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Abstract. Let K be a nonempty closed bounded convex subset of an arbitrary smooth

Banach space X and T : K → K be a continuous strictly hemicontractive mapping. Under

some conditions we obtain that the Ishikawa iteration method with error terms converges

strongly to a unique fixed point of T and is almost T -stable on K.

1. Introduction

Chidume [4] established that the Mann iteration sequence converges strongly
to the unique fixed point of T in case T is a Lipschitz strongly pseudo-
contractive mapping from a bounded closed convex subset of Lp (or lp) into
itself. Schu [18] generalized the result in [4] to both uniformly continuous
strongly pseudo-contractive mappings and real smooth Banach spaces. Park
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[16] extended the result in [4] to both strongly pseudocontractive mappings
and certain smooth Banach spaces. Rhoades [17] proved that the Mann and
Ishikawa iteration methods may exhibit different behaviors for different classes
of nonlinear mappings. Harder and Hicks [7-8] revealed the importance of in-
vestigating the stability of various iteration procedures for various classes of
nonlinear mappings. Harder [6] established applications of stability results
to first order differential equations. Afterwards, several generalizations have
been made in various directions (see for example [2-3, 5, 9-15, 19]).

Let K be a nonempty closed bounded convex subset of an arbitrary smooth
Banach space X and T : K → K be a continuous strictly hemicontractive
mapping. Under some conditions we obtain that the Ishikawa iteration method
with error terms converges strongly to a unique fixed point of T and is almost
T -stable on K. The results presented here generalize the corresponding results
in [5, 9, 14, 16, 19,20].

2. Preliminaries

Let K be a nonempty subset of an arbitrary Banach space E and E∗ be its
dual space. The symbols D(T ), R(T ) and F (T ) stand for the domain, the
range and the set of fixed points of T (for a single-valued map T : X → X,
x ∈ X is called a fixed point of T iff T (x) = x).We denote by J the normalized
duality mapping from E to 2E

∗
defined by

J(x) = {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖2 = ‖f∗‖2}.
Let T be a self-mapping of K.

Definition 2.1. The mapping T is called Lipshitzian if there exists L > 0
such that

‖Tx− Ty‖ 6 L ‖x− y‖ ,
for all x, y ∈ K. If L = 1, then T is called non-expansive and if 0 6 L < 1, T
is called contraction.

Definition 2.2. ([5, 20])

(1) The mapping T is said to be pseudocontractive if the inequality

‖x− y‖ 6‖ x− y + t((I − T )x− (I − T )y ‖, (2.1)

holds for each x, y ∈ K and for all t > 0.
(2) T is said to be strongly pseudocontractive if there exists a t > 1 such

that

‖x− y‖ ≤ ‖(1 + r)(x− y)− rt(Tx− Ty)‖ (2.2)

for all x, y ∈ D(T ) and r > 0.
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(3) T is said to be local strongly pseudocontractive if for each x ∈ D(T )
there exists a tx > 1 such that

‖x− y‖ ≤ ‖(1 + r)(x− y)− rtx(Tx− Ty)‖ (2.3)

for all y ∈ D(T ) and r > 0.
(4) T is said to be strictly hemicontractive if F (T ) 6= ϕ and if there exists

a t > 1 such that

‖x− q‖ ≤ ‖(1 + r)(x− q)− rt(Tx− q)‖ (2.4)

for all x ∈ D(T ), q ∈ F (T ) and r > 0.

Clearly, each strongly pseudocontractive operator is local strongly pseudo-
contractive.

Definition 2.3. ([6-8]) Let K be a nonempty convex subset of X and
T : K → K be an operator. Assume that xo ∈ K and xn+1 = f(T, xn)
defines an iteration scheme which produces a sequence {xn}∞n=0 ⊂ K. Suppose,
furthermore, that {xn}∞n=0 converges strongly to q ∈ F (T ) 6= ϕ. Let {yn}∞n=0

be any bounded sequence in K and put εn = ‖yn+1 − f(T, yn)‖ .
(1) The iteration scheme {xn}∞n=0 defined by xn+1 = f(T, xn) is said to

be T -stable on K if lim
n→∞

εn = 0 implies that lim
n→∞

yn = q,

(2) The iteration scheme {xn}∞n=0 defined by xn+1 = f(T, xn) is said to

be almost T -stable on K if
∞∑
n=0

εn <∞ implies that lim
n→∞

yn = q.

It is easy to verify that an iteration scheme {xn}∞n=0 which is T -stable on
K is almost T -stable on K .

Lemma 2.4. ([16]) Let X be a smooth Banach space. Suppose one of the
following holds:

(1) J is uniformly continuous on any bounded subsets of X,

(2) 〈x− y, j(x)− j(y)〉 ≤ ‖x− y‖2 , for all x, y in X,
(3) for any bounded subset D of X , there is a c : [0,∞) → [0,∞)

such that Re 〈x− y, j(x)− j(y)〉 ≤ c(‖x− y‖), for all x, y ∈ D, where
c satisfies

lim
t→0+

c(t)

t
= 0. (2.5)

Then for any ε > 0 and any bounded subset K, there exists δ > 0 such
that

‖sx+ (1− s)y‖2 ≤ (1− 2s) ‖y‖2 + 2sRe 〈x, j(y)〉+ 2sε (2.6)

for all x, y ∈ K and s ∈ [0, δ].



228 Jong Kyu Kim, Arif Rafiq and Ho Geun Hyun

Lemma 2.5. ([5]) Let T : D(T ) ⊆ X → X be an operator with F (T ) 6= ϕ.
Then T is strictly hemicontractive if and only if there exists t > 1 such that
for all x ∈ D(T ) and q ∈ F (T ), there exists j(x− q) ∈ J(x− q) satisfying

Re 〈x− Tx, j(x− q)〉 ≥
(

1− 1

t

)
‖x− q‖2 . (2.7)

Lemma 2.6. ([14]) Let X be an arbitrary normed linear space and T :
D(T ) ⊆ X → X be an operator.

(1) If T is a local strongly pseudocontractive operator and F (T ) 6= ϕ,
then F (T ) is a singleton and T is strictly hemicontractive.

(2) If T is strictly hemicontractive, then F (T ) is a singleton.

Lemma 2.7. ([14]) Let {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 be nonnegative real
sequences and let ε′ > 0 be a constant satisfying

βn+1 ≤ (1− αn)βn + ε′αn + γn, n ≥ 0,

where
∞∑
n=0

αn = ∞, αn ≤ 1 for all n ≥ 0 and
∞∑
n=0

γn < ∞. Then,

lim
n→∞

supβn ≤ ε′.

Remark 2.8. If γn = 0 for each n ≥ 0, then Lemma 2.7 reduces to Lemma
1 of Park [16].

3. Main results

We now prove our main results.

Theorem 3.1. Let X be a smooth Banach space satisfying the axioms (1)-(3)
of Lemma 2.4. Let K be a nonempty closed bounded convex subset of X and
T : K → K be a continuous strictly hemicontractive mapping. Suppose that
{un}∞n=0 and {vn}∞n=0 are arbitrary sequences in K and {a′n}∞n=0, {b′n}∞n=0,
{c′n}∞n=0, {an}∞n=0, {bn}∞n=0 and {cn}∞n=0 are any sequences in [0, 1] satisfying
conditions (i) a′n + b′n + c′n = 1 = an + bn + cn, (ii) c′n = o(b′n), (iii) lim

n→∞
b′n =

0 = lim
n→∞

bn = lim
n→∞

cn, and (iv)
∑∞

n=0 b
′
n =∞.

Suppose that {xn}∞n=0 is the sequence generated from an arbitrary x0 ∈ K
by

xn+1 = a′nxn + b′nTyn + c′nun,

yn = anxn + bnTxn + cnvn, n ≥ 0.
(3.1)

Let {zn}∞n=0 be any sequence in K and define {εn}∞n=0 by

εn = ‖zn+1 − pn‖ , n ≥ 0, (3.2)
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where

pn = a′nzn + b′nTwn + c′nun,

wn = anzn + bnTzn + cnvn, n ≥ 0.
(3.3)

Then

(a) the sequence {xn}∞n=0 converges strongly to a unique fixed point q of T,

(b)
∞∑
n=0

εn <∞ implies that lim
n→∞

zn = q, so that {xn}∞n=0 is almost T -stable

on K,
(c) lim

n→∞
zn = q implies that lim

n→∞
εn = 0.

Proof. From (ii), we have

c′n = tnb
′
n, where tn → 0 as n→∞.

It follows from Lemma 2.6 that F (T ) is a singleton. That is, F (T ) = {q} for
some q ∈ K.

Set M = 1 + diamK. For all n ≥ 0 it is easy to verify that

M = sup
n≥0
‖xn − q‖+ sup

n≥0
‖Txn − q‖+ sup

n≥0
‖Tyn − q‖+ sup

n≥0
‖un − q‖

+ sup
n≥0
‖vn − q‖+ sup

n≥0
‖zn − q‖+ sup

n≥0
‖pn − q‖ .

(3.4)

Consider

‖yn − xn‖ = ‖anxn + bnTxn + cnvn − xn‖
= ‖bn(Txn − xn) + cn (vn − xn)‖
≤ bn ‖Txn − xn‖+ cn ‖vn − xn‖
≤ 2M (bn + cn)

→ 0,

(3.5)

as n→∞.
For given any ε > 0 and the bounded subset K, there exists a δ > 0

satisfying (2.6). Note that (ii), (iii), lim
n→∞

‖yn − xn‖ = 0 and the continuity of

T ensure that there exists an N such that

b′n < min{δ, 1

2(1− k)
}, tn ≤

ε

16M2
, ‖Tyn − Txn‖ ≤

ε

4M
, n ≥ N, (3.6)
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where k = 1
t and t satisfies (2.7). Using (3.3) and Lemma 2.4, we infer that

‖xn+1 − q‖2 =
∥∥(1− b′n)(xn − q) + b′n(Tyn − q) + c′n(un − xn)

∥∥2
≤
(∥∥(1− b′n)(xn − q) + b′n(Tyn − q)

∥∥+ 2Mc′n
)2

≤
∥∥(1− b′n)(xn − q) + b′n(Tyn − q)

∥∥2 + 8M2c′n

≤ (1− 2b′n) ‖xn − q‖2 + 2b′nRe(Tyn − q, j(xn − q))
+ 2εb′n + 8M2c′n

= (1− 2b′n) ‖xn − q‖2 + 2b′nRe(Txn − q, j(xn − q))
+ 2b′nRe(Tyn − Txn, j(xn − q)) + 2εb′n + 8M2c′n

≤ (1− 2b′n) ‖xn − q‖2 + 2kb′n ‖xn − q‖
2

+ 2b′n ‖Tyn − Txn‖ ‖xn − q‖+ 2εb′n + 8M2c′n

≤ (1− 2(1− k)b′n) ‖xn − q‖2

+ 2Mb′n ‖Tyn − Txn‖+ 2εb′n + 8M2c′n

≤ (1− 2(1− k)b′n) ‖xn − q‖2 + 3εb′n,

(3.7)

for all n ≥ N.
Put

βn = ‖xn − q‖ ,
αn = 2(1− k)b′n,

ε′ =
3ε

2(1− k)
,

γn = 0,

we have from (3.7)

βn+1 ≤ (1− αn)βn + ε′αn + γn, n ≥ 0.

Observe that
∑∞

n=0 αn =∞, αn < 1 for all n ≥ 0. It follows from Lemma 2.7
that

lim
n→∞

sup ‖xn − q‖2 ≤ ε′.

Letting ε′ → 0+, we obtain that lim
n→∞

sup ‖xn − q‖2 = 0, which implies that
xn → q as n→∞.
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Similarly we also have

‖pn − q‖2 =
∥∥(1− b′n)(zn − q) + b′n(Twn − q) + c′n(un − zn)

∥∥2
≤
(∥∥(1− b′n)(zn − q) + b′n(Twn − q)

∥∥+ 2Mc′n
)2

≤
∥∥(1− b′n)(zn − q) + b′n(Twn − q)

∥∥2 + 8M2c′n

≤ (1− 2b′n) ‖zn − q‖2 + 2b′nRe(Twn − q, j(zn − q))
+ 2εb′n + 8M2c′n

= (1− 2b′n) ‖zn − q‖2 + 2b′nRe(Tzn − q, j(zn − q))
+ 2b′nRe(Twn − Tzn, j(zn − q)) + 2εb′n + 8M2c′n

≤ (1− 2b′n) ‖zn − q‖2 + 2kb′n ‖zn − q‖
2

+ 2b′n ‖Twn − Tzn‖ ‖zn − q‖+ 2εb′n + 8M2c′n

≤ (1− 2(1− k)b′n) ‖zn − q‖2

+ 2Mb′n ‖Twn − Tzn‖+ 2εb′n + 8M2c′n

≤ (1− 2(1− k)b′n) ‖zn − q‖2 + 3εb′n,

(3.8)

for all n ≥ N.
Suppose that

∞∑
n=0

εn <∞. In view of (3.4) and (3.8), we infer that

‖zn+1 − q‖2 ≤ (‖zn+1 − pn‖+ ‖pn − q‖)2

≤ ‖pn − q‖2 + 3Mεn

≤
[
1− 2b′n(1− k)

]
‖zn − q‖2 + 3εb′n + 3Mεn,

(3.9)

for all n ≥ N.
Now put

βn = ‖zn − q‖ ,
αn = 2(1− k)b′n,

ε′ =
3ε

2(1− k)
,

γn = 3Mεn,

and we have from (3.9)

βn+1 ≤ (1− αn)βn + ε′αn + γn, n ≥ 0.

Observe that
∑∞

n=0 αn =∞, αn < 1 and
∑∞

n=0 γn <∞ for all n ≥ 0. It follows
from Lemma 2.7 that

lim
n→∞

sup ‖zn − q‖2 ≤ ε′.
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Letting ε′ → 0+, we obtain that lim
n→∞

sup ‖zn − q‖2 = 0, which implies that
zn → q as n→∞.

Conversely, suppose that lim
n→∞

zn = q, then (iii) and (3.8) implies that

εn ≤ ‖zn+1 − q‖+ ‖pn − q‖

≤ ‖zn+1 − q‖+
[[

1− 2(1− k)b′n
]
‖zn − q‖2 + 3εb′n

] 1
2

→ 0,

as n→∞, that is, εn → 0 as n→∞. �

Using the method of Theorem 3.1, we can similarly prove the following.

Theorem 3.2. Let X, K, T, {un}∞n=0 and {vn}∞n=0 be as in Theorem 3.1. Sup-
pose that {a′n}∞n=0, {b′n}∞n=0, {c′n}∞n=0, {an}∞n=0, {bn}∞n=0 and {cn}∞n=0 are any
sequences in [0, 1] satisfying conditions (i), (iii)− (iv) and

∞∑
n=0

c′n <∞.

If {xn}∞n=0, {yn}∞n=0, {zn}∞n=0, {pn}∞n=0, {wn}∞n=0 and {εn}∞n=0 are as in The-
orem 3.1, Then the conclusions of Theorem 3.1 hold.

Corollary 3.3. Let X be a smooth Banach space satisfying the axioms (1)-(3)
of Lemma 2.4. Let K be a nonempty closed bounded convex subset of X and
T : K → K be a continuous strictly hemicontractive mapping. Suppose that
{un}∞n=0 is an arbitrary sequence in K and {a′n}∞n=0, {b′n}∞n=0 and {c′n}∞n=0

are any sequences in [0, 1] satisfying conditions (i) a′n + b′n + c′n = 1, (ii)
c′n = o(b′n), (iii) lim

n→∞
b′n = 0, and (iv)

∑∞
n=0 b

′
n =∞.

Suppose that {xn}∞n=0 is the sequence generated from an arbitrary x0 ∈ K
by

xn+1 = a′nxn + b′nTxn + c′nun, n ≥ 0.

Let {zn}∞n=0 be any sequence in K and define {εn}∞n=0 by

εn = ‖zn+1 − pn‖ , n ≥ 0,

where

pn = a′nzn + b′nTzn + c′nun, n ≥ 0.

Then

(a) the sequence {xn}∞n=0 converges strongly to a unique fixed point q of T,

(b)
∞∑
n=0

εn <∞ implies that lim
n→∞

zn = q, so that {xn}∞n=0 is almost T -stable

on K,
(c) lim

n→∞
zn = q implies that lim

n→∞
εn = 0.
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Corollary 3.4. Let X, K, T and {un}∞n=0 be as in Corollary 3.3. Suppose that
{a′n}∞n=0, {b′n}∞n=0 and {c′n}∞n=0 are any sequences in [0, 1] satisfying conditions
(i), (iii)− (iv) and

∞∑
n=0

c′n <∞.

If {xn}∞n=0, {zn}∞n=0, {pn}∞n=0 and {εn}∞n=0 are as in Corollary 3.3, then the
conclusions of Corollary 3.3 hold.

Remark 3.5. All of the above results are also valid for Lipschitz strictly
hemicontractive mappings.
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