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Abstract. The paper is devoted to the study of a Love’s equation with mixed nonhomoge-
neous conditions. Existence of a weak solution is proved by using Faedo-Galerkin method.

Uniqueness, regularity and asymptotic behavior of solutions are also discussed.

1. INTRODUCTION

In this paper, we consider the following Love’s equation with initial condi-
tions and mixed nonhomogeneous conditions

Ut — Ugy — EUgptt + A ]ut|q_2 u + K |u]p_2 u= F(z,t),

xreN=(0,1), 0<t<T, (1.1)
€uxtt(0, t) + UI(O, t) = hou(O, t) + g()(t),
—eug(1,t) — ux(1,t) = hyu(1,t) + g1(t), (1.3)
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u(x, 0) - ’l]()(l'), ut(x7 O) - ’111(.%'), (14)
where e >0, p>1,q> 1, A >0, K, hg, hy > 0 are constants and ug, @1, F,
go, g1 are given functions satisfying conditions specified later.

Equation (1.1) describes vertical oscillations of a nonlinear viscous elastic
bar, in which the nonlinear term F(z,t) = F(x,t) — X |ug|7 % uy — K [ulP 2w
contains the external forces acting on the bar. These external forces depend
on the displacement u and velocity of movement u;. The conditions (1.2), (1.3)
describe the elastic binding at the two ends of the bar.

When FF =0, A = K =0, Q = (0,L), Eq.(1.1) is related to the Love’s
equation

Utt — %umx - 2,U2k2um:vtt =0, (15)

presented by V. Radochovd in 1978 (see [9]). This equation describes vertical
oscillations of a rod, which was established from Euler’s variational equation
of an energy function

ST dt [ [5Fp (1 + p2R22,) — 3P (B2 + ppKugug)] do,  (L6)

the parameters in (1.6) have the following meanings: w is the displacement, L
is the length of the rod, F' is the area of cross-section, k is the cross-section
radius, E is the Young modulus of the material and p is the mass density.
By using the Fourier method, Radochova [9] obtained a classical solution of
problem (1.5) associated with initial conditions (1.4) and boundary conditions

u(0,t) = u(L,t) =0, (1.7a)

{ u(0,t) = 0, 17b)

or

eugst(L,t) + ug (L, t) =0,

where ¢? = %, e = 2u%k?. On the other hand, the asymptotic behaviour of

solutions of problems (1.4), (1.5), (1.7) as ¢ — 0 are also established by the
method of small parameter.

Equations of Love waves or equations for waves of Love types have been
studied by many authors, we refer to [3], [4], [8] and references therein.

In view of Mathematics, problem (1.1) with high derivative appearing in
equation, which is compatible with the boundary conditions (1.2), (1.3), will
usually make solutions of problem being more smooth (it means that the
solution belongs to a function space narrower) than other problems without
higher derivative terms.

Thus, when we consider a perturbed problem with small parameter € > 0,
the limit of a solution as ¢ — 04 in some sense, if it exists, will belong to a
function space wider than the space containing the solution of the perturbed
problem.
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The paper consists of four sections. Using the Faedo-Galerkin method, com-
pactness method and monotone method generated by the nonlinear component
]ut|q_2 ug, Section 2 is devoted to the study of the existence a weak solution
for problems (1.1)-(1.4) with (7o, ;1) € H' x H', p > 1,q > 1. Here, a energy
lemma(Lemma 2.4) is also established in order to pass the limit of a approxi-
mate problem and prove the uniqueness in case p > 2. In section 3, we consider
the regularity of solution for problems (1.1)-(1.4) with (g, 1) € H? x H?,
p > 2,q > 2 and some other conditions. In case p = ¢ = 2, we show that
the regularity of solutions depending on the regularity of data. Finally, the
asymptotic behavior of solutions as ¢ — 04 is discussed in Section 4. The
results obtained here may be considered as the generalizations of those in [9)].

2. EXISTENCE AND UNIQUENESS OF A WEAK SOLUTION

First, we put Q = (0,1); Qr = Q x (0,7), T' > 0 and we denote the
usual function spaces used in this paper by the notations C™ (ﬁ) , WP =
WmP (Q), LP = WP (Q), H™ = W™2(Q), 1 <p<oo,m=0,1,.... Let (-,-)
be either the scalar product in L? or the dual pairing of a continuous linear
functional and an element of a function space. The notation ||-|| stands for the
norm in L? and we denote by || - ||x the norm in the Banach space X. We call
X' the dual space of X. We denote by LP(0,7T; X), 1 < p < oo for the Banach
space of the real functions w : (0,7) — X measurable, such that

1/p
llzoo ey = (Jo lu®)fdt) " <00 for1<p<oc,

and

lull o 0.7, x) = esssuplu(t)|y  for p=oc.
0<t<

Let u(t), v'(t) = ut(t) W' () = uy(t), us(t), use(t) denote u(z,t), 3(x,t),

2 .
%(:p,t), g; (z,t), 2 &EQ 2 (z,t), respectively.

On H' we shall use the following norms
1/2 , /2
ol s = (Wl + loall®) ol = (v2@) + Joal?) s i =0,1.
Then the following lemma is known.

Lemma 2.1. The imbedding H' — C°([0,1]) is compact and

o]l com) <V2|vllg:, YveH,
HUHCOQ <V2|vl|l,, Yve HYi=0,1.
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We remark that, there norms ||[v||y, [|vl;, |[v]lz: are equivalent on H' and

% vll; < ol < V3|, for allv e HY, i =0,1. (2.2)

It is also easy to prove the result as below.

Lemma 2.2. Let hg, h1 > 0, hg+hy > 0. Then there exists a constant ag > 0
depending only on hg, h1 such that

[vell? + hov?(0) + hav?(1) > ag |[v||3 , for all v e H. (2.3)
Remark 2.3. The weak formulation of the initial-boundary value problem

(1.1)-(1.4) can be given in the following manner: Find u € L>(0,T; H'), with
uy € L>(0,T; H'), such that u satisfies the following variational equation

L (un(t), w) + £ (g (1), we)] + (ua(t), we)
+ 30 (hau(i, t) + i(t)) w(i) (2.4)
X g T g, w) + K (JulP 7w, w) = (F(t), w),

for all w € H', a.e., t € (0,T), together with the initial conditions
u(0) = g, ut(0) = . (2.5)
We need the following assumptions:
(H)p>1,¢>1,A>0,K >0,¢>0;
(H2) hg,h1 > 0,ho + h1 > 0;
(Hs) (g, ) € H' x HY;
(Hy) F € LY(0,T; L?);
(Hs) gi e WH1(0,T), i=0,1.
Then, we have the following theorem.

Theorem 2.4. Let T > 0. Suppose that (Hy)-(Hs) hold. Then, there exists a
weak solution u of problems (1.1)-(1.4) such that

we L>®(0,T;HY), wp € L= (0, T; H') . (2.6)
Furthermore, if p > 2, then the solution is unique.
Proof. The proof consits of four steps.

Step 1. The Faedo-Galerkin approrimation.
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Let {w;} be a denumerable base of H!. We find the approximate solution
of Prob.(1.1)-(1.4) in the form

um(t) = 32551 Cmj(t)w;, (2.7)

where the coefficient functions c,,; satisfy the following system of ordinary
differential equations

(u (8),07) + (it (8) + 0 (8), w5+ A (i (12 i (8), ;)
K ([umOF > um(t)w5) + Sk (it iy8) + 0:(0) ws(0)  (2.8)
= (F()wy), 1<j<m,
um(O) = fLom, u'm(()) = alm,
where

{ Uom = Z;”:l amjwj — U strongly in H', 2.9

Ui = Y42y Bmjwj — @ strongly in H'.

From the assumptions of Theorem 2.3, system (2.8) has a solution u,, on an
interval [0, T},] C [0, T]. The following estimates allow one to take T, = T for
all m (see [2]).

Step 2. A priori estimates.

Multiplying the j** equation of (2.8) by c;nj (t) and summing up with respect
to j, afterwards, integrating by parts with respect to the time variable from 0
to t, after some rearrangements, we get

Sin(t) = Sm(0) +2 310 9i(0)om (i) + 2 [y (F(s), 1l (s)) ds
+2 Z%:o ggg(s)um(i, s)ds —2 ZLO 9i () upm (i, ) (2.10)
= Sm(o) +2 Z}:O gi(o)ﬂOm(i) + Z?’:O Ij7
where
S () = [, (D11 + [t (1 + € [l (01 + o1 hiti2, (i, 1)
+ 2 (D)7 + 22 [y llun, (3)]184 ds.

By (2.9), (2.11) and the imbedding H' < C"(Q), there exists a positive

constant Cy depending only on g, @1, ho, h1, K, p, g0(0), g1(0) and e, such
that

(2.11)

Sm(0) +2 321 9i(0)iom (i) + 2 |[@om 7
= Ha1m||2 + ||1~’J0m:r||2 +te Halmacn2 + Z}:O hia%m(i)
+2 3010 9i(0)iiom (i) + 2 [liigm [},

< %C_'o, for all m.

(2.12)
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Using (2.3) and the following inequalities
2ab < fa® + b, for all a, b€ R, B> 0, (2.13)

Si(t) 2 [l (O + a0 fum ()1 + € [t (D]

(2.14)
+ 2 flum ()75 + 22 fo I (5)1%0 ds

and note that

()] < () oy < V2 um @l < \/Z /Sl 1 =0, 1, (215)

we can estimate all terms in the righthand side of (2.10) as follows.

11:25(}7 ()>ds
< JolIF (s |d8+fo IF ()]t (5] dis (2.16)

< Cr + [y IIF ()] S (s) ds

where C'r is a bound depending on 7T For short, in what follows, Cr always
is a constant with the same meaning.

Iy =231 Jo 9i(s)um(i, s)ds < 2\/%f0t L 1948)| /Sm(8)ds
—%hzom ) ds + f5 3io|9i(5)] Sm(s)ds (2.17)
SC'T—FfO T (8)Sm (s) ds,

where dg><s> =L lgis)], with d) € L1(0, ).

=23 im0 9i(um(irt) < 2/ 35 g 19ill oo,y V/Sm () (2.18)
< %CT + ﬁSM(t)’

for all 5> 0, Oy > 2 (22 ( L1l oo OT)) . Combining (2.10), (2.12), (2.16)-
%, we obtain

(2.18) and choose 8 =
S (8) < dY + [LdP (5)Sp (s)ds, 0 <t < Ty, (2.19)

where d) = Cy + 8Cr, dP(s) = 2 [2+d( J(s)+ 1F (s)]l] , d? e £2(0,T).
By Gronwall’s lemma, we deduce from (2.19) that

S(t) < dV exp [ Jra® )ds} < O, for all t € [0,T]. (2.20)

Thus, we can take constant 7,, =T forall m.

Step 3. Limiting process.
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From (2.11), (2.20), we deduce the existence of a subsequence of {u,} still
also so denoted, such that

( U — U in L>(0,T; H') weakly*,
ul, — u’ in L>(0,T;H') weakly*,
U — U in L*(0,T;LP) weakly*,
u, —u in LYQr) weakly, (2:21)
P2 tum — xo in L®(0,T;L¥) weakly*,
ul, " ul, = x1 in LY(Qr) weakly.

By the compactness lemma of Lions ([7], p. 57), (2.21) leads to the existence
of a subsequence of {u,,} denoted by the same symbol such that

Um — u stronglyin L?(Qr) and a.e. in Q7. (2.22)
By means of the continuity of function z — |z[P~2z, we have
[t |P~ 2, — |u|P~2u  a.e. in Qr. (2.23)

Using Lions’s Lemma ([7], Lemma 1.3, p.12), it follows from (2.20) and (2.23)
that

[t [P 2t — |[u[P~2u in LP (Qr) weakly. (2.24)
By (2.21)5 and (2.24), we deduce that
xo = |ulP~?u. (2.25)

Passing to the limit in (2.8) by (2.9), (2.21), (2.24) and (2.25), we have u
satisfying the problem

[0/ (1), 0) + & W (0),0)] + (o), 02) + A Qa(8),0)
K (Ju(®) " u(t), v) + S (hiulis?) + g:(6)) v(3)

= (F(t),v), for all v € H*,

u(0) = g, u'(0) = @y.

(2.26)

It remains to prove 1 = |u'\q_2 u’. We need the following lemma.

Lemma 2.5. Let u be the weak solution of the following problem

(U — Uy —eul, =P, 0<ax<1, 0<t<T,
(—1)" [eul2(ist) + ug (i, )] = Gi(t),
u(0) = g, u'(0) = @, (2.27)
ue L®(0,T;HY), o € L>(0,T;H'),

\ @, @1 € H', Gy, G1 € L*(0,T), ® € L'(0,T; L?).




8 N. T. Duy, L. T. P. Ngoc and N. A. Triet

Then we have

5 ’()H2+%II a:()||2+%HU’()II2
+ 300 Jo Gi(s)u! (i, s)ds — [ (®(s),u/(s)) ds (2.28)

> g [l + 3 Huo:cH +5 @, ae., telo,T).
Furthermore, if g = @1 = 0 then there is equality in (2.28).

Proof. The idea of the proof is the same as in ([5], Lemma 2.1, p. 79). Fix ¢,
ta, 0 < t; <ty < T and let v(z,t) be the function defined as follows

0(@,1) = O () [ (Bra(0 (2, 1)) * (1) * (D)) (2.29)

where
(1) Oy, is a continuous, piecewise linear function on [0, 7] defined as follows:

0, if, te[0,T]\ [ti+1/m, ta—1/m],
1, if, e[ty +2/mts—2/m],
m(t—t; —1/m), if, te[ti+1/m,t1 +2/m],
—m(t —te+1/m), if, t € [ta —2/m,ta —1/m)].

—

(1) =

(2.30)
(i) {px} is a regularizing sequence in C°(R), i.e.,

pr € CX(R), pil(t) = pr(—t), [ pr(t)dt =1, supp p C [~1/k, 1/k].
(2.31)
(iii) * is the convolution product in the time variable, ie.,

(u* pg)(x,t) = fj;o u(x,t — s)pr(s)ds. (2.32)

We take the scalar product of the function v(z,t) in (2.29) with equation
(2.27), then integrate with respect to the time variable from 0 to 7', and we
have

Xk + Yok = Znk, (2.33)
where
Xk = fo v(t))dt,
fo 5= (ue(t) + gy (t)) , v(t))dt, (2.34)

Lk = fo t),v(t))dt.
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Using the properties of the functions 6,,(t) and pg(t), after some lengthy cal-
culation, we can show that

i X = — [ 0, [0/ (8)])* dt,

k—+o00
2 T 2
i Yo = — 7 0,00 a1 dt < [ 0y I 1)
+Zi ofo 02,Gi(t)u' (i, t)dt,

Jim Z = [ 02,(0(0), 0/ (1)t

(2.35)

Letting m — oo, from (2.33)—(2.35) we obtain

L ()17 + 3 lluae(t2) 1P + § [l (22)
+ Y000 f2 Gity (i, t)dt — [[2(D(t),u (1)) dt (2.36)
= Sl DI+ (81245 (8217,

a.e., t1 to € (0, T), t1 <to.

From (2.36), using the weak lower semicontinuity of the functional v —
|v]|?, we obtain (2.28) by taking to = ¢t and passing to the limit as t; — 0.
In the case of 49 = 4y = 0, we prolong u, ¢, Gy, G; by 0 as t < 0 and we
deduce that equality (2.36) is also true for almost ¢ < t9 < T. Then, taking
t1 < 0in (2.36), its right-hand side is 0, letting t; — 0_, we have equality
(2.28). The proof of Lemma 2.5 is completed. O

Remark 2.6. Lemma 2.5 is a relative generalization of a lemma presented in
Lions’s book ([7], Lemma 6.1, p. 224).

We now return to prove that x; = |¢/|? *«/. From (2.10) and (2.11), we
obtain

2 (1 i (5), 16 (5

= 2)‘f0 [ (8)[| 74 ds

= am ” + & @ame|” + l[Fomel|* + g i@, (i)

+ 2 g [ — ety (8)]I* — & 1t ()| — [[ttma (£

— Sl hiu (i) = 2 (D]}, +2 [ (F(s), 1), (s)) ds
—2370 0 Jy i)ty (i, 8)ds.

Using Lemma 2.5, with ® = F — K |ulP" 2 u — Ax1, Gi(t) = hqu(i, t) + gi(t),
it follows from (2.9), (2.21), (2.28), (2.37) that

(2.37)
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2\lim sup fot <\u§n(s)|q72 ul. (), u’m(s)> ds
m—0oQ

~ 12 ~ 2 ~ 2 1 ~9(: ~
<l + e e | + lloal|® + Si—g hitid (i) + 2 laollZ,

R 2 . 2
—lim inf {|up, (8)[|” — elim inf [juy,,,. (¢)]

—lim inf (Humx(t)Hz + Z%:o hiu%(i,t)) - %lirginf |wm (O} 5 (2.38)

m—r

+2 [T (F(s), ' (s)) ds — 2301 [y 9i(s)u/ (i, s)ds
< [l ) + & e | + oz l* + Yimg hitid(6) + 25 a7,

= [l @)1 = & [l (01 = Nua(I* = X2i—g hiu?(i,t)

and
—ZE ()|, + 2 fy (F(s), /() ds = 2301 Jo 9i(s)' (i, s)ds
<l ll? + € e l* + [lox 1> = 1w/ (B = lJua ()] = & [l (8)]*
+2 [T{F(s) — Klu(s)[P"2u(s) — Ax1(s), u'(s)) ds
—257 1 Jo (hau(i, s) + gi(s)) ' (i, s)ds
+2X [ (xa(9), ' (s)) ds < 2 [ (x1(s),/(s)) ds.
Note that
U (t) = [y <!u’m(s)\"‘2 up, (s) = [0(s)| 72 0(s), up, () — v(s)> ds (2.39)
>0,
for all v € LY(Qr). Combining (2.21)246, (2.38) and (2.39), we get
0 < limsup¥,,(t)
e (2.40)

< Jy (aals) = o) 72 0(s), /() — v(s) Y ds, Vo € LI(Qr).

In (2.40), choose v(s) = u/(s) — dw, with 6 > 0 and w € LY(Qr). Apply
the argument of Minty and Browder (see Lions [7], p. 172), we obtain y; =

[u/|7 24/, The proof of existence is completed.

Step 4. Uniqueness of the solution.
Assume now that p > 2 holds. Let u1, us be two weak solutions of problems
(1.1)-(1.4), such that

u; € L®(0,T; HY),u} € L*°(0,T; HY), i=1,2. (2.41)

Then u = u; — us is the weak solution of the following problem
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W = gy = ety = =AU — | )

K [ ur = sl )
0<z<1,0<t<T, (2.42)
(=1) [eu(i,t) + ug (i, t)] = hu(i,t),

u(0) = 4/(0) =0,
[ u € L>®(0,T; HY), ' € L>(0,T; H').

Using again Lemma 2.5 with @9 = @ = 0, ® = —A([u}|7 2} — |uh]? % uh)
—K(Ju1[P"?uy — |ug|P? ug), Gi(t) = hju(i,t), i = 0,1, we have

Z(t) = —2K f(f <\u1(s)\p_2 uy(s) — ]ug(s)]p_2 UQ(S),U/(S)> ds, (2.43)
where

Z(t) = 1/ @)1 + Nua (O + € Jub () + i hiu®(i,t)

. 9 9 (2.44)
20 fy (U ()72 wh () — uh ()] wh(s), ' (5) ) ds.
Applying the following inequality, for all p > 2,
| [a[P~2z — |y[P2y| (2.45)
S(p—l)Mp_2|ﬂj‘—y|, Vx,ye [_M7M]7 VM>O7 '
with M = /2 max [[will oo (0,7 1) » @nd note that
Z(t) > [l (D) + ao [w(®) |72 > 2/@g o/ ()] [w(t) ] g1 (2.46)

we deduce from (2.43), (2.46) that

Z()=—2Kfo<lu1 )P 1(8)—IuQ(s)Ip’2uz(s),u’(s)>d8
<2K(p— 1)MP=2 [ [lu(s)|| Hu( )|l ds (2.47)
< K(p—DMP2 e [y Z(

By Gronwall’s lemma, (2.47) gives Z = 0, i.e., u3 = uz. Theorem 2.4 follows.
O

3. THE REGULARITY OF SOLUTIONS

In this section, we study the regularity of solutions of Prob.(1.1)-(1.4) cor-
responding to (@, 1) € H? x H2.
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Henceforth, we strengthen the hypotheses as follows:

H) p>2,¢>2,A>0, K >0,¢>0;

Then, we have the following theorem.

Theorem 3.1. Let T > 0. Suppose that (H}),(Hz),(HS) — (HE) hold. Then
Prob.(1.1)-(1.4) has a unique weak solution

uwe L™ (O,T; HQ) , such that ug, uy € L™ (O,T; H2) . (3.1)

Remark 3.2. (i) The regularity obtained by (3.1) shows that Prob.(1.1)-(1.4)
has a unique strong solution

uweCH(0,T;H?), uy € L™ (0,T;H?). (3.2)

(ii) In [1], Browder has studied the differential equation us + Au+ M (u) = 0,
t > 0, with the Cauchy initial conditions u(0+) = ug, us(0+) = uy, where A is
a positive densely defined self-adjoint linear operator in a Hilbert space H with
A'/2 being its positive square root, M(u) is a (possibly) nonlinear function
from D (Al/ 2) to H and some other conditions. In general, the results in
the Theorem 3.1 and in ([1], [6]) overlap and do not include each other as
particular cases.

Proof. The proof consists of four steps.

Step 1. The Faedo-Galerkin approximation.

Let {w;} be a denumerable base of H?. We find the approximate solution
um (t) of Prob.(1.1)-(1.4) in the form (2.7), where the coefficient functions ¢,
satisfy the system of ordinary differential equations (2.8);, where

Uom = Z;n:l amjw; — o strongly in H?, (3.3
3.3
Ul = E;nzl Bmjw; — 41 strongly in H2.
Step 2. A priori estimates I.

Proceeding as in the proof of Theorem 2.4, we get, after using assumptions
(H1), (Hz) and (Hz) — (Hj),

Sin(t) = [l ()1 + Wt (DN + € e ()1 + 321 Pt (i,1)

(3.4)
+ 2 i (O + 27 fy i ()10 ds < O,
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for all t € [0,T] and for all m, and Cr always indicates a bound depending on
T.

A priori estimates I1.
Now differentiating (2.8); with respect to t, we have

(U (8),105) + (g (8) 2 (8), w32) + A= 1) (i (D] i (8), ;)
FE(p = 1) (Jum (D) (1), w;) (35)

+ 300 (hatddy, (i, 1) + gh(t)) w; (i) = (F'(t),w;) , for all 1 < j < m.

Multiplying the j th equation of (3.5) by ¢;,;(t), summing up with respect to
j and then integrating with respect to the time variable from 0 to ¢, after some
rearrangements, the result is

Xon(t) = Xn(0) + 2310 g5(0)iam (i) + 2 [y (F'(s), ul(5)) ds
2K (p = 1) fy (luan(5) P~ u(5). i (5) ) ds

—230 10 G (8 (i,8) + 2 fo i 6f ()i, (i, 8)ds 0
= Xin(0) +2 Z%:O 9;(0)tm (i) + Z?:l Jjs
where
X (t) = [[ufn, (N7 + e (D1 + €l (D17 + S i [t (i, 8) -

F2XM(q — 1) [l ds [} [l (2, 8)| 72 ull (s, 5)| ds.

First, we are going to estimate &,, = ||ul}, ( )IZ+e [|u”,(0)]|*. Letting t — 0
in Eq. (2.8)1, multiplying the result by ¢/, ;(0), we get
)

e ()1 + & e O + (itomas s (0))
Yo (hidtom (i) + 9:(0) ) w3, 0) + K (lioml” tom, i (0))  (3.8)
A fiml 2 @, 14 (0) ) = (F(0), 14, (0))
Note that
[ (3, 0)] < [t (O)ll oo,y < V2 [ (0

= V2 [ty (O] + [t (0)

< V2max{1, %}\/”u;/n(o)HQ + e [[utrg (012
=2 max{1, %}\/@

(3.9)

This implies that
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Em = Ilupn (0)” + & IIUZM(O)III2
< Nl @ome | l[wma O] + X2i—o [Ritiom () + gi(0)] |ur, (2, 0)]

+ (M1l + 5 o ||+ 1F @) ]l )1
~ 2 2
< gy loma |I* + 3 1|70 (0)]
2
~ . 2
58 (S hatom(i) + 6i(0)l) + B 4 ()3

1 ~ q—1 ~ p—1 2 b1 " 2
e e [ B [ BR TN A A O]
< 5b Ilioma|® + 5-&m (3.10)

b (ko lhatom (i) + gi(O)I)2 + By max{1, 1}¢,,

o[+ 1F O] ]+ %0

+

s o+ 5

1 s 2, 1 1 _ 2
< 5h Naomall” + o5 (g Ihitiom(8) + 9:(0)])
2
by [M[laanl |+ £ fizon |+ 17O ]
+20[1+ 1 + 2max{1, 1}] &,, for all B; > 0.
Choose 81 > 0, such that % [1 + % + 2max{1, %}] < %, we have
Em = [lup, (0)[1 + & [[ufp, (0)]?
1|5 2 1 1 - . 2
< 3 lomell” + 3 (s hitiom (i) + 9:(0)])
2
3 [l | + K |[laonl” | + 1O ]

< Xy, forall m,

(3.11)

where X is a constant depending only on p, q, K, \, F, g, @1, ho, h1, go(0),
91(0) and e. By (3.3), (3.7) and (3.11), we obtain

Xm(0) +2 Z%:O 9;(0)t1m (7)
= gm + Halmz||2 + Zzl:o hi |ﬂ1m(z)]2 +2 Zilzo gz{(o)ﬂlm(i) (3'12)
< %Xo, for all m,

where X is a constant depending only on p, ¢, K, A\, F, 4g, 11, ho, h1, go(0),
91(0) and e. By (2.1), (2.3), (2.15), (3.7) and also note

2 2 2
X (8) = Jugm (D17 + o [|u, Oz + € e (2]

3.13
L2A(g — 1) [ ds [ e 9) 72 [l (5, 5)] ds, (3:13)
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[ (i, )] < g (D)l cogy < V2un ()]0

. (3.14)
S\/?O\/th, Z:0’1,
we estimate all terms on the right-hand side of (3.6) as follows
J1:2fot Fi(s),up(s)) ds < [[F"|| 10,722 +foHF/ $)|| Xm (s) ds (3.15)
<Cr+ ! ||F’ )| Xon () ds;
where Cr always indicates a bound depending on T7;
Jo = 2K (p = 1) fy {un ()~} (5), uly (5) ) ds
p—2 p—2
< - 2 ¢
<=0 (VZ) L (VEE) VEEIVELGs

<2(p-1) (F)H VO fy Vs
<Cr+ fO dS
Js = —2 5 (D (i 1) < 25 [g4(8)| (i)
<2/ 2 i 19 ()] v/ X (?) (3.17)

2
<32 (Solgilimom) +BXm(t) < 5Cr + BXm(®);

Jo =200 fy g (s)uly (i 8)ds < 20/ 2 1o [ 19/(8)] /X (5)ds
<o Jy gl ()| [+ X (5)] ds (3.18)
< Cyp [1 + 0 5(s) Xom (5) ds} ,

where g(s) = S.1_ olg?(s)l, g € L'(0,T). Combining (3.6), (3.12), (3.15)-
(3.18) and choose 8 = % we get after some rearrangements

Xpn(t) < Cr+Cr [5 (L+G(s) + || F'(s)]]) X (s)ds, 0 <t <T.  (3.19)

By Gronwall’s Lemma, (3.19) gives

Xm(t) < Crexp [CT JFa+as)+ |F ()] )ds] < Op Ve [0,T]. (3.20)

Step 3. Limiting process.
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From (3.4), (3.7), (3.20), we deduce the existence of a subsequence of {u,,}
still also so denoted, such that

Up —u in L0, T; H')  weakly*,
ul, — v in L®(0,T; H') weakly*, (3.21)
ult. —u” in L®(0,T; H') weakly*.

By the compactness lemma of Lions ([7], p. 57), (3.21) leads to the existence

of a subsequence of {u,,} denoted by the same symbol such that

Um — u  stronglyin L*(Qr) and a.e. in Qr, (3.22)
ul, — v stronglyin L?(Qr) and a.e. in Q7. '

Using again the inequality (2.45), with M = v/2C7, we deduce from (3.22)
that

U [P~ 2 U, — |u[P~2u  stronglyin  L*(Qr). (3.23)
Similarly

lul, |972ul, — [u/|97%u’  stronglyin L2?(Qr). (3.24)
Passing to the limit in (2.8), by (2.3), (2.21) — (2.24), we have u satisfying the
problem

(W"(t),0) + (ug(t) + eug(t), va) + X (o' ()| (t),v)
Yo (i 1) + g:(0) v() + K (Ju(®)P > u(t), v)

(3.25)
= (F(t),v), VYve HY,
U(O) == ﬂo, UI(O) == ﬂl.
On the other hand, we have from (3.21), (3.25); that
D (w4 eug) = e + Muel 92w + K |ulP2u — F(t) (3.26)
€ L>=(0,T; L?). '
So
u+euy = ® € L0, T; H?). (3.27)
Furthermore, by u; + %u = %@, it follows that
u(t) = cos (\/gt> o + /€ sin (\/gt> Uy
(3.28)
+VE [Lsin (@t —5)) L0(s)ds € L(0,T; H?).
Then . )
uy = ¢ (®—wu) € L*(0,T; H), (3.29)

up = Uy + fg uy(s)ds € L>=(0,T; H?).
Thus u, ug, ug € L(0,T; H?) and the existence of a weak solution is proved
completely.
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Step 4. Uniqueness of the solution.
Let u1, ug be two weak solutions of problem (1.1)—(1.4) such that

u; € CH(0,T;H?), uf € L™ (0,T; H?) , i =1,2. (3.30)
Then w = uy — uy verifies
(w" (£),v) + (wy(t) + ewy (), va) + A (|ug|*"?u) — |ub|T™u, v)
+ 300 hiw(i, t)v(i)
= —K (Ju1|P2u1 — |ug|P"2ug,v) , for all v € H',

w(0) = w'(0) = 0.

(3.31)

We take v = w = u1 —ug in (3.30) and integrating with respect to ¢, we obtain
o(t) = —2K [y (lur(s)[P"2ui(s) = [uz(s)[P~2uz(s), w'(s)) ds, (3.32)
where
2 2 .
o(t) = [[w' (&)I° + e [l ()1 + lwa (O] + 3i_g hiw? (i, 1)
t —2 )
2 Jy (R ()12 ) — ()] w(s), w/(5) ) ds.
Using again the inequality (2.45), with M = M; = /2 max l[will oo (0,1 11
=1, st
we deduce that

(3.33)

| fur ()P~ 2ua(s) = Jua(s) P 2ua(s)]

) (3.34)
< (p—1)MY""|w(s)|, Y(z,s) € Qr,
and the following inequalities
o(t) = [lw @) + & [|lw}, ()1 + ao [lw(®) |71 (3.35)
lwo®llcoy < VE @)l < \/Z /o), (3.36)
we obtain
—2K [g Jua(s)|P"ua(s) — |ua(s)|P"Pua(s), w'(s)) ds
< 2K (p - )M Ji [w()]| /()] ds (337)
<2K(p— I)M{’—Q\/gfot o(s)ds = Kr fg o(s)ds.
Hence

o(t) < K [} o(s)ds. (3.38)

By Gronwall’s Lemma, it follows from (3.38) that o = 0, i.e., u; = uy. Theorem
3.1 is proved completely. g
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Now, we continue to study the regularity of solutions of problems (1.1)-(1.4),
corresponding to p = q = 2.
Lu=v" —uzy — e, + M + Ku = F(z,t),
0<z<1l,0<t<T,
Liu = (=1)" [eug (i, t) + ua (i, 8)] — hiu(i, t) = gi(t), i = 0,1,
u(0) = 1, u'(0) = 1.

(3.39)

For this purpose, we assume that the constants e, K, A\, hg, h1 satisfy the
conditions (H}), (Hz). Furthermore, we will impose the following stronger
assumptions. With r € N, we assume that

(HYY (i, 1) € H™+2 x H'™2.
(H L[f]) The function F(z,t) satisfies

YL ¢ L=(0,T:H"), 0<j<r,
o E e LY0,T; H").
(#HY) g0, g1 € W0, T), r > 1.

First, we define the sequences {uo ]} {u[k]} k=0,1,...,7+2 by the following
recurrent formulas

il = ag, @l = @y

’ ’ (3.40)

{ i =l ke 1,2, 41}, r >0,

where ﬁgﬂ is defined by the following problem
—eAd)) val) = 228 0) + Ay - Kay T - aal

=olfl 0 <z <1, 1)
3.41

i~k k—2 ‘ k=2

(=1 (i) = —(=1)ag, 26) + hiay @) + LE(0)
=olM =01

Then, we have the following lemma.

Lemma 3.3. Suppose that (Hg}) — (H5m) hold. Then problem (3.41) has

a unique weak solution ﬂ([)k] € H'. Furthermore, we have &gk] € H*? |k =
2,3,....,7r+ 1.

Proof. A weak solution of problem (3.41) is obtained from the following vari-
ational problem. Find U € H' such that

a(U,w) = (L, w), for all w € H, (3.42)
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where

{ a(U,w) = (eUs, wz) + (U, w), (3.43)

- T
(L, w) = (@1, w) — 1 2w (a).
Using the Lax-Milgram’s theorem, problem (3.42) has a unique weak solution
~[k] c Hl
We shall prove that

il e H?2 ke (1,2, ..r+ 1}, r > 1. (3.44)
@) k=1:ay) =all = a; e H2. (by (HID)).
(ii) Suppose by induction that u[l] N[k_l] € H"*? hold. We shall prove that
~[k
)

' e H™2 holds.
In fact, by (HZ[[}), we have %i;if(-,()) € H", 2 < k < r + 2. Hence, by
induction we obtain

ok = 228 (. 0) + Aaly ! - Kay P - xalf U e 1T (3.45)

On the other hand, by u[ e H' and (3.45),

caald = al¥ _ ol ¢ . (3.46)
Then &([)k} € H3. Similarly, we have also ﬁ([)k} € H»H with s € N, 25 — 1 <
r < 2s+ 1. Then
eAal = @Ml — okl ¢ g7 (3.47)
Thus
il e HT+2, (3.48)

Lemma 3.3 is proved. O

Now, formally differentiating problem (3.39) with respect to time up to

order r and letting ul"l = %;3 we are led to consider the solution ul”l of

problem (QU) :

Lull = 282 1), (,t) € Qr,
QM) { Liull = L&(1), i=0,1, (3.49)
ull(0) = alfl, uf(0) = all,

where

Lw=vw" — Aw — eAw" + Kw + A/,
(3.50)

Liw = (=1)% [ew! (i) + w(i)] — hyw(i), i=0,1.
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From assumptions (H {T]) - (H?ET}) we deduce that ﬂ([]r], ﬁ[lT}, %;f , d;t%O d d(;til
satisfy the conditions of Theorem 3.1. Hence, the problem (Q[T]) has a unique

weak solution ul"l such that

ull e ¢ (0,T; H?), ol € L (0,T; H?) . (3.51)
Moreover, from the uniqueness of a weak solution we haveul"l = ‘?9;? Hence
we deduce from (3.51) that the solution u of problem (3.39) satisfy
we OTHL(0,T; H?), &4 e 1 (0,T; H?) . (3.52)
Next we shall prove by induction on r that
we (0, TS H'H?), Gt € L®(0,T5 H' ), r 2 1. (3.53)

In the case of r = 1, the proof of (3.53) is easy, we omit the details. We now
prove with > 2. Suppose by induction that (3.53) holds for r — 1. i.e.,

we (0,75 H ), &0u e 100,75 H ). (3.54)

We shall prove that (3.53) holds. To achieve this, we have to prove that
G € L>(0,T; H™?),

ot
O e L0, T; H'+?), (3.55)
O e L0, T; H'H2), r > 1.
By (Q)y,
(um — sAu[T])” — Aul + Kl + )\uw = %;f (3.56)
Put
W = ull — eAulrl,
o = il — eAal, (3.57)
@ =@ —eAd) = @l —eaay .
Then
W+ 1w = Lull — Kl — xal + GF = wlbl € 10, T; HY),
W(0) =1 € H, (3.58)
W(0) =, € H”.
Consequently

W (t) = cos (ﬁt) Wo + /€ sin <\/gt) w1

(3.59)
+ \/Efot sin <\/§(t — s)) Ull(s)ds € L=(0,T; H).
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By (3.54) and (3.59), it follows that

Aull = Lylh — 1w e peo(0,T; H™). (3.60)
Thus
ull € L0, T; H+2). (3.61)
On the other hand, by (3.58)1, we obtain
W = —Lw + 9l e L>(0,T; H"). (3.62)
It follows from (3.52), (3.62) and r > 2 that
Aull = Lt — LW e 122(0,T; H?). (3.63)
Thus
ulll € 100, T; HY). (3.64)

Similarly, we also have uy € L>(0,T; H*), with s € N, 25 — 2 < 1 < 2s.
Then
Aull = Ll — 1w ¢ 20, T; H"). (3.65)
Thus
ujy € L(0,T; H™+2). (3.66)
On the other hand
WV =l + [Lulil(s)ds € Loo(0,T; HT2). (3.67)

Combining (3.61), (3.66) and (3.67), by induction arguments on r, we conclude
that (3.53) holds. The following theorem follows.

Theorem 3.4. Let (Hg]) — (HBM) hold. Then the unique solution u(z,t) of
problem (3.39) satisfies (3.53).

4. ASYMPTOTIC BEHAVIOR OF SOLUTIONS AS € — 04

In this part, we assume that p > 2, ¢ > 1, A > 0, K > 0 and hg, h1, o,
a1, F, go, g1 satisfy the assumptions (Hy) — (Hs) . Let € > 0. By Theorem 2.4,
problem(1.1)—(1.4) has a unique weak solution u = u. depending on €.

We consider the following perturbed problem, where ¢ is a small parameter:

Ut — Uggy — EUgxtt + A ’ut‘q_Q Ut + K ‘u|p—2 U = F(.I',t),
.  0<z<1,0<t<T, i1
(Be) (1) [eu/ (i, t) + uali, )] = hau(i, t) + gi(), (4.1)

U(O) == ﬂo, UI(O) == al.
We shall study asymptotic behavior of the solution of (F.) as € — 0.

Theorem 4.1. Let T >0,p>2,qg>1, A >0, K > 0. Let (Hz) — (Hs) hold.
Then
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(i) Problem (Py) corresponding to € = 0 has a unique weak solution g
satisfying

i € L™ (0,T;H') , 4y € L= (0,T;L?). (4.2)
(ii) The solution u. converges to ugy, as € — 0, in the following sense

u. — g in L0, T; H'Y) weakly*,

ul — af in L°(0,T;L%)  weakly*.

(iii) If uy € L*(0,T; H?), then solution u. converges strongly in W (Qr) to
ug, as € — 04, where

W(Qr) ={v e L>®0,T; H') : v € L>(0,T; L?)}. (4.3)

Furthermore, we have the estimation

luz — Ul oo (0,7 12) + lue = Uoll oo oy m1) < CTVE, (4.4)

where Cr is a posistive constant depending only on T.

Proof. First, we note that if the small parameter £ > 0 satisfy 0 < € < 1 then
a priori estimates of the sequence {u,,} in the proof of Theorem 2.4 for Prob.
(P:) satisty

2 2 2
[ (O + lum (8771 + € |t ()]

4.5)
¢ (

F um @7, + X Jy lurm ()70 ds < Cr,
for all ¢ € [0, 7] and for all m, and Cr is a constant depending only on T', p,
K, hg, h1, @, w1, F, go, 1 (independent of €). Hence, the limit v = wu. of
the sequence {u,,} as m — +o00, in suitable function spaces is a unique weak
solution of Prob. (FP:) satisfying

2 2 2
luc N+ llue @l + € [lug, ()]

(4.6)
+lue @7, + A fy lul(s)]%q ds < Cr,

for all ¢ € [0,7] and for all € € (0,1).
Let {e,,} be a sequence such that ¢, > 0, &, — 0 as m — +oo. We
put u, = ue,,, we deduce from (4.6), that, there exists a subsequence of the
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sequence {u,} still denoted by {u,,}, such that

( Uy, — Ug in L>(0,T;H') weakly*,
ur, — U in L>(0,T;L?) weakly*,
VEmulL, = ¢ in L%(0,T;H') weakly*,
U, — Up in L*(0,7;LP) weakly*, (4.7)
ur, — U in LYQr) weakly,
[P wp — xo in L®(0,T;LP')  weakly*,
up, P2l > x1 i LY(Qr) weakly.

By the compactness lemma of Lions ([7]: p. 57), we can deduce from (4.7); 2
the existence of a subsequence still denoted by {u;,}, such that

Um — g strongly in L?(Qr) and a.e. in Q. (4.8)
It follows from (4.7)23, that ( = 0. Hence, we obtain from (4.7)3 that
VEmuL, — 0 in L>(0,T; H') weakly*. (4.9)
Similarly
U |P~ 2, — |Ui0|P~ 20 stronglyin  L2(Qr), (4.10)
and
X1 = |ug|7 . (4.11)

By passing to the limit, as in the proof of Theorem 2.3, we conclude that g
is a unique weak solution of Prob. (F) corresponding to ¢ = 0 satisfying

iy € L (0,T; H') , up € L> (0,T; L?) . (4.12)

Hence, (i) and (ii) are proved.
Next, put u = u. — Ug, then u is the weak solution of the following problem

u — Au —eAu” + X (]u’elq_Q ul — |a6|‘1‘2 ag)

+K (|u€|p*2 ue — |ag|P 3 ao) —eAu), 0<z<1, 0<t<T,
(=1)¢ [eull (i, t) + uz (i, t)] = hyu(i, t) — (=1)euf, (i,t),

u(0) = /(0) = 0.

(Px)

(4.13)
Using again Lemma 2.3, we prove in a manner similar to the above part and
the result is

o(t) = 2 [ (ATG, /() ds + 26 31 [y (—1)'ag, (i, s)u' (i, )ds

4.14
28 (P )~ om0y as,
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where

o(t) = [|u' ()1 + & [l (0) 1 + Nua (O + 2j_g hiu?(i,t)

20 [y (I (5)| 72 () — [ ()|~ (), () ) s (4.15)
Note that
Jo ()1 o) = o) "= ), () > 0,
o(t) > /()1 + e s () > e | ()3 (4.16)
o(t) = [/ )1 + a0 u(®) 7 = 2y/a0 [|u(t) | [l ()]

By (2.41), (4.6), (4.16), we estimate all terms in the righthand side of (4.14)
as follows

2¢ [y (Aaf(s),u/(s)) ds < 26f0 1Az (s)]| [|u'(s)]| ds

< 2 o [§(5)l| s [0/ (9)] s i
<&y (s >\|H2ds+fouu )2 ds

<e ||U0||L2(0TH2) + fo s)ds,
z 0 fO lugx Z S)U (7’7 S)dS

< 86f0 6 () 2 ' (5)] 1 dls
< 8¢ [y lag(s)ll g2 1/ () ds (4.18)

< 16¢ fo |lag (s HH2 ds +€f0 o/ (s HH1 ds
<€HU0HL2 0,T;H2) + Jy o(s)ds,
2 Ji (Jue(9)" 2 ue(s) — Jao(s)/" 2 to(s), w/(s) ) ds
2
<2K(p-1) cf”2 N (s |y ||u( )| ds (4.19)
< K(p—-1)Ch~ rfo
Combining (4.14), (4.17), (4.18), (4.19) the result is
_ 2
o(t) < 2 [T 1o ey + 24+ (0 = DO L] fro(s)ds. (4.20)
By Gronwall’s Lemma, (4.20) leads to
o(t) <2 H_6/HL2 (0,7;12) €XP (T [2 +(- 1)0:1;_2%})
= Cre, Vt €[0,T).
Consequently
[z = 46|l oo (0.7 12) + 1te = Toll oo o 711y < CTVE, (4.22)

where C7r is a constant depending only on 7. Thus, (iii) is proved. Theorem
4.1 is proved completely. O

(4.21)
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