spaces given by

Xα ≡W 2αm
2 (Σ)/KerB for α ∈ (0, 1].

Recall that fractional Sobolev spaces as well as Sobolev spaces with negative
exponents are generally constructed by use of the theory of Fourier transform
[15, p.30, Vol.1].

Basic Assumptions:
(A1) −A is the infinitesimal generator of an analytic semigroup S(t), t ≥ 0,
on the Hilbert space E satisfying

sup{‖ S(t) ‖L(E), t ∈ I} ≤M <∞.

Without loss of generality we may assume that 0 ∈ ρ(A), the resolvent set of A.
If not, one can choose a large enough positive number c such that 0 ∈ ρ(cI+A)
and absorb it in the drift.
(A2) There exists γ ∈ [0, 1/2) such that f : I×Eγ −→ E and it is measurable
in the first argument and continuous with respect to the second. Further,
there exists a constant K 6= 0 such that

|f(t, e)|2E ≤ K2{1 + |e|2Eγ}, |f(t, e1)− f(t, e2)|2E ≤ K2{|e1 − e2|2Eγ}

for all e, e1, e2 ∈ Eγ and t ∈ I.
(A3) The incremental covariance of the Brownian motion Wd denoted by
Qd ∈ L+

1 (H) (is positive nuclear). For γ ∈ [0, 1/2), the diffusion σ : I×Eγ −→
L(H,E) is measurable in the first argument and continuous with respect to
the second, and there exists a constant KQd 6= 0 such that for all (t, e) ∈ I×Eγ
and e1, e2 ∈ Eγ ,

|σ(t, e)|2Qd ≤ K
2
Qd
{1 + |e|2Eγ}, |σ(t, e1)− σ(t, e2)|2Qd ≤ K

2
Qd
{|e1 − e2|2Eγ}

where |σ|2Qd = tr(σQdσ
∗).

(A4) The indices {α, γ} satisfy 0 ≤ γ < 1/2 and γ + 1/2 < α < 1.

Remark 3.1. The assumptions (A2) and (A3) are much more relaxed com-
pared to the standard growth and Lipschitz assumptions for {f, σ} over the
same space E. Our assumptions admit {f, σ} containing differential expres-
sions. For example, let F : I × E −→ E and γ ∈ (0, 1) and define f(t, x) =
F (t, Aγx). Then f : I × Eγ −→ E and if F admits linear growth then

|f(t, x)|2E = |F (t, Aγx)|2E ≤ K2(1 + |Aγx|2E) = K2(1 + |x|2Eγ ).
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For a more specific example, let γ = 1/2 and the map F be given by an
expression of the form F (t, ξ,Dβϕ(ξ), |β| ≤ m) where F : I × Σ × RN −→ R
with N = card{|β| ≤ m} for β = (β1, β2, · · · , βn), βi ≥ 0.

For proof of the existence, uniqueness and regularity properties of solutions
of the integral equation (2.5) we must introduce the appropriate spaces where
they may reside. Let Ba

∞(I, Eγ) denote the vector space of Eγ valued Ft-
adapted random processes having square integrable norms (with respect to
the measure P ) which are bounded on I. Furnished with the norm topology,

‖ x ‖Ba∞(I,Eγ)≡ (sup{E|x(t)|2Eγ , t ∈ I})
1/2,

Ba
∞(I, Eγ) is a closed subspace of the Banach space La∞(I, L2(Ω, Eγ)) and

hence it is a Banach space. For admissible controls, let Gt, t ≥ 0, denote a
nondecreasing family of sub-sigma algebras of the current of sigma algebras
Ft, t ≥ 0. Let U be a weakly compact convex subset of the trace space Yβ(∂Σc)
for any β satisfying 1 ≥ β > α > γ+1/2. For admissible controls we choose the
set Uad ≡ La2(I, U) ⊂ La2(I, Yβ(∂Σc)) which consists of Gt-adapted U -valued
random processes with square integrable norms. With this preparation we
prove the following existence result.

Theorem 3.2. Consider the integral equation (2.5) modeling the controlled
initial boundary problem (2.1). Suppose the assumptions (A1)-(A4) hold with
the coefficients of the differential operator satisfying {aθ, |θ| = 2m} ∈ C(Σ) ∩
L∞(Σ) and {aθ, |θ| ≤ 2m − 1} ∈ L∞(Σ). Further, suppose that the state
space for the Brownian motion Wd is H with incremental covariance opera-
tor Qd ∈ L+

1 (H), and that for Wb is the space Yα for any α ∈ (1/2, 1] with
incremental covariance operator Qb ∈ L+

1 (Y ∗α , Yα). Then, for every F0 mea-
surable Eγ valued random variable x0 ∈ L2(Ω, Eγ), and control u ∈ Uad, the
integral equation has a unique solution x ∈ Ba

∞(I, Eγ). Further the solution
has a continuous modification.

Proof. Consider the operator F defined by, for t ≥ 0,

(Fx)(t) ≡ S(t)x0 +

∫ t

0
S(t− τ)f(τ, x(τ))dτ

+

∫ t

0
S(t− τ)σ(τ, x(τ))dWd(τ)

+

∫ t

0
AS(t− τ)RndWb(τ)+

∫ t

0
AS(t− τ)Rcu(τ)dτ, (3.1)

for any fixed u ∈ Uad and any Eγ valued initial state x0 having finite second
moment, that is, E|x0|2Eγ < ∞. Thus the question of existence of a solution

of the integral equation (2.5) is equivalent to the question of existence of a
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fixed point of the operator F , that is an x ∈ Ba
∞(I, Eγ) so that x = Fx. Since

both Wd and Wb are Ft-adapted and x(t), t ∈ I, is Ft -adapted and u(t) is
Gt(⊂ Ft)-adapted, we conclude that (Fx)(t) is Ft-adapted. We prove that
F : Ba

∞(I, Eγ) −→ Ba
∞(I, Eγ). Let x ∈ Ba

∞(I, Eγ) with x(0) = x0 P -a.s. For
convenience of presentation, we let {z1, z2, z3, z4, z5} denote the first, second,
third, fourth and the fifth term on the right hand side of the expression (3.1).
Since S(t), t ≥ 0, is an analytic semigroup we know that AαS(t) is a bounded
operator in E for all t > 0. Hence for any α ≥ 0 there exists a positive constant
Cα such that ‖ AαS(t) ‖L(E)≤ Cα/t

α for t > 0. Throughout the presentation
we use Cα to represent this bound. Considering first {z1, z2, z3}, it follows
from straightforward computation using assumptions (A1)-(A4) that

E|z1(t)|2Eγ ≡ E|Aγz1(t)|2E = E|AγS(t)x0|2E = E|S(t)Aγx0|2E
≤ M2E|Aγx0|2E = M2E|x0|2Eγ , ∀ t ∈ I. (3.2)

For the second term, we have

E|z2(t)|2Eγ = E|Aγz2|2E = E|
∫ t

0
AγS(t− s)f(s, x(s))ds|2E

≤ {T 1−2γ/(1− 2γ)}(CγK)2

∫ t

0

(
1 + E|x(s)|2Eγ

)
ds

≤ {T 2(1−γ)/(1− 2γ)}(CγK)2
(
1 + sup

0≤s≤t
E|x(s)|2Eγ

)
, (3.3)

for all t ∈ I. For the third term, we have

E|z3(t)|2Eγ = E|Aγz3(t)|2E = E|
∫ t

0
AγS(t− s)σ(s, x(s))dWd(s)|2E

= E

∫ t

0
tr
(
AγS(t− s)σ(s, x(s))Qdσ

∗(s, x(s))S∗(t− s)(Aγ)∗
)
ds

= E

∫ t

0
|AγS(t− s)σ(s, x(s))|2Qd ds

≤ [(KQdCγ)2/(1− 2γ)]T 1−2γ(1 + sup
0≤s≤t

E|x(s)|2Eγ ), t ∈ I. (3.4)

Clearly, by assumption (A4) the expressions on the righthand side of both
(3.3) and (3.4) are finite. Considering the fourth term we have

E|z4(t)|2Eγ ≡ E|Aγz4(t)|2E = E|
∫ t

0
AγAS(t− s)RndWb(s)|2E . (3.5)

By our assumption all the coefficients {aθ, |θ| ≤ 2m} ⊂ L∞(Σ) and therefore
Xα ⊂ Eα for any α ∈ [0, 1]. Since Rn ∈ L(Yα(∂Σn), Xα) and Aα : Eα −→ E,
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we have AαRn ∈ L(Yα(∂Σn), E). Thus the identity (3.5) is equivalent to the
following identity

E|z4(t)|2Eγ ≡ E|Aγz4(t)|2E

= E|
∫ t

0
AγA1−αS(t− s)AαRndWb(s)|2E . (3.6)

Hence, it follows from the assumption (A4) that

E|z4(t)|2Eγ ≤
∫ t

0
‖ A1+γ−αS(t− s) ‖2L(E) tr(A

αRnQb(AαRn)∗) ds

≤
∫ t

0
‖ A1+γ−αS(t− s) ‖2L(E)‖ (AαRn) ‖2Qb ds

≤ [C2
1+γ−α/(2(α− γ)− 1)]T 2(α−γ)−1 ‖ AαRn ‖2Qb , (3.7)

for t ∈ I, where C1+γ−α is the generic constant mentioned above, that is,

(|ArS(t)|L(E) ≤ Cr/tr, for 0 ≤ r <∞).

Similarly, one can verify that

E|z5(t)|2Eγ = E|Aγz5(t)|2E = E|
∫ t

0
AγA1−αS(t− s)AαRcu(s)ds|2E

≤ E

(∫ t

0
‖ A1+γ−αS(t− s) ‖L(E) |AαRcu(s)|Eds

)2

≤
(∫ t

0
‖ A1+γ−αS(t− s) ‖2L(E) ds

)(
E

∫ t

0
|AαRcu(s)|2Eds

)
≤
( C2

1+γ−α
2(α− γ)− 1

)
T 2(α−γ)−1

(
E

∫ t

0
|AαRcu(s)|2Eds

)
, t ∈ I. (3.8)

Note that for any u ∈ Uad the expression on the righthand side of the above
inequality is finite. Using the bounds (3.2),(3.3),(3.4),(3.7) and (3.8), it is easy
to see that Fx ∈ Ba

∞(I, Eγ) for every x ∈ Ba
∞(I, Eγ). Next we show that F

has a unique fixed point in Ba
∞(I, Eγ). Define the interval IT ≡ [0, T ] for any

T > 0 finite. We show that, for T sufficiently small, F is a contraction in
the Banach space Ba

∞(IT , Eγ). Taking any pair of elements x, y ∈ Ba
∞(IT , Eγ)

satisfying x(0) = y(0) = x0, and using the same basic assumptions one can
easily verify that there exists a constant η(T ), dependent on T, such that

E|(Fx)(t)− (Fy)(t)|2Eγ ≤ η(T ) sup
0≤s≤t≤T

{
|x(s)− y(s)|2Eγ

}
(3.9)

where

η(T ) = {(CγK)2T/(1− 2γ) + (CγKQd)
2/(1− 2γ)}T 1−2γ . (3.10)
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Clearly, it follows from (3.9) that

‖ Fx− Fy ‖Ba∞(IT ,Eγ) ≤
√
η(T ) ‖ x− y ‖Ba∞(IT ,Eγ) .

By assumption (A4), 0 ≤ γ < (1/2). Thus η is a continuous increasing function
of T starting from η(0) = 0. Hence for T = T1 > 0, sufficiently small, η(T1) < 1
and therefore F is a contraction on the Banach spaceBa

∞(IT1 , Eγ) and hence by
Banach fixed point theorem F has a unique fixed point in Ba

∞(IT1 , Eγ). Since
the interval I is compact, it can be covered by a finite number of intervals of
suitable length on each of which F is a contraction. Thus we conclude that F
has a unique fixed point in Ba

∞(I, Eγ). Hence for each given initial state and
control, the integral equation (2.5) has a unique solution. That the solution has
a continuous modification follows from the well known factorization technique
due to Da Prato and Zabczyk [10]. This completes the proof. �

For any fixed F0 measurable random variable x0 ∈ L2(Ω, Eγ), let x(u) ∈
Ba
∞(I, Eγ) denote the solution of the integral equation (2.5) corresponding

to the control u ∈ Uad. Then we have the following result as a corollary of
Theorem 3.2.

Corollary 3.3. Suppose the assumptions of Theorem 3.2 hold with the ad-
missible controls Uad. Then the solution set Ξ ≡ {x(u), u ∈ Uad} is a bounded
subset of Ba

∞(I, Eγ).

Proof. For any u ∈ Uad, let x(u) ∈ Ba
∞(I, Eγ) denote the unique solution of

equation (2.5). Then, following similar procedure as in the proof of Theorem
3.2, one can establish the following inequality

E|x(u)(t)|2Eγ ≤ c1 + c2

∫ t

0
E|x(u)(s)|2Eγ ds, (3.11)

where

c1 = 24

{
M2E|x0|2Eγ + ((CγK)2/(1− 2γ))T 2(1−γ)

+[(KQdCγ)2/(1− 2γ)]T 1−2γ

+[C2
1+γ−α/(2(α− γ)− 1)]T 2(α−γ)−1 ‖ AαRn ‖2Qb

+
( C2

1+γ−α
2(α− γ)− 1

)
T 2(α−γ)−1 sup

u∈Uad

(
‖ AαRcu ‖2La2(I×Ω,E)

)}
and

c2 ≡ 24{[(CγK)2/(1− 2γ)]T 2(1−γ) + [(KQdCγ)2/(1− 2γ)]T 1−2γ}.
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Since Uad = La2(I, U) with U a bounded subset of Yα(∂Σc), and AαRc is a
bounded operator from Yβ to Yβ−α(∂Σc) ⊂ E, we have

sup
u∈Uad

‖ AαRcu ‖2La2(I×Ω,E) < ∞.

It is clear from our assumptions (A1)-(A3) that the Lipschitz and growth
properties of f and σ are uniform with respect to the control. Hence the
constants {c1, c2} are independent of control, and therefore it follows from
Gronwall inequality that

sup{‖ x(u) ‖Ba∞(I,Eγ): u ∈ Uad} ≤ c1 exp c2T <∞.

Hence the set {x(u), u ∈ Uad} is a bounded subset of Ba
∞(I, Eγ). This com-

pletes the proof. �

4. Existence of optimal control

For study of optimal controls we need the continuity of the map u −→ x,
that is, the control to solution map. This is crucial in the proof of existence of
optimal controls. Since continuity is critically dependent on the topology, we
must mention the topologies used for the control space and the solution space.
For the solution space we have the norm topology on Ba

∞(I, Eγ) as seen in
section 3. So we must consider an admissible topology for the control space.
Let Gt, t ≥ 0, denote a nondecreasing family of sub-sigma algebras of the
current of sigma algebras Ft, t ≥ 0. Since U is a closed bounded convex subset
of the trace space Yβ(Σc) which is a Hilbert space, it is weakly compact and
convex for any β satisfying 1 ≥ β > α > γ + 1/2. For admissible controls we
consider the set Uad ≡ La2(I, U) ⊂ La2(I, Yβ(∂Σc)) which consist of Gt-adapted
U -valued random processes with square integrable norms. Let λ denote the
Lebesgue measure on I and λ× P the product measure on the sigma algebra
of subsets of the set I×Ω. Let µ denote the restriction of the product measure
λ× P on the sigma algebra of Gt-predictable subsets of the set I ×Ω denoted
by P. We furnish Uad with the topology of weak convergence in U for µ almost
all (t, ω) ∈ I × Ω. In other words a generalized sequence un −→ uo in this
topology if and only if for any v∗ ∈ Y ∗β (∂Σ), the dual of Yβ(∂Σc),

< v∗, un(t) >−→< v∗, uo(t) >

µ almost everywhere. Since U is a weakly compact subset of a separable
Hilbert space Yβ(∂Σc) it follows from a well known theorem [Dunford 12,
Theorem V.6.8, p.434] that the weak topology is metrizable with a metric,
say, d. Using this metric topology we may define a metric topology for Uad as
follows. For any pair u, v ∈ Uad define

D(u, v) ≡ µ{(t, ω) ∈ I × Ω : d(u(t, ω), v(t, ω)) 6= 0}.
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Clearly, this is simply the measure of the sets in P on which u differs from v.
Thus we set u = v if and only if D(u, v) = 0. The reader can easily verify that
D satisfies all the axioms of a metric space. We denote this metric topology
by τD.

Now we present a result on continuity of the control to solution map.

Theorem 4.1. Consider the control system (2.5) corresponding to any con-
trol u ∈ Uad which is equipped with the metric topology τD, and suppose the
assumptions of Theorem 3.2 hold and that, for each θ ∈ (0, 1], the injection
Eθ ↪→ E is compact. Then the control to solution map u −→ x is continu-
ous with respect to the τD topology on Uad and the strong (norm) topology on
Ba
∞(I, Eγ).

Proof. Let un ∈ Uad be a generalized sequence and suppose un
τD−→ uo. Let

{xn, xo} ∈ Ba
∞(I, Eγ) with, xn(0) = xo(0) = x0, denote the solutions of

the integral equation (2.5) corresponding to the controls {un, uo} respectively.

We show that xn
s−→ xo in Ba

∞(I, Eγ). Clearly it follows from equation (2.5)
corresponding to the controls {un, uo} that

xn(t)− xo(t) =

∫ t

0
S(t− s)

(
f(s, xn(s))− f(s, xo)

)
ds

+

∫ t

0
S(t− s)

(
σ(s, xn(s))− σ(s, xo)

)
dWd(s)

+

∫ t

0
AS(t− s)Rc(un(s)− uo(s))ds, t ∈ I. (4.1)

Following similar computations as in the proof of Theorem 3.2, we use (4.1)
to derive the following inequality

E|xn(t)− xo(t)|2Eγ

≤ 4η(t)

∫ t

0
E|xn(s)− xo(s)|2Eγds

+4
t2(α−γ)−1

2(α− γ)− 1
E

∫ t

0
|AαRc(un(s)− uo(s))|2Eds, (4.2)

where

η(t) ≡
{

((CγK)2/(1− 2γ))t2(1−γ) + ((CγKQd)
2/(1− 2γ))t(1−2γ)

}
.

By assumption (A4) the expression on the righthand side of the inequality
(4.2) is well defined for all t ≥ 0. It follows from the above inequality that for
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any nonnegative T <∞ we have

‖ xn − xo ‖2Ba∞(IT ,Eγ)

≤ 4η(T )T ‖ xn − xo ‖2Ba∞(IT ,Eγ)

+
4T 2(α−γ)−1

2(α− γ)− 1
E

∫ T

0
|AαRc(un(s)− uo(s))|2Eds. (4.3)

Recall that the function η given by the expression (3.10) is a nondecreasing
continuous function of its argument satisfying η(0) = 0. Thus we can choose
T = T1 sufficiently small so that 4η(T1)T1 < 1. For such a choice of T we have

(1− 4η(T1)T1) ‖ xn − xo ‖2Ba∞(IT1 ,Eγ)

≤ 4T
2(α−γ)−1
1

(2(α− γ)− 1)
E

∫ T1

0
|AαRc(un(s)− uo(s))|2Eds. (4.4)

Now if we show that

lim
n→∞

E

∫ T1

0
|AαRc(un(s)− uo(s))|2Eds = 0, (4.5)

then we will have proved the continuity as stated in the Theorem for the time
interval IT1 = [0, T1]. We prove this after we have shown that this process can
be extended to cover any given closed bounded interval IT ≡ [0, T ]. Consider-
ing once again the integral equation (2.5) starting from time T1 corresponding
to controls {un, uo} and subtracting one from the other we have

xn(t)− xo(t) = S(t− T1)(xn(T1)− xo(T1))

+

∫ t

T1

S(t− s)
(
f(s, xn(s))− f(s, xo)

)
ds

+

∫ t

T1

S(t− s)
(
σ(s, xn(s))− σ(s, xo)

)
dWd(s)

+

∫ t

T1

AS(t− s)Rc(un(s)− uo(s))ds, (4.6)

for all t ≥ T1. Clearly, it follows from the assumption (A1) applied to the first
term on the righthand side of (4.6) that for all t ≥ T1 and t ∈ I,

E|S(t− T1)(xn(T1)− xo(T1)|2Eγ ≡ E|AγS(t− T1)(xn(T1)− xo(T1)|2E
≤ M2 E|xn(T1)− xo(T1)|2Eγ .

By virtue of the continuity result for the interval [0, T1] and the fact that the
processes {xn, xo} have continuous modifications, it follows from the above
inequality that as n→∞,

E|AγS(t− T1)(xn(T1)− xo(T1)|2E → 0
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for any t ≥ T1. Thus for the next interval, we can ignore the first term on the
righthand side of (4.6). Then following the same procedure as for the interval
[0, T1], we arrive at the following expression

sup
T1≤s≤t

E|xn(s)− xo(s)|2Eγ

≤ 4η(t− T1)(t− T1) sup
T1≤s≤t

E|xn(s)− xo(s)|2Eγ

+4E|
∫ t

T1

A1+γ−αS(t− s)AαRc(un(s)− u0(s)ds|2E . (4.7)

Clearly, we can choose t = T2 > T1 such that 4η(T2 − T1)(T2 − T1) < 1. Then
it follows from (4.7) that(

1− 4η(T2 − T1)(T2 − T1)
)
‖ xn − xo ‖Ba∞([T1,T2],Eγ)

≤
{

(T2 − T1)2(α−γ)−1

2(α− γ)− 1

}
E

∫ T2

T1

|AαRc(un(s)− uo(s))|2Eds. (4.8)

Thus, again it boils down to the question of convergence of the integral

E

∫ T2

T1

|AαRc(un(s)− uo(s))|2Eds −→ 0.

So it suffices to prove this for the whole interval I ≡ IT = [0, T ]. For conve-
nience of reference let us denote this expression by Zn,

Zn ≡ E

∫
I
|AαRc(un(s)− uo(s))|2Eds. (4.9)

Recall that the map Rc is the restriction of the map R to Yβ(∂Σc) and that

Rc : Yβ(∂Σc) −→ Xβ

for any β ∈ (0, 1]. For α, β ∈ [0, 1], with β > α, the operator Aα : Xβ −→
Xβ−α, and therefore the composition map AαRc : Yβ(∂Σc) −→ Xβ−α. In the
proof of Theorem 3.2 we noted that Xβ−α ⊂ Eβ−α. Since by assumption the
embedding Eβ−α ↪→ E is compact, and the topology τD is equivalent to weak
convergence µ-a.e, we conclude that

AαRc(un(s)− uo(s)) s−→ 0 in E µ− a.e.

Further, since the set U is bounded, and ‖ AαRc ‖L(Yβ(∂Σc),E)< ∞, there
exists a finite positive number b such that

sup{|AαRcv|E , v ∈ U} ≤ b.

Thus by Lebesgue (bounded) convergence theorem we have limn→∞ Zn = 0.
This proves the continuity as stated. �
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Remark 4.2. The topology used is weak convergence µ almost everywhere.
Given the topology on Ba

∞(I, Eγ), it does not seem possible to relax this
topology further.

Control Problem: Now we consider the control problem. For the cost or
payoff functional, we choose the Bolza problem,

J(u) = E

{∫
I
`(t, x(t), u(t))dt+ Φ(x(T ))

}
−→ inf, (4.10)

where x ∈ Ba
∞(I, Eγ) is the solution of the integral equation (2.5) (mild so-

lution of the controlled version of system (2.1)) corresponding to the control
u ∈ Uad. The objective is to find a control uo ∈ Uad that minimizes the func-
tional J. The first problem we consider is the question of existence of such
controls.

Theorem 4.3. Consider the system (2.1), equivalently, the integral equation
(2.5) with the cost functional given by (4.10). Suppose the assumptions of
Theorem 4.1 hold and the function ` : I × Eγ × U −→ R is Borel measurable
in all the variables and lower semicontinuous in (x, u) ∈ Eγ × U with respect
to the norm topology on Eγ and weak topology on U for almost all t ∈ I. The
function Φ is lower semi continuous on Eγ, and further there exists a finite
positive number C such that

|`(t, x, ξ)| ≤ C{1 + |x|2Eγ}, |Φ(x)| ≤ C(1 + |x|2Eγ ), ∀ (t, x, ξ) ∈ I × E × U.

Then there exists an optimal control for the problem (4.10).

Proof. Since the set of admissible controls Uad is compact in the τD topology, it
suffices to prove that u −→ J(u) is lower semicontinuous in this topology. Let
uα, α ∈ D, be a net that converges in the τD topology to uo ∈ Uad. Let {xα, xo}
denote the solutions corresponding to the controls {uα, uo} respectively. Then

by Theorem 4.1, xα
s−→ xo in Ba

∞(I, Eγ) as uα
τD−→ uo. Hence, along a subnet

if necessary, xα(t)
s−→ xo(t) in Eγ almost surely for all t ∈ I. Thus, for almost

all t ∈ I, it follows from our assumption on lower semicontinuity of ` that

`(t, xo(t), uo(t)) ≤ lim `(t, xα(t), uα(t)), µ a.e. (4.11)

By our assumption we have |`(t, xα(t), uα(t))| ≤ C{1 + |xα(t)|2Eγ} µ a.e, and

by Corollary 3.3, the solution set is bounded and therefore there exists an
Ft-adapted nonnegative integrable process L(t), t ∈ I, so that

sup
α∈D

{
|`(t, xα(t), uα(t))|, |`(t, xo(t), uo(t))|

}
≤ L(t).
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Hence, by generalized Fatou’s Lemma we conclude that

E

∫
I
`(t, xo(t), uo(t)) dt ≤ limE

∫
I
`(t, xα(t), uα(t)) dt. (4.12)

Since Φ is also lower semicontinuous on Eγ and by Theorem 4.1, xα(T )
s−→

xo(T ) in Eγ-P -a.s it follows from the growth property of Φ that Fatou’s lemma
holds and we have

EΦ(xo(T )) ≤ limEΦ(xα(T ).

Thus we have proved that each component of the functional J given by (4.10)
is lower semicontinuous with respect to the τD topology and hence J itself is
lower semicontinuous in this topology. Since Uad is compact in this topology, J
attains its minimum on Uad. Hence an optimal control exists. This completes
the proof. �

5. Control by Borel measures on the boundary

Point controls or Dirac measures as controls are special cases of Borel mea-
sures [16]. In Theorem 4.1 we considered controls which are Gt-adapted mea-
surable random processes with values in U ⊂ Yβ(Σc). Here in this section we
want to consider controls which take values in the space of Borel measures
M(∂Σc). The possibility of such extension depends on the embedability of
M(∂Σc) ⊂ Yβ(∂Σc) for some β satisfying 1 ≥ β > α. If no such β exists,
the extension is not possible because we must satisfy the requirement that
R ∈ iso(Yβ(∂Σ), Xβ). This is due to Sobolev embedding theorem. Indeed, for
each j ∈ {1, 2, · · · ,m} suppose (mj + 1/2) − 2βm > (n − 1)/2. Then by a

Sobolev embedding theorem, W
(mj+1/2)−2βm
2 (∂Σ) ↪→ Cj(∂Σ) where Cj(∂Σ)

denotes the space of continuous bounded functions on ∂Σ. Let Mj(∂Σ) de-
note the space of Borel measures on ∂Σ representing the dual of Cj(∂Σ). As
a corollary of this result we have the following diagram,

W
(mj+1/2)−2βm
2 (∂Σ) ↪→ Cj(∂Σ)

↓ ∗ ↓ ∗ (5.1)

W
2βm−(mj+1/2)
2 (∂Σ)←↩ Mj(∂Σ),

where ↪→ denotes continuous and dense embedding and the ↓ ∗ denotes the
map that assigns the topological dual of the space behind the arrow. Define
the space of vector measures Mm(∂Σc) ≡ Πm

j=1Mj(∂Σc). Clearly, the predual

of this space is given by Cm(∂Σc) = Πm
j=1Cj(∂Σc). It follows from Riesz rep-

resentation theorem that a continuous linear functional ` on Cm(∂Σc) is given
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by

`(ϕ) = `µ(ϕ) =

∫
∂Σc

m∑
j=1

ϕj(ξ)µj(dξ) ≡
∫
∂Σc

< ϕ(ξ), µ(dξ) >

for some µ ∈ Mm. Note that this space contains Dirac measures (or point
measures) as special case. For example, let {ζr, r = 1, 2 · · · k} be a set of

distinct points in ∂Σc and define the measure µj(dξ) ≡
∑k

r=1$
j
r δζr(dξ) where

δζr is the Dirac measure concentrated at ζr, and $j
r ∈ R. Then

`µ(ϕ) =

k∑
r=1

m∑
j=1

$j
rϕj(ζr), for ϕ ∈ Cm(∂Σc).

Returning to control problem, we choose any (weak star) closed bounded
(bounded in variation norm) subset Γ ofMm(∂Σ). The boundary controls are
then the weak star measurable Gt-adapted random processes defined on I and
taking values in the space of vector measures Γ ⊂ Mm(∂Σ). By Alaoglu’s
theorem, Γ is weak star compact and so also is the set La∞(I,Γ) ≡ Uad chosen
as the set of admissible controls. Since ∂Σc is a closed bounded subset of ∂Σ,
and Cm(∂Σc) is a separable Banach space, again we can introduce a metric
topology on La∞(I,Γ) precisely as in section 4. Here we use Theorem V.1.1
[12, p.426] and define the metric on Γ by

d(u, v) ≡
∞∑
n=1

(1/2n)
|u(ϕn)− v(ϕn)|

1 + |u(ϕn)− v(ϕn)|
for u, v ∈ Γ, (5.2)

where u(ϕ) ≡
∫
∂Σc

ϕ(η)u(dη) and {ϕn} is any dense sequence from the unit

ball of Cm(∂Σc). Using this metric we define the metric D∗ on Uad precisely
as in section 4 giving

D∗(u, v) ≡ µ{(t, ω) ∈ I × Ω : d(u(t, ω), v(t, ω)) 6= 0}, (5.3)

where the measure µ is the restriction of the product measure dt × dP on
the sigma algebra of predictable sets P of the set I × Ω with respect to the
current of sigma algebras Gt, t ≥ 0. We denote this metric topology by τD∗ In

this case, by convergence of the net uα
τD∗−→ uo we mean weak star convergence

µ a.e. Instead of repeating the proofs, we simply state that Theorem 4.1,
asserting continuity of the control to solution map u −→ x, remains valid
with τD replaced by τD∗ . Similarly, Theorem 4.3, asserting the existence of an
optimal control, remains valid with the metric topology τD∗ replacing τD.

Remark 5.1. In order to compute the optimal controls one needs necessary
conditions of optimality, see [1,2,6,7]. We leave this problem for future work.
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5.1. Two Examples:

(E1) Euler Plate Equation: This example is intended to illustrate the
possibility of using Borel measures (including point measures) as controls on
the boundary. Consider the stochastically perturbed Euler plate equation in
a bounded domain Σ ⊂ R2 as follows:

ytt + ∆2y − ρ∆yt

= F (t, ξ, y,∆y, yt) +G(t, ξ, y)N for (t, ξ) ∈ I × Σ (5.4)

with nonhomogeneous boundary conditions given by

B1(y, yt)|∂Σ ≡
∑
|θ|≤3

β1,θ(ξ)D
θy +

∑
|θ|≤1

γ1,θ(ξ)D
θyt

= u1, (t, ξ) ∈ I × ∂Σ, (5.5)

B2(y, yt)|∂Σ ≡
∑
|θ|≤3

β2,θ(ξ)D
θy +

∑
|θ|≤1

γ2,θ(ξ)D
θyt

= u2, (t, ξ) ∈ I × ∂Σ (5.6)

and initial conditions given by

y(0, ξ) = y1(ξ), yt(0, ξ) = y2(ξ), ξ ∈ Σ. (5.7)

Defining X ≡ (y, yt)
′

we can rewrite the above equation as a first order equa-
tion as follows

∂X/∂t+AX = f(X) + g(X)N (5.8)

where A ≡
(

0 −1
∆2 −ρ∆

)
, f(X) =

(
0

F (X1, X2)

)
and g(X) =

(
0

G(X1, X2)

)
.

Using the above notation the boundary conditions are given by

Bj(X)|∂Σ =
∑
|θ|≤mj

βj,θ(ξ)D
θX1 +

∑
|θ|≤1

γj,θ(ξ)D
θX2

= uj , (t, ξ) ∈ I × ∂Σ (5.9)

for j = 1, 2. We choose the energy space for the state space. This is given by
the Hilbert space

E ≡ H2(Σ) ∩H1
0 (Σ)× L2(Σ)

equipped with the scalar product (X,Y )E ≡ (∆X1,∆Y1)+(X2, Y2)L2(Σ). Here
the first term represents the elastic potential energy and the second the ki-
netic energy. Because of the particular structure of the nonlinear operators
containing spatial derivatives of order no more than 2 and the time derivative
of order no more than 1, we can take γ = 0 and take Eγ = E0 = E as the state
space. Now we proceed to formulate this as an ordinary differential equation
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on the Hilbert space E. Denote x(t) ≡ X(t, ·) ∈ E and define the operator A
by

D(A) ≡ {X ∈ E : AX ∈ L2(Σ) & B(X) = 0}

and set Aϕ = Aϕ for ϕ ∈ D(A). Similarly, define B by B ≡ B|KerA with
Ker(A) = {X ∈ E : AX = 0}. Considering N as the distributional derivative
of L2(Σ)-valued Wiener process on a complete probability space we can rewrite
equation (5.8) as a stochastic differential equation on E

dx+Axdt = f(x)dt+ g(x)dW, (5.10)

subject to the boundary condition B(x) = u. Using the well known decomposi-
tion given by the expression 3.4 [4, p.60], the solution x admits a decomposition
given by x = x1 + x2 with x1 ∈ KerB and x2 ∈ Ker(A). Using this fact, we
can rewrite equation (5.10) and the Boundary condition Bx = Bx2 = u in one
single equation as follows:

dx1 +Ax1dt = −dx2 + f(x)dt+ g(x)dW,

= −d(Ru) + f(x)dt+ g(x)dW,

where R = (B|KerA)−1 = B−1 is the Dirichlet map solving the elliptic prob-
lem: AX = 0, B(X) = u giving X = Ru. It follows from a result of Chen
and Triggiani [8, Proposition 3.1, p24] that, due to the presence of structural
damping provided by the term ρ∆, the operator A generates a stable analytic
semigroup S(t), t ≥ 0, in E. Hence the (mild) solution of this equation is given
by the solution of the integral equation

x(t) = S(t)x0 +

∫ t

0
S(t− s)f(x(s))ds+

∫ t

0
S(t− s)g(x(s))dW (s)

+

∫ t

0
AS(t− s)Rusds, t ∈ I.

For point controls on the boundary (the edges), it is necessary that the diagram
(5.1) holds. Let us verify this. For plate equation we have n = 2, m = 2, and
(from the boundary conditions) mj = m1 = m2 = 3, and dim(∂Σ) = 1. Thus
for β < 3/4, for example, β = 0.7, we have mj + (1/2) − 2mβ > (n − 1)/2 is

satisfied. So by Sobolev embedding theorem we have W
(mj+1/2)−2βm
2 (∂Σ) ↪→

Cj(∂Σ) and therefore the embedding diagram (5.1) holds. Thus Borel mea-
sures supported on ∂Σ, including linear combination of Dirac measures (point
measures) on it, are admissible as controls. In this case the cost functional
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(4.10) is given by

J(u) = E

{∫
I×∂Σ

`(t, x(t), ξ)ut(dξ)dt+ Φ(x(T ))

}
≡ E

{∫
I
`(t, x(t), ut)dt+ Φ(x(T ))

}
(5.11)

with u ∈ Uad ≡ La∞(I,Γ), where Γ ⊂ M2(∂Σ). The proof of existence of
optimal controls in this case is identical to that of Theorem 4.3.

(E2) Kuramoto-Sivashinsky Equation: In the preceding example we did
not need the full power of Theorem 3.2 since both f and g are bounded non-
linear operators in the energy space which is the state space. On the contrary,
in this example as seen later, the drift is a bounded nonlinear operator from
a smaller space to a larger one. Therefore we need the full power of Theorem
3.2. Here we wish to consider control problems for the well known Kuramoto-
Sivashinsky like equation in one dimension given by

∂tv + a∆2v + b∆v = h(v,Dv) + g(ξ)no(t), ξ ∈ Σ ≡ (0, 1), (5.12)

Bv = u for ξ ∈ ∂Σ = {0, 1} (5.13)

with the boundary operator B given by

(B1v)(ξ) ≡ β0v(ξ), (B2v)(ξ) ≡ β1v(ξ) + β2Dνv(ξ) (5.14)

for ξ ∈ ∂Σ with β0, β1, β3 6= 0. Here we have used Dk to denote the spatial de-
rivative of order k and Dν the derivative at the point ξ ∈ ∂Σ along the normal
pointing outward of the boundary. The control u(t, ξ) = (u1(t, ξ), u2(t, ξ))

′

for ξ ∈ ∂Σ. The coefficients {a, b} are real positive and those of the boundary
operator B are assumed to be nonzero. The function h : R2 −→ R is contin-
uous with respect to its arguments, g ∈ L2(Σ) and n0 is the standard white
noise. Note that for a > 0 the operator a∆2 is dissipative while for b > 0 the
operator b∆ is accretive or anti-dissipative. Define the differential operator A
by Aϕ = a∆2ϕ+ b∆ϕ. Then define the operator A by setting

D(A) = {ϕ ∈ E : Aϕ ∈ E & ϕ|∂Σ = Dϕ|∂Σ = 0} = H4 ∩H2
0 .

We show that under these assumptions the operator −A generates an analytic
semigroup on the Hilbert space E ≡ L2(Σ). Indeed, by simple integration by
parts one can easily verify that

(Aϕ,ϕ) + (b/2ε)|ϕ|2E ≥ (a− bε/2)|∆ϕ|2E (5.15)

for all ε satisfying 0 < ε < 2a/b and all ϕ ∈ D(A). Choosing ε = a/b we obtain

(Aϕ,ϕ) + (b2/2a)|ϕ|2E ≥ (a/2)|∆ϕ|2E . (5.16)
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For every ϕ ∈ D(A) it follows form elementary computation (or Poincaré
inequality) that there exists a positive constant c such that |ϕ|E ≤ c|∆ϕ|E .
From the above inequalities we obtain the following resolvent inequality

|(λI +A)−1|L(E) ≤
1

λ+ r0
, ∀ λ > −r0 (5.17)

where r0 = (a2 − b2c2)/2ac2. Note that the destabilizing influence of the anti-
dissipative term is very well reflected in the resolvent inequality. From now
on we use the same symbol A to denote the closed extension of A in E as
an unbounded operator. One can easily verify that the operator A is self
adjoint on the Hilbert space E but not positive. It is clear from the inequality
(5.16) or (5.17) that for β > ((b2c2 − a2)/2ac2), the operator Aβ ≡ (βI + A)
is an unbounded positive self adjoint operator in E. Then it follows from
(5.17) that the resolvent of the operator Aβ satisfies the inequality |(λI +
Aβ)−1|L(E) ≤ 1/λ, for λ > 0. Since Aβ is closed and densely defined it follows
from Hille-Yosida theorem that −Aβ generates a C0-semigroup Sβ(t), t ≥ 0, of
contractions on E. With this modification, we can rewrite the system (5.12) as
an ordinary differential equation on the Hilbert space E in the abstract form

(d/dt)v +Aβv = f(v) + Ẇ (5.18)

where f(v) = βv + h(v,Dv) and Ẇ ≡ gn0 is the space time white noise. Let
C denote the field of complex numbers. Then, for λ ∈ C given by λ = ν + iτ
with ν > 0, one can easily verify that

|(λI +Aβ)ϕ,ϕ)| ≥ |τ ||ϕ|2E
and hence |(λI + Aβ)ϕ| ≥ |τ ||ϕ|E for all ϕ ∈ D(A) = D(Aβ). From this we
obtain

|(λI +Aβ)−1|L(E) ≤ 1/|τ |
for all Reλ > 0 and τ 6= 0. Thus it follows from Hille’s characterization of
analytic semigroups [5, Theorem 3.2.7, p.82] see also [Pazy, 17, Theorem 5.2,
p.61] that −Aβ generates an analytic semigroup Sβ(t), t ≥ 0 in E. As a result,

−A it self generates an analytic semigroup S(t) = Sβ(t)eβt. Then the mild
solution of equation (5.18) with homogeneous boundary condition Bv = 0 is
given by the solution of the integral equation

v(t) = Sβ(t)v0 +

∫ t

0
Sβ(t− s)f(v(s))ds+

∫ t

0
Sβ(t− s)dW (5.19)

in the Hilbert space Eγ ≡ D(Aγ) for a suitable γ ∈ [0, 1] that admits f
containing first partial of the state. Since Aβ is positive self adjoint with
compact resolvent, it follows from spectral theory that fractional powers of

Aβ are well defined and that A
1/4
β is equivalent to the operator given by the
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spatial derivative D. Thus, for this example, γ = (1/4) is suitable. Suppose f
satisfies the following growth and Lipschitz conditions

(F1) : |f(v)|2E ≤ K2(1 + |v|2E + |Dv|2E),

(F2) : |f(v)− f(w)|2E ≤ K2(|v − w|2E + |Dv −Dw|2E)

for some K 6= 0. Using the continuous embedding Eγ ↪→ E, with embedding
constant c̃, it is easy to verify that the above inequalities are equivalent to the
following ones

(F1) : |f(v)|2E ≤ C2(1 + |v|2Eγ ),

(F2) : |f(v)− f(w)|2E ≤ C2(|v − w|2Eγ ),

where C2 = K2(1 + c̃2). Considering the stochastic term

Z(t) =

∫ t

0
Sβ(t− s)dW (s),

it is easy to verify that

E|AγZ(t)|2E ≡ E|Z(t)|2Eγ ≤ |g|
2
E

∫ t

0
|AγSβ(t− s)|2L(E)ds ≤ 2C2

γ |g|2Et1/2.

Hence Z ∈ Ba
∞(I, Eγ). Thus, by Theorem 3.2 of section 3, the integral equation

(5.19) has a unique solution in Ba
∞(I, Eγ). Hence the differential equation

(5.12) with Bv = 0 has a mild solution.

(E2-A) Point Controls: For this (homogeneous) boundary problem, we may
consider distributed controls, in particular, point controls or more generally
signed Borel measures as controls. Let Σ0 be a closed subset of Σ and consider
the space of Borel measures M(Σ0). Let F ∈ C(Σ0, E) be an E-valued con-
tinuous function satisfying sup{|F (ξ)|E , ξ ∈ Σ0} <∞. Consider the controlled
version of equation (5.18) in the form

(d/dt)v +Aβv = f(v) + Fus + Ẇ , v(0) = v0 (5.20)

where Fu ≡
∫

Σ0
F (ξ)u(dξ) for u ∈ M(Σ0). The corresponding integral equa-

tion is given by

v(t) = Sβ(t)v0 +

∫ t

0
Sβ(t− s)f(v(s))ds

+

∫ t

0
Sβ(t− s)Fusds+

∫ t

0
Sβ(t− s)dW. (5.21)

For admissible controls, one may choose a bounded (in variation norm) w∗-
closed subset M0 ⊂ M(Σ0) and take Uad ≡ La∞(I,M0) ⊂ La∞(I,M(Σ0)).
Note that by La∞(I,M0) we mean the class of M0-valued stochastic processes
adapted in the weak star sense to the family of sub-sigma algebras Gt, t ≥ 0,
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of the current of sigma algebras Ft, t ≥ 0. For any u ∈ Uad, again it follows
from Theorem 3.2 that equation (5.21) has a unique solution in Ba

∞(I, Eγ) and
therefore the evolution equation (5.20) has a unique mild solution. The pay-
off functional for this control problem is a modified version of the expression
(4.10) given by

J(u) = E

{∫
I
`(t, x(t), ut)dt+ Φ(x(T ))

}
= E

{∫
I×Σ0

`(t, x(t), ξ)ut(dξ)dt+ Φ(x(T ))

}
. (5.22)

As in Theorem 4.1, the map u −→ x is continuous with respect to a similar
metric topology Dρ(µ, ν) determined by the metric ρ given by

ρ(µ, ν) ≡
∞∑
n=1

(1/2n)
|µ(ϕn)− ν(ϕn)|

1 + |µ(ϕn)− ν(ϕn)|
, for µ, ν ∈M(Σ0) (5.23)

where {ϕn} is a dense subset of the unit ball in C(Σ0). The fact that ρ is
a metric follows from Theorem V.1.1 [12, p.426] of Dunford and Schwartz.
Under the same assumptions (see Theorem 4.3), with weak topology replaced
by weak star topology, existence of an optimal control for the problem (5.22)
follows from Theorem 4.3.

(E2-B): Since Σ = (0, 1) ⊂ R1, and, for γ = 1/4, Eγ = H1 and H1 ↪→ C(Σ),
the boundary controls are point controls and so it is covered in (E2-A).
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