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Abstract. The paper is devoted to the study of a Love’s equation with mixed nonhomoge-

neous conditions. Existence of a weak solution is proved by using Faedo-Galerkin method.

Uniqueness, regularity and asymptotic behavior of solutions are also discussed.

1. Introduction

In this paper, we consider the following Love’s equation with initial condi-
tions and mixed nonhomogeneous conditions

utt − uxx − εuxxtt + λ |ut|q−2 ut +K |u|p−2 u = F (x, t),
x ∈ Ω = (0, 1), 0 < t < T,

(1.1)

εuxtt(0, t) + ux(0, t) = h0u(0, t) + g0(t), (1.2)

−εuxtt(1, t)− ux(1, t) = h1u(1, t) + g1(t), (1.3)
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u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x), (1.4)

where ε > 0, p > 1, q > 1, λ > 0, K, h0, h1 ≥ 0 are constants and ũ0, ũ1, F,
g0, g1 are given functions satisfying conditions specified later.

Equation (1.1) describes vertical oscillations of a nonlinear viscous elastic

bar, in which the nonlinear term F̃ (x, t) = F (x, t)− λ |ut|q−2 ut −K |u|p−2 u
contains the external forces acting on the bar. These external forces depend
on the displacement u and velocity of movement ut. The conditions (1.2), (1.3)
describe the elastic binding at the two ends of the bar.

When F = 0, λ = K = 0, Ω = (0, L), Eq.(1.1) is related to the Love’s
equation

utt − E
ρ uxx − 2µ2k2uxxtt = 0, (1.5)

presented by V. Radochová in 1978 (see [9]). This equation describes vertical
oscillations of a rod, which was established from Euler’s variational equation
of an energy function∫ T

0 dt
∫ L

0

[
1
2Fρ

(
u2
t + µ2k2u2

tx

)
− 1

2F
(
Eu2

x + ρµ2k2uxuxtt
)]
dx, (1.6)

the parameters in (1.6) have the following meanings: u is the displacement, L
is the length of the rod, F is the area of cross-section, k is the cross-section
radius, E is the Young modulus of the material and ρ is the mass density.
By using the Fourier method, Radochová [9] obtained a classical solution of
problem (1.5) associated with initial conditions (1.4) and boundary conditions

u(0, t) = u(L, t) = 0, (1.7a)

or {
u(0, t) = 0,

εuxtt(L, t) + c2ux(L, t) = 0,
(1.7b)

where c2 = E
ρ , ε = 2µ2k2. On the other hand, the asymptotic behaviour of

solutions of problems (1.4), (1.5), (1.7) as ε→ 0+ are also established by the
method of small parameter.

Equations of Love waves or equations for waves of Love types have been
studied by many authors, we refer to [3], [4], [8] and references therein.

In view of Mathematics, problem (1.1) with high derivative appearing in
equation, which is compatible with the boundary conditions (1.2), (1.3), will
usually make solutions of problem being more smooth (it means that the
solution belongs to a function space narrower) than other problems without
higher derivative terms.

Thus, when we consider a perturbed problem with small parameter ε > 0,
the limit of a solution as ε → 0+ in some sense, if it exists, will belong to a
function space wider than the space containing the solution of the perturbed
problem.
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The paper consists of four sections. Using the Faedo-Galerkin method, com-
pactness method and monotone method generated by the nonlinear component
|ut|q−2 ut, Section 2 is devoted to the study of the existence a weak solution
for problems (1.1)-(1.4) with (ũ0, ũ1) ∈ H1 ×H1, p > 1, q > 1. Here, a energy
lemma(Lemma 2.4) is also established in order to pass the limit of a approxi-
mate problem and prove the uniqueness in case p ≥ 2. In section 3, we consider
the regularity of solution for problems (1.1)-(1.4) with (ũ0, ũ1) ∈ H2 × H2,
p ≥ 2, q ≥ 2 and some other conditions. In case p = q = 2, we show that
the regularity of solutions depending on the regularity of data. Finally, the
asymptotic behavior of solutions as ε → 0+ is discussed in Section 4. The
results obtained here may be considered as the generalizations of those in [9].

2. Existence and uniqueness of a weak solution

First, we put Ω = (0, 1); QT = Ω × (0, T ), T > 0 and we denote the
usual function spaces used in this paper by the notations Cm

(
Ω
)
, Wm,p =

Wm,p (Ω) , Lp = W 0,p (Ω) , Hm = Wm,2 (Ω) , 1 ≤ p ≤ ∞, m = 0, 1, .... Let 〈·, ·〉
be either the scalar product in L2 or the dual pairing of a continuous linear
functional and an element of a function space. The notation ‖·‖ stands for the
norm in L2 and we denote by || · ||X the norm in the Banach space X. We call
X ′ the dual space of X. We denote by Lp(0, T ;X), 1 ≤ p ≤ ∞ for the Banach
space of the real functions u : (0, T )→ X measurable, such that

‖u‖Lp(0,T ;X) =
(∫ T

0 ‖u(t)‖pX dt
)1/p

<∞ for 1 ≤ p <∞,

and

‖u‖L∞(0,T ;X) = ess sup
0<t<T

‖u(t)‖X for p =∞.

Let u(t), u′(t) = ut(t), u
′′(t) = utt(t), ux(t), uxx(t) denote u(x, t), ∂u∂t (x, t),

∂2u
∂t2

(x, t), ∂u∂x(x, t), ∂
2u
∂x2

(x, t), respectively.

On H1 we shall use the following norms

‖v‖H1 =
(
‖v‖2 + ‖vx‖2

)1/2
, ‖v‖i =

(
v2(i) + ‖vx‖2

)1/2
, i = 0, 1.

Then the following lemma is known.

Lemma 2.1. The imbedding H1 ↪→ C0([0, 1]) is compact and{
‖v‖C0(Ω) ≤

√
2 ‖v‖H1 , ∀v ∈ H1,

‖v‖C0(Ω) ≤
√

2 ‖v‖i , ∀v ∈ H1, i = 0, 1.
(2.1)
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We remark that, there norms ‖v‖0 , ‖v‖1 , ‖v‖H1 are equivalent on H1 and

1√
3
‖v‖i ≤ ‖v‖H1 ≤

√
3 ‖v‖i , for all v ∈ H1, i = 0, 1. (2.2)

It is also easy to prove the result as below.

Lemma 2.2. Let h0, h1 ≥ 0, h0 +h1 > 0. Then there exists a constant α0 > 0
depending only on h0, h1 such that

‖vx‖2 + h0v
2(0) + h1v

2(1) ≥ α0 ‖v‖2H1 , for all v ∈ H1. (2.3)

Remark 2.3. The weak formulation of the initial-boundary value problem
(1.1)-(1.4) can be given in the following manner: Find u ∈ L∞(0, T ;H1), with
ut ∈ L∞(0, T ;H1), such that u satisfies the following variational equation

d
dt [〈ut(t), w〉+ ε〈uxt(t), wx〉] + 〈ux(t), wx〉
+
∑1

i=0 (hiu(i, t) + gi(t))w(i)

+λ〈|ut|q−2 ut, w〉+K〈|u|p−2 u,w〉 = 〈F (t), w〉,
(2.4)

for all w ∈ H1, a.e., t ∈ (0, T ), together with the initial conditions

u(0) = ũ0, ut(0) = ũ1. (2.5)

We need the following assumptions:

(H1) p > 1, q > 1, λ > 0, K > 0, ε > 0;

(H2) h0, h1 ≥ 0, h0 + h1 > 0;

(H3) (ũ0, ũ1) ∈ H1 ×H1;

(H4) F ∈ L1(0, T ;L2);

(H5) gi ∈W 1,1 (0, T ) , i = 0, 1.

Then, we have the following theorem.

Theorem 2.4. Let T > 0. Suppose that (H1)-(H5) hold. Then, there exists a
weak solution u of problems (1.1)-(1.4) such that

u ∈ L∞
(
0, T ;H1

)
, ut ∈ L∞

(
0, T ;H1

)
. (2.6)

Furthermore, if p ≥ 2, then the solution is unique.

Proof. The proof consits of four steps.

Step 1. The Faedo-Galerkin approximation.
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Let {wj} be a denumerable base of H1. We find the approximate solution
of Prob.(1.1)-(1.4) in the form

um(t) =
∑m

j=1 cmj(t)wj , (2.7)

where the coefficient functions cmj satisfy the following system of ordinary
differential equations

〈u′′m(t), wj〉+ 〈umx(t) + εu′′mx(t), wjx〉+ λ
〈
|u′m(t)|q−2 u′m(t), wj

〉
+K

〈
|um(t)|p−2 um(t), wj

〉
+
∑1

i=0 (hium(i, t) + gi(t))wj(i)

= 〈F (t), wj〉 , 1 ≤ j ≤ m,
um(0) = ũ0m, u

′
m(0) = ũ1m,

(2.8)

where {
ũ0m =

∑m
j=1 αmjwj → ũ0 strongly in H1,

ũ1m =
∑m

j=1 βmjwj → ũ1 strongly in H1.
(2.9)

From the assumptions of Theorem 2.3, system (2.8) has a solution um on an
interval [0, Tm] ⊂ [0, T ]. The following estimates allow one to take Tm = T for
all m (see [2]).

Step 2. A priori estimates.
Multiplying the jth equation of (2.8) by c′mj(t) and summing up with respect

to j, afterwards, integrating by parts with respect to the time variable from 0
to t, after some rearrangements, we get

Sm(t) = Sm(0) + 2
∑1

i=0 gi(0)ũ0m(i) + 2
∫ t

0 〈F (s), u′m(s)〉 ds

+2
∑1

i=0

∫ t
0 g
′
i(s)um(i, s)ds− 2

∑1
i=0 gi(t)um(i, t)

= Sm(0) + 2
∑1

i=0 gi(0)ũ0m(i) +
∑3

j=0 Ij ,

(2.10)

where

Sm(t) = ‖u′m(t)‖2 + ‖umx(t)‖2 + ε ‖u′mx(t)‖2 +
∑1

i=0 hiu
2
m(i, t)

+2K
p ‖um(t)‖pLp + 2λ

∫ t
0 ‖u

′
m(s)‖qLq ds.

(2.11)

By (2.9), (2.11) and the imbedding H1 ↪→ C0
(
Ω
)
, there exists a positive

constant C̄0 depending only on ũ0, ũ1, h0, h1, K, p, g0(0), g1(0) and ε, such
that

Sm(0) + 2
∑1

i=0 gi(0)ũ0m(i) + 2K
p ‖ũ0m‖pLp

= ‖ũ1m‖2 + ‖ũ0mx‖2 + ε ‖ũ1mx‖2 +
∑1

i=0 hiũ
2
0m(i)

+2
∑1

i=0 gi(0)ũ0m(i) + 2K
p ‖ũ0m‖pLp

≤ 1
2 C̄0, for all m.

(2.12)
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Using (2.3) and the following inequalities

2ab ≤ βa2 + 1
β b

2, for all a, b ∈ R, β > 0, (2.13)

Sm(t) ≥ ‖u′m(t)‖2 + α0 ‖um(t)‖2H1 + ε ‖u′mx(t)‖2

+2K
p ‖um(t)‖pLp + 2λ

∫ t
0 ‖u

′
m(s)‖qLq ds,

(2.14)

and note that

|um(i, t)| ≤ ‖um(t)‖C0(Ω) ≤
√

2 ‖um(t)‖H1 ≤
√

2
α0

√
Sm(t), i = 0, 1, (2.15)

we can estimate all terms in the righthand side of (2.10) as follows.

I1 = 2
∫ t

0 〈F (s) , u′m (s)〉 ds
≤
∫ t

0 ‖F (s)‖ ds+
∫ t

0 ‖F (s)‖ ‖u′m (s)‖2 ds

≤ CT +
∫ t

0 ‖F (s)‖Sm (s) ds,

(2.16)

where CT is a bound depending on T. For short, in what follows, CT always
is a constant with the same meaning.

I2 = 2
∑1

i=0

∫ t
0 g
′
i(s)um(i, s)ds ≤ 2

√
2
α0

∫ t
0

∑1
i=0 |g′i(s)|

√
Sm(s)ds

≤ 2
α0

∫ t
0

∑1
i=0 |g′i(s)| ds+

∫ t
0

∑1
i=0 |g′i(s)|Sm(s)ds

≤ CT +
∫ t

0 d
(1)
T (s)Sm (s) ds,

(2.17)

where d
(1)
T (s) =

∑1
i=0 |g′i(s)| , with d

(1)
T ∈ L1(0, T ).

I3 = −2
∑1

i=0 gi(t)um(i, t) ≤ 2
√

2
α0

∑1
i=0 ‖gi‖L∞(0,T )

√
Sm(t)

≤ 1
βCT + βSm(t),

(2.18)

for all β > 0, CT ≥ 2
α0

(∑1
i=0 ‖gi‖L∞(0,T )

)2
. Combining (2.10), (2.12), (2.16)-

(2.18) and choose β = 1
2 , we obtain

Sm (t) ≤ d(0)
T +

∫ t
0 d

(2)
T (s)Sm (s) ds, 0 ≤ t ≤ Tm, (2.19)

where d
(0)
T = C̄0 + 8CT , d

(2)
T (s) = 2

[
2 + d

(1)
T (s) + ‖F (s)‖

]
, d

(2)
T ∈ L1(0, T ).

By Gronwall’s lemma, we deduce from (2.19) that

Sm(t) ≤ d(0)
T exp

[∫ T
0 d

(2)
T (s)ds

]
≤ CT , for all t ∈ [0, T ]. (2.20)

Thus, we can take constant Tm = T for all m.

Step 3. Limiting process.
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From (2.11), (2.20), we deduce the existence of a subsequence of {um} still
also so denoted, such that

um → u in L∞(0, T ;H1) weakly*,

u′m → u′ in L∞(0, T ;H1) weakly*,

um → u in L∞(0, T ;Lp) weakly*,

u′m → u′ in Lq(QT ) weakly,

|um|p−2 um → χ0 in L∞(0, T ;Lp
′
) weakly*,

|u′m|
q−2 u′m → χ1 in Lq

′
(QT ) weakly.

(2.21)

By the compactness lemma of Lions ([7], p. 57), (2.21) leads to the existence
of a subsequence of {um} denoted by the same symbol such that

um → u strongly in L2(QT ) and a.e. in QT . (2.22)

By means of the continuity of function x 7−→ |x|p−2x, we have

|um|p−2um → |u|p−2u a.e. in QT . (2.23)

Using Lions’s Lemma ([7], Lemma 1.3, p.12), it follows from (2.20) and (2.23)
that

|um|p−2um → |u|p−2u in Lp
′
(QT ) weakly. (2.24)

By (2.21)5 and (2.24), we deduce that

χ0 = |u|p−2u. (2.25)

Passing to the limit in (2.8) by (2.9), (2.21), (2.24) and (2.25), we have u
satisfying the problem

d
dt [〈u′(t), v〉+ ε 〈u′x(t), vx〉] + 〈ux(t), vx〉+ λ 〈χ1(t), v〉

+K
〈
|u(t)|p−2 u(t), v

〉
+
∑1

i=0 (hiu(i, t) + gi(t)) v(i)

= 〈F (t), v〉 , for all v ∈ H1,

u(0) = ũ0, u
′(0) = ũ1.

(2.26)

It remains to prove χ1 = |u′|q−2 u′. We need the following lemma.

Lemma 2.5. Let u be the weak solution of the following problem

u′′ − uxx − εu′′xx = Φ, 0 < x < 1, 0 < t < T,

(−1)i [εu′′x(i, t) + ux(i, t)] = Gi(t),

u(0) = ũ0, u
′(0) = ũ1,

u ∈ L∞(0, T ;H1), u′ ∈ L∞(0, T ;H1),

ũ0, ũ1 ∈ H1, G0, G1 ∈ L2 (0, T ) , Φ ∈ L1(0, T ;L2).

(2.27)
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Then we have

1
2 ‖u

′(t)‖2 + 1
2 ‖ux(t)‖2 + ε

2 ‖u
′
x(t)‖2

+
∑1

i=0

∫ t
0 Gi(s)u

′(i, s)ds−
∫ t

0 〈Φ(s), u′(s)〉 ds
≥ 1

2 ‖ũ1‖2 + 1
2 ‖ũ0x‖2 + ε

2 ‖ũ1x‖2 , a.e., t ∈ [0, T ].

(2.28)

Furthermore, if ũ0 = ũ1 = 0 then there is equality in (2.28).

Proof. The idea of the proof is the same as in ([5], Lemma 2.1, p. 79). Fix t1,
t2, 0 < t1 < t2 < T and let v(x, t) be the function defined as follows

v(x, t) = θm(t)[(θm(t)u′(x, t)) ∗ ρk(t) ∗ ρk(t)], (2.29)

where
(i) θm is a continuous, piecewise linear function on [0, T ] defined as follows:

θm(t) =


0, if, t ∈ [0, T ] r [t1+1/m, t2−1/m],

1, if, t ∈ [t1 + 2/m, t2 − 2/m],

m(t− t1 − 1/m), if, t ∈ [t1 + 1/m, t1 + 2/m],

−m(t− t2 + 1/m), if, t ∈ [t2 − 2/m, t2 − 1/m].
(2.30)

(ii) {ρk} is a regularizing sequence in C∞c (R), i.e.,

ρk ∈ C∞c (R), ρk(t) = ρk(−t),
∫ +∞
−∞ ρk(t)dt = 1, supp ρk ⊂ [−1/k, 1/k].

(2.31)
(iii) ∗ is the convolution product in the time variable, ie.,

(u ∗ ρk)(x, t) =
∫ +∞
−∞ u(x, t− s)ρk(s)ds. (2.32)

We take the scalar product of the function v(x, t) in (2.29) with equation
(2.27), then integrate with respect to the time variable from 0 to T , and we
have

Xmk + Ymk = Zmk, (2.33)

where 
Xmk =

∫ T
0 〈u

′′(t), v(t)〉dt,

Ymk = −
∫ T

0 〈
∂
∂x (ux(t) + εuxtt(t)) , v(t)〉dt,

Zmk =
∫ T

0 〈Φ(t), v(t)〉dt.

(2.34)
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Using the properties of the functions θm(t) and ρk(t), after some lengthy cal-
culation, we can show that

lim
k→+∞

Xmk = −
∫ T

0 θmθ
′
m ‖u′(t)‖

2 dt,

lim
k→+∞

Ymk = −
∫ T

0 θmθ
′
m ‖ux(t)‖2 dt− ε

∫ T
0 θmθ

′
m ‖u′x(t)‖2 dt

+
∑1

i=0

∫ T
0 θ2

mGi(t)u
′(i, t)dt,

lim
k→+∞

Zmk =
∫ T

0 θ2
m〈Φ(t), u′(t)〉dt.

(2.35)

Letting m→∞, from (2.33)–(2.35) we obtain

1
2 ‖u

′(t2)‖2 + 1
2 ‖ux(t2)‖2 + ε

2 ‖u
′
x(t2)‖2

+
∑1

i=0

∫ t2
t1
Gi(t)u

′(i, t)dt−
∫ t2
t1
〈Φ(t), u′(t)〉dt

= 1
2 ‖u

′(t1)‖2+ 1
2 ‖ux(t1)‖2+ ε

2 ‖u
′
x(t1)‖2 ,

(2.36)

a.e., t1 t2∈(0, T ), t1<t2.
From (2.36), using the weak lower semicontinuity of the functional v 7−→

‖v‖2 , we obtain (2.28) by taking t2 = t and passing to the limit as t1 → 0+.
In the case of ũ0 = ũ1 = 0, we prolong u, Φ, G0, G1 by 0 as t < 0 and we
deduce that equality (2.36) is also true for almost t1 < t2 < T. Then, taking
t1 < 0 in (2.36), its right-hand side is 0, letting t1 → 0− , we have equality
(2.28). The proof of Lemma 2.5 is completed. �

Remark 2.6. Lemma 2.5 is a relative generalization of a lemma presented in
Lions’s book ([7], Lemma 6.1, p. 224).

We now return to prove that χ1 = |u′|q−2 u′. From (2.10) and (2.11), we
obtain

2λ
∫ t

0

〈
|u′m(s)|q−2 u′m(s), u′m(s)

〉
ds

= 2λ
∫ t

0 ‖u
′
m(s)‖qLq ds

= ‖ũ1m‖2 + ε ‖ũ1mx‖2 + ‖ũ0mx‖2 +
∑1

i=0 hiũ
2
0m(i)

+2K
p ‖ũ0m‖pLp − ‖u′m(t)‖2 − ε ‖u′mx(t)‖2 − ‖umx(t)‖2

−
∑1

i=0 hiu
2
m(i, t)− 2K

p ‖um(t)‖pLp + 2
∫ t

0 〈F (s), u′m(s)〉 ds

−2
∑1

i=0

∫ t
0 gi(s)u

′
m(i, s)ds.

(2.37)

Using Lemma 2.5, with Φ = F −K |u|p−2 u− λχ1, Gi(t) = hiu(i, t) + gi(t),
it follows from (2.9), (2.21), (2.28), (2.37) that
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2λlim sup
m→∞

∫ t
0

〈
|u′m(s)|q−2 u′m(s), u′m(s)

〉
ds

≤ ‖ũ1‖2 + ε ‖ũ1x‖2 + ‖ũ0x‖2 +
∑1

i=0 hiũ
2
0(i) + 2K

p ‖ũ0‖pLp

−lim inf
m→∞

‖u′m(t)‖2 − εlim inf
m→∞

‖u′mx(t)‖2

−lim inf
m→∞

(
‖umx(t)‖2 +

∑1
i=0 hiu

2
m(i, t)

)
− 2K

p lim inf
m→∞

‖um(t)‖pLp

+2
∫ t

0 〈F (s), u′(s)〉 ds− 2
∑1

i=0

∫ t
0 gi(s)u

′(i, s)ds

≤ ‖ũ1‖2 + ε ‖ũ1x‖2 + ‖ũ0x‖2 +
∑1

i=0 hiũ
2
0(i) + 2K

p ‖ũ0‖pLp

−‖u′(t)‖2 − ε ‖u′x(t)‖2 − ‖ux(t)‖2 −
∑1

i=0 hiu
2(i, t)

(2.38)

and

−2K
p ‖u(t)‖pLp + 2

∫ t
0 〈F (s), u′(s)〉 ds− 2

∑1
i=0

∫ t
0 gi(s)u

′(i, s)ds

≤ ‖ũ1‖2 + ε ‖ũ1x‖2 + ‖ũ0x‖2 − ‖u′(t)‖2 − ‖ux(t)‖2 − ε ‖u′x(t)‖2

+2
∫ t

0

〈
F (s)−K|u(s)|p−2u(s)− λχ1(s), u′(s)

〉
ds

−2
∑1

i=0

∫ t
0 (hiu(i, s) + gi(s))u

′(i, s)ds

+2λ
∫ t

0 〈χ1(s), u′(s)〉 ds ≤ 2λ
∫ t

0 〈χ1(s), u′(s)〉 ds.

Note that

Ψm(t) =
∫ t

0

〈
|u′m(s)|q−2 u′m(s)− |v(s)|q−2 v(s), u′m(s)− v(s)

〉
ds

≥ 0,
(2.39)

for all v ∈ Lq(QT ). Combining (2.21)2,4,6, (2.38) and (2.39), we get

0 ≤ lim sup
m→∞

Ψm(t)

≤
∫ t

0

〈
χ1(s)− |v(s)|q−2 v(s), u′(s)− v(s)

〉
ds, ∀v ∈ Lq(QT ).

(2.40)

In (2.40), choose v(s) = u′(s) − δw, with δ > 0 and w ∈ Lq(QT ). Apply
the argument of Minty and Browder (see Lions [7], p. 172), we obtain χ1 =

|u′|q−2 u′. The proof of existence is completed.

Step 4. Uniqueness of the solution.
Assume now that p ≥ 2 holds. Let u1, u2 be two weak solutions of problems

(1.1)-(1.4), such that

ui ∈ L∞(0, T ;H1), u′i ∈ L∞(0, T ;H1), i = 1, 2. (2.41)

Then u = u1 − u2 is the weak solution of the following problem
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u′′ − uxx − εu′′xx = −λ
[
|u′1|

q−2 u′1 − |u′2|
q−2 u′2

]
−K

[
|u1|p−2 u1 − |u2|p−2 u2

]
,

0 < x < 1, 0 < t < T,

(−1)i [εu′′x(i, t) + ux(i, t)] = hiu(i, t),

u(0) = u′(0) = 0,

u ∈ L∞(0, T ;H1), u′ ∈ L∞(0, T ;H1).

(2.42)

Using again Lemma 2.5 with ũ0 = ũ1 = 0, Φ = −λ(|u′1|
q−2 u′1 − |u′2|

q−2 u′2)

−K(|u1|p−2 u1 − |u2|p−2 u2), Gi(t) = hiu(i, t), i = 0, 1, we have

Z(t) = −2K
∫ t

0

〈
|u1(s)|p−2 u1(s)− |u2(s)|p−2 u2(s), u′(s)

〉
ds, (2.43)

where

Z(t) = ‖u′(t)‖2 + ‖ux(t)‖2 + ε ‖u′x(t)‖2 +
∑1

i=0 hiu
2(i, t)

+2λ
∫ t

0

〈
|u′1(s)|q−2 u′1(s)− |u′2(s)|q−2 u′2(s), u′(s)

〉
ds.

(2.44)

Applying the following inequality, for all p ≥ 2,∣∣ |x|p−2x− |y|p−2y
∣∣

≤ (p−1)Mp−2 |x−y| , ∀x, y ∈ [−M,M ], ∀M > 0,
(2.45)

with M =
√

2 max
i=1,2

‖ui‖L∞(0,T ;H1) , and note that

Z(t) ≥ ‖u′(t)‖2 + α0 ‖u(t)‖2H1 ≥ 2
√
α0 ‖u′(t)‖ ‖u(t)‖H1 , (2.46)

we deduce from (2.43), (2.46) that

Z(t) = −2K
∫ t

0

〈
|u1(s)|p−2 u1(s)− |u2(s)|p−2 u2(s), u′(s)

〉
ds

≤ 2K(p− 1)Mp−2
∫ t

0 ‖u(s)‖ ‖u′(s)‖ ds

≤ K(p− 1)Mp−2 1√
α0

∫ t
0 Z(s)ds.

(2.47)

By Gronwall’s lemma, (2.47) gives Z ≡ 0, i.e., u1 ≡ u2. Theorem 2.4 follows.
�

3. The regularity of solutions

In this section, we study the regularity of solutions of Prob.(1.1)-(1.4) cor-
responding to (ũ0, ũ1) ∈ H2 ×H2.
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Henceforth, we strengthen the hypotheses as follows:

(H ′1) p ≥ 2, q ≥ 2, λ > 0, K > 0, ε > 0;

(H ′3) (ũ0, ũ1) ∈ H2 ×H2;

(H ′4) F, F ′ ∈ L1(0, T ;L2);

(H ′5) gi ∈W 2,1 (0, T ) , i = 0, 1.

Then, we have the following theorem.

Theorem 3.1. Let T > 0. Suppose that (H ′1), (H2), (H ′3) − (H ′5) hold. Then
Prob.(1.1)-(1.4) has a unique weak solution

u ∈ L∞
(
0, T ;H2

)
, such that ut, utt ∈ L∞

(
0, T ;H2

)
. (3.1)

Remark 3.2. (i) The regularity obtained by (3.1) shows that Prob.(1.1)-(1.4)
has a unique strong solution

u ∈ C1
(
0, T ;H2

)
, utt ∈ L∞

(
0, T ;H2

)
. (3.2)

(ii) In [1], Browder has studied the differential equation utt +Au+M(u) = 0,
t > 0, with the Cauchy initial conditions u(0+) = u0, ut(0+) = u1, where A is
a positive densely defined self-adjoint linear operator in a Hilbert space H with
A1/2 being its positive square root, M(u) is a (possibly) nonlinear function

from D
(
A1/2

)
to H and some other conditions. In general, the results in

the Theorem 3.1 and in ([1], [6]) overlap and do not include each other as
particular cases.

Proof. The proof consists of four steps.

Step 1. The Faedo-Galerkin approximation.
Let {wj} be a denumerable base of H2. We find the approximate solution

um(t) of Prob.(1.1)-(1.4) in the form (2.7), where the coefficient functions cmj
satisfy the system of ordinary differential equations (2.8)1, where{

ũ0m =
∑m

j=1 αmjwj → ũ0 strongly in H2,

ũ1m =
∑m

j=1 βmjwj → ũ1 strongly in H2.
(3.3)

Step 2. A priori estimates I.
Proceeding as in the proof of Theorem 2.4, we get, after using assumptions

(H ′1), (H2) and (H ′3)− (H ′5),

Sm(t) = ‖u′m(t)‖2 + ‖umx(t)‖2 + ε ‖u′mx(t)‖2 +
∑1

i=0 hiu
2
m(i, t)

+2K
p ‖um(t)‖pLp + 2λ

∫ t
0 ‖u

′
m(s)‖qLq ds ≤ CT ,

(3.4)
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for all t ∈ [0, T ] and for all m, and CT always indicates a bound depending on
T.

A priori estimates II.
Now differentiating (2.8)1 with respect to t, we have

〈u′′′m(t), wj〉+〈u′mx(t)+εu′′′mx(t), wjx〉+λ(q−1)
〈
|u′m(t)|q−2 u′′m(t), wj

〉
+K(p− 1)

〈
|um(t)|p−2 u′m(t), wj

〉
+
∑1

i=0 (hiu
′
m(i, t) + g′i(t))wj(i) = 〈F ′(t), wj〉 , for all 1 ≤ j ≤ m.

(3.5)

Multiplying the j th equation of (3.5) by c′′mj(t), summing up with respect to
j and then integrating with respect to the time variable from 0 to t, after some
rearrangements, the result is

Xm(t) = Xm(0) + 2
∑1

i=0 g
′
i(0)ũ1m(i) + 2

∫ t
0 〈F

′(s), u′′m(s)〉 ds

−2K(p− 1)
∫ t

0

〈
|um(s)|p−2 u′m(s), u′′m(s)

〉
ds

−2
∑1

i=0 g
′
i(t)u

′
m(i, t) + 2

∫ t
0

∑1
i=0 g

′′
i (s)u′m(i, s)ds

≡ Xm(0) + 2
∑1

i=0 g
′
i(0)ũ1m(i) +

∑4
j=1 Jj ,

(3.6)

where

Xm(t) = ‖u′′m(t)‖2 + ‖u′mx(t)‖2 + ε ‖u′′mx(t)‖2 +
∑1

i=0 hi |u′m(i, t)|2

+2λ(q − 1)
∫ t

0 ds
∫ 1

0 |u
′
m(x, s)|q−2 |u′′m(s, s)|2 ds.

(3.7)

First, we are going to estimate ξm = ‖u′′m(0)‖2 + ε ‖u′′mx(0)‖2 . Letting t→ 0+

in Eq. (2.8)1, multiplying the result by c′′mj(0), we get

‖u′′m(0)‖2 + ε ‖u′′mx(0)‖2 + 〈ũ0mx, u
′′
mx(0)〉

+
∑1

i=0 (hiũ0m(i) + gi(0) )u′′m(i, 0) +K
〈
|ũ0m|p−2 ũ0m, u

′′
m(0)

〉
+λ
〈
|ũ1m|q−2 ũ1m, u

′′
m(0)

〉
= 〈F (0), u′′m(0)〉 .

(3.8)

Note that

|u′′m(i, 0)| ≤ ‖u′′m(0)‖C0([0,1]) ≤
√

2 ‖u′′m(0)‖H1

=
√

2
√
‖u′′m(0)‖2 + ‖u′′mx(0)‖2

≤
√

2 max{1, 1√
ε
}
√
‖u′′m(0)‖2 + ε ‖u′′mx(0)‖2

=
√

2 max{1, 1√
ε
}
√
ξm.

(3.9)

This implies that
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ξm = ‖u′′m(0)‖2 + ε ‖u′′mx(0)‖2

≤ ‖ũ0mx‖ ‖u′′mx(0)‖+
∑1

i=0 |hiũ0m(i) + gi(0)| |u′′m(i, 0)|

+
[
λ
∥∥∥|ũ1m|q−1

∥∥∥+K
∥∥∥|ũ0m|p−1

∥∥∥+ ‖F (0)‖
]
‖u′′m(0)‖

≤ 1
2β1
‖ũ0mx‖2 + β1

2 ‖u
′′
mx(0)‖2

+ 1
2β1

(∑1
i=0 |hiũ0m(i) + gi(0)|

)2
+ β1 ‖u′′m(0)‖2H1

+ 1
2β1

[
λ
∥∥∥|ũ1m|q−1

∥∥∥+K
∥∥∥|ũ0m|p−1

∥∥∥+‖F (0)‖
]2

+ β1
2 ‖u

′′
m(0)‖2

≤ 1
2β1
‖ũ0mx‖2 + β1

2ε ξm

+ 1
2β1

(∑1
i=0 |hiũ0m(i) + gi(0)|

)2
+ β1 max{1, 1

ε}ξm

+ 1
2β1

[
λ
∥∥∥|ũ1m|q−1

∥∥∥+K
∥∥∥|ũ0m|p−1

∥∥∥+ ‖F (0)‖
]2

+ β1
2 ξm

≤ 1
2β1
‖ũ0mx‖2 + 1

2β1

(∑1
i=0 |hiũ0m(i) + gi(0)|

)2

+ 1
2β1

[
λ
∥∥∥|ũ1m|q−1

∥∥∥+K
∥∥∥|ũ0m|p−1

∥∥∥+ ‖F (0)‖
]2

+β1
2

[
1 + 1

ε + 2 max{1, 1
ε}
]
ξm, for all β1 > 0.

(3.10)

Choose β1 > 0, such that β1
2

[
1 + 1

ε + 2 max{1, 1
ε}
]
≤ 1

2 , we have

ξm = ‖u′′m(0)‖2 + ε ‖u′′mx(0)‖2

≤ 1
β1
‖ũ0mx‖2 + 1

β1

(∑1
i=0 |hiũ0m(i) + gi(0)|

)2

+ 1
β1

[
λ
∥∥∥|ũ1m|q−1

∥∥∥+K
∥∥∥|ũ0m|p−1

∥∥∥+ ‖F (0)‖
]2

≤ X0, for all m,

(3.11)

where X0 is a constant depending only on p, q, K, λ, F, ũ0, ũ1, h0, h1, g0(0),
g1(0) and ε. By (3.3), (3.7) and (3.11), we obtain

Xm(0) + 2
∑1

i=0 g
′
i(0)ũ1m(i)

= ξm + ‖ũ1mx‖2 +
∑1

i=0 hi |ũ1m(i)|2 + 2
∑1

i=0 g
′
i(0)ũ1m(i)

≤ 1
2X0, for all m,

(3.12)

where X0 is a constant depending only on p, q, K, λ, F, ũ0, ũ1, h0, h1, g0(0),
g1(0) and ε. By (2.1), (2.3), (2.15), (3.7) and also note

Xm(t) ≥ ‖u′′m(t)‖2 + α0 ‖u′m(t)‖2H1 + ε ‖u′′mx(t)‖2

+2λ(q − 1)
∫ t

0 ds
∫ 1

0 |u
′
m(x, s)|q−2 |u′′m(s, s)|2 ds,

(3.13)
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|u′m(i, t)| ≤ ‖u′m(t)‖C0(Ω) ≤
√

2 ‖u′m(t)‖H1

≤
√

2
α0

√
Xm(t), i = 0, 1,

(3.14)

we estimate all terms on the right-hand side of (3.6) as follows

J1 = 2
∫ t

0 〈F
′(s), u′′m(s)〉 ds ≤ ‖F ′‖L1(0,T ;L2) +

∫ t
0 ‖F

′(s)‖Xm (s) ds

≤ CT +
∫ t

0 ‖F
′(s)‖Xm (s) ds;

(3.15)

where CT always indicates a bound depending on T ;

J2 = 2K(p− 1)
∫ t

0

〈
|um(s)|p−2 u′m(s), u′′m(s)

〉
ds

≤ 2K(p− 1)
(√

2
α0

)p−2 ∫ t
0

(√
Sm(s)

)p−2√
Sm(s)

√
Xm(s)ds

≤ 2(p− 1)
(√

2
α0

)p−2√
Cp−1
T

∫ t
0

√
Xm(s)ds

≤ CT +
∫ t

0 Xm(s)ds;

(3.16)

J3 = −2
∑1

i=0 g
′
i(t)u

′
m(i, t) ≤ 2

∑1
i=0 |g′i(t)| |u′m(i, t)|

≤ 2
√

2
α0

∑1
i=0 |g′i(t)|

√
Xm(t)

≤ 1
β

2
α0

(∑1
i=0 ‖g′i‖L∞(0,T )

)2
+ βXm(t) ≤ 1

βCT + βXm(t);

(3.17)

J4 = 2
∑1

i=0

∫ t
0 g
′′
i (s)u′m(i, s)ds ≤ 2

√
2
α0

∑1
i=0

∫ t
0 |g
′′
i (s)|

√
Xm (s)ds

≤
√

2
α0

∑1
i=0

∫ t
0 |g
′′
i (s)| [1 +Xm (s)] ds

≤ CT
[
1 +

∫ t
0 ḡ(s)Xm (s) ds

]
,

(3.18)

where ḡ(s) =
∑1

i=0 |g′′i (s)| , ḡ ∈ L1(0, T ). Combining (3.6), (3.12), (3.15)–

(3.18) and choose β = 1
2 , we get after some rearrangements

Xm(t) ≤ CT + CT
∫ t

0 (1 + ḡ(s) + ‖F ′(s)‖)Xm (s) ds, 0 ≤ t ≤ T. (3.19)

By Gronwall’s Lemma, (3.19) gives

Xm(t) ≤ CT exp
[
CT
∫ T

0 (1 + ḡ(s) + ‖F ′(s)‖ ) ds
]
≤ CT ,∀t ∈ [0, T ]. (3.20)

Step 3. Limiting process.
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From (3.4), (3.7), (3.20), we deduce the existence of a subsequence of {um}
still also so denoted, such that

um → u in L∞(0, T ;H1) weakly*,

u′m → u′ in L∞(0, T ;H1) weakly*,

u′′m → u′′ in L∞(0, T ;H1) weakly*.

(3.21)

By the compactness lemma of Lions ([7], p. 57), (3.21) leads to the existence
of a subsequence of {um} denoted by the same symbol such that{

um → u strongly in L2(QT ) and a.e. in QT ,

u′m → u′ strongly in L2(QT ) and a.e. in QT .
(3.22)

Using again the inequality (2.45), with M =
√

2CT , we deduce from (3.22)
that

|um|p−2um → |u|p−2u strongly in L2(QT ). (3.23)

Similarly
|u′m|q−2u′m → |u′|q−2u′ strongly in L2(QT ). (3.24)

Passing to the limit in (2.8), by (2.3), (2.21) – (2.24), we have u satisfying the
problem

〈u′′(t), v〉+ 〈ux(t) + εu′′x(t), vx〉+ λ
〈
|u′(t)|q−2u′(t), v

〉
+
∑1

i=0 (hiu(i, t) + gi(t)) v(i) +K
〈
|u(t)|p−2 u(t), v

〉
= 〈F (t), v〉 , ∀v ∈ H1,
u(0) = ũ0, u

′(0) = ũ1.

(3.25)

On the other hand, we have from (3.21), (3.25)1 that

∂2

∂x2
(u+ εutt) = utt + λ|ut|q−2ut +K |u|p−2 u− F (t)

∈ L∞(0, T ;L2).
(3.26)

So
u+ εutt ≡ Φ ∈ L∞(0, T ;H2). (3.27)

Furthermore, by utt + 1
εu ≡

1
εΦ, it follows that

u(t) = cos
(√

1
ε t
)
ũ0 +

√
ε sin

(√
1
ε t
)
ũ1

+
√
ε
∫ t

0 sin
(√

1
ε (t− s)

)
1
εΦ(s)ds ∈ L∞(0, T ;H2).

(3.28)

Then
utt = 1

ε (Φ− u) ∈ L∞(0, T ;H2),

ut = ũ1 +
∫ t

0 utt(s)ds ∈ L
∞(0, T ;H2).

(3.29)

Thus u, ut, utt ∈ L∞(0, T ;H2) and the existence of a weak solution is proved
completely.
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Step 4. Uniqueness of the solution.
Let u1, u2 be two weak solutions of problem (1.1)–(1.4) such that

ui ∈ C1
(
0, T ;H2

)
, u′′i ∈ L∞

(
0, T ;H2

)
, i = 1, 2. (3.30)

Then w = u1 − u2 verifies
〈w′′(t), v〉+ 〈wx(t) + εw′′x(t), vx〉+ λ

〈
|u′1|q−2u′1 − |u′2|q−2u′2, v

〉
+
∑1

i=0 hiw(i, t)v(i)

= −K
〈
|u1|p−2u1 − |u2|p−2u2, v

〉
, for all v ∈ H1,

w(0) = w′(0) = 0.

(3.31)

We take v = w = u1−u2 in (3.30) and integrating with respect to t, we obtain

σ(t) = −2K
∫ t

0

〈
|u1(s)|p−2u1(s)− |u2(s)|p−2u2(s), w′(s)

〉
ds, (3.32)

where

σ(t) = ‖w′(t)‖2 + ε ‖w′x(t)‖2 + ‖wx(t)‖2 +
∑1

i=0 hiw
2(i, t)

+2λ
∫ t

0

〈
|u′1(s)|q−2 u′1(s)− |u′2(s)|q−2 u′2(s), w′(s)

〉
ds.

(3.33)

Using again the inequality (2.45), with M = M1 =
√

2 max
i=1,2

‖ui‖L∞(0,T ;H1) ,

we deduce that ∣∣ |u1(s)|p−2u1(s)− |u2(s)|p−2u2(s)
∣∣

≤ (p− 1)Mp−2
1 |w(s)| , ∀(x, s) ∈ QT ,

(3.34)

and the following inequalities

σ(t) ≥ ‖w′(t)‖2 + ε ‖w′x(t)‖2 + α0 ‖w(t)‖2H1 , (3.35)

‖w(t)‖C0(Ω) ≤
√

2 ‖w(t)‖H1 ≤
√

2
α0

√
σ(t), (3.36)

we obtain

−2K
∫ t

0

〈
|u1(s)|p−2u1(s)− |u2(s)|p−2u2(s), w′(s)

〉
ds

≤ 2K(p− 1)Mp−2
1

∫ t
0 ‖w(s)‖ ‖w′(s)‖ ds

≤ 2K(p− 1)Mp−2
1

√
2
α0

∫ t
0 σ(s)ds ≡ KT

∫ t
0 σ(s)ds.

(3.37)

Hence

σ(t) ≤ KT

∫ t
0 σ(s)ds. (3.38)

By Gronwall’s Lemma, it follows from (3.38) that σ ≡ 0, i.e., u1 ≡ u2. Theorem
3.1 is proved completely. �
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Now, we continue to study the regularity of solutions of problems (1.1)-(1.4),
corresponding to p = q = 2.

Lu ≡ u′′ − uxx − εu′′xx + λu′ +Ku = F (x, t),

0 < x < 1, 0 < t < T,

Liu ≡ (−1)i [εu′′x(i, t) + ux(i, t)]− hiu(i, t) = gi(t), i = 0, 1,

u(0) = ũ0, u
′(0) = ũ1.

(3.39)

For this purpose, we assume that the constants ε, K, λ, h0, h1 satisfy the
conditions (H ′1), (H2). Furthermore, we will impose the following stronger
assumptions. With r ∈ N, we assume that

(H
[r]
3 ) (ũ0, ũ1) ∈ Hr+2 ×Hr+2.

(H
[r]
4 ) The function F (x, t) satisfies{

∂jF
∂tj
∈ L∞(0, T ;Hr), 0 ≤ j ≤ r,

∂r+1F
∂tr+1 ∈ L1(0, T ;Hr).

(H
[r]
5 ) g0, g1 ∈W r+1,1 (0, T ) , r ≥ 1.

First, we define the sequences {ũ[k]
0 }, {ũ

[k]
1 }, k = 0, 1, ..., r+2 by the following

recurrent formulas{
ũ

[0]
0 = ũ0, ũ

[0]
1 = ũ1,

ũ
[k]
0 = ũ

[k−1]
1 , k ∈ {1, 2, ..., r + 1}, r ≥ 1,

(3.40)

where ũ
[k]
0 is defined by the following problem

−ε∆ũ[k]
0 + ũ

[k]
0 = ∂k−2F

∂tk−2 (·, 0) + ∆ũ
[k−2]
0 −Kũ[k−2]

0 − λũ[k−2]
1

≡ Φ[k], 0 < x < 1,

(−1)iεũ
[k]
0x(i) = −(−1)iũ

[k−2]
0x (i) + hiũ

[k−2]
0 (i) + dk−2gi

dtk−2 (0)

≡ Φ
[k]
i , i = 0, 1.

(3.41)

Then, we have the following lemma.

Lemma 3.3. Suppose that (H
[r]
3 ) − (H

[r]
5 ) hold. Then problem (3.41) has

a unique weak solution ũ
[k]
0 ∈ H1. Furthermore, we have ũ

[k]
0 ∈ Hr+2, k =

2, 3, ..., r + 1.

Proof. A weak solution of problem (3.41) is obtained from the following vari-
ational problem. Find U ∈ H1 such that

a(U,w) = 〈L̃, w〉, for all w ∈ H1, (3.42)
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where {
a(U,w) = 〈εUx, wx〉+ 〈U,w〉,

〈L̃, w〉 = 〈Φ[k], w〉 −
∑1

i=0 Φ
[k]
i w(i).

(3.43)

Using the Lax-Milgram’s theorem, problem (3.42) has a unique weak solution

ũ
[k]
0 ∈ H1.
We shall prove that

ũ
[k]
0 ∈ Hr+2, k ∈ {1, 2, ..., r + 1}, r ≥ 1. (3.44)

(i) k = 1 : ũ
[1]
0 = ũ

[0]
1 = ũ1 ∈ Hr+2. (by (H

[r]
3 )).

(ii) Suppose by induction that ũ
[1]
0 , ..., ũ

[k−1]
0 ∈ Hr+2 hold. We shall prove that

ũ
[k]
0 ∈ Hr+2 holds.

In fact, by (H
[r]
4 ), we have ∂k−2F

∂tk−2 (·, 0) ∈ Hr, 2 ≤ k ≤ r + 2. Hence, by
induction we obtain

Φ[k] = ∂k−2F
∂tk−2 (·, 0) + ∆ũ

[k−2]
0 −Kũ[k−2]

0 − λũ[k−1]
0 ∈ Hr. (3.45)

On the other hand, by ũ
[k]
0 ∈ H1 and (3.45),

ε∆ũ
[k]
0 = ũ

[k]
0 − Φ[k] ∈ H1. (3.46)

Then ũ
[k]
0 ∈ H3. Similarly, we have also ũ

[k]
0 ∈ H2s+1, with s ∈ N, 2s − 1 ≤

r < 2s+ 1. Then

ε∆ũ
[k]
0 = ũ

[k]
0 − Φ[k] ∈ Hr. (3.47)

Thus

ũ
[k]
0 ∈ Hr+2. (3.48)

Lemma 3.3 is proved. �

Now, formally differentiating problem (3.39) with respect to time up to

order r and letting u[r] = ∂ru
∂tr we are led to consider the solution u[r] of

problem (Q[r]) :

(Q[r])


Lu[r] = ∂rF

∂tr (x, t), (x, t) ∈ QT ,

Liu
[r] = drgi

dtr (t), i = 0, 1,

u[r](0) = ũ
[r]
0 , u

[r]
t (0) = ũ

[r]
1 ,

(3.49)

where {
Lw = w′′ −∆w − ε∆w′′ +Kw + λw′,

Liw = (−1)i [εw′′x(i) + wx(i)]− hiw(i), i = 0, 1.
(3.50)
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From assumptions (H
[r]
1 )− (H

[r]
3 ) we deduce that ũ

[r]
0 , ũ

[r]
1 ,

∂rF
∂tr ,

drg0
dtr and drg1

dtr

satisfy the conditions of Theorem 3.1. Hence, the problem (Q[r]) has a unique

weak solution u[r] such that

u[r] ∈ C1
(
0, T ;H2

)
, u

[r]
tt ∈ L∞

(
0, T ;H2

)
. (3.51)

Moreover, from the uniqueness of a weak solution we haveu[r] = ∂ru
∂tr . Hence

we deduce from (3.51) that the solution u of problem (3.39) satisfy

u ∈ Cr+1
(
0, T ;H2

)
, ∂r+2u
∂tr+2 ∈ L∞

(
0, T ;H2

)
. (3.52)

Next we shall prove by induction on r that

u ∈ Cr+1
(
0, T ;Hr+2

)
, ∂r+2u
∂tr+2 ∈ L∞(0, T ;Hr+2), r ≥ 1. (3.53)

In the case of r = 1, the proof of (3.53) is easy, we omit the details. We now
prove with r ≥ 2. Suppose by induction that (3.53) holds for r − 1. i.e.,

u ∈ Cr
(
0, T ;Hr+1

)
, ∂r+1u
∂tr+1 ∈ L∞(0, T ;Hr+1). (3.54)

We shall prove that (3.53) holds. To achieve this, we have to prove that
∂ru
∂tr ∈ L

∞(0, T ;Hr+2),

∂r+1u
∂tr+1 ∈ L∞(0, T ;Hr+2),

∂r+2u
∂tr+2 ∈ L∞(0, T ;Hr+2), r ≥ 1.

(3.55)

By (Q[r])1, (
u[r] − ε∆u[r]

)′′ −∆u[r] +Ku[r] + λu
[r]
t = ∂rF

∂tr . (3.56)

Put 
W = u[r] − ε∆u[r],

w̃0 = ũ
[r]
0 − ε∆ũ

[r]
0 ,

w̃1 = ũ
[r]
1 − ε∆ũ

[r]
1 = ũ

[r+1]
0 − ε∆ũ[r+1]

0 .

(3.57)

Then
W ′′ + 1

εW = 1
εu

[r] −Ku[r] − λu[r]
t + ∂rF

∂tr ≡ Ψ[r] ∈ L∞(0, T ;Hr),

W (0) = w̃0 ∈ Hr,

W ′(0) = w̃1 ∈ Hr.

(3.58)

Consequently

W (t) = cos
(√

1
ε t
)
w̃0 +

√
ε sin

(√
1
ε t
)
w̃1

+
√
ε
∫ t

0 sin
(√

1
ε (t− s)

)
Ψ[r](s)ds ∈ L∞(0, T ;Hr).

(3.59)
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By (3.54) and (3.59), it follows that

∆u[r] = 1
εu

[r] − 1
εW ∈ L

∞(0, T ;Hr). (3.60)

Thus
u[r] ∈ L∞(0, T ;Hr+2). (3.61)

On the other hand, by (3.58)1, we obtain

W ′′ = −1
εW + Ψ[r] ∈ L∞(0, T ;Hr). (3.62)

It follows from (3.52), (3.62) and r ≥ 2 that

∆u
[r]
tt = 1

εu
[r]
tt − 1

εW
′′ ∈ L∞(0, T ;H2). (3.63)

Thus

u
[r]
tt ∈ L∞(0, T ;H4). (3.64)

Similarly, we also have u
[r]
tt ∈ L∞(0, T ;H2s), with s ∈ N, 2s − 2 ≤ r < 2s.

Then

∆u
[r]
tt = 1

εu
[r]
tt − 1

εW
′′ ∈ L∞(0, T ;Hr). (3.65)

Thus

u
[r]
tt ∈ L∞(0, T ;Hr+2). (3.66)

On the other hand

u
[r]
t = ũ

[r]
1 +

∫ t
0 u

[r]
tt (s)ds ∈ L∞(0, T ;Hr+2). (3.67)

Combining (3.61), (3.66) and (3.67), by induction arguments on r, we conclude
that (3.53) holds. The following theorem follows.

Theorem 3.4. Let (H
[r]
3 ) − (H

[r]
5 ) hold. Then the unique solution u(x, t) of

problem (3.39) satisfies (3.53).

4. Asymptotic behavior of solutions as ε→ 0+

In this part, we assume that p > 2, q > 1, λ > 0, K > 0 and h0, h1, ũ0,
ũ1, F, g0, g1 satisfy the assumptions (H2)− (H5) . Let ε > 0. By Theorem 2.4,
problem(1.1)–(1.4) has a unique weak solution u = uε depending on ε.

We consider the following perturbed problem, where ε is a small parameter:

(Pε)


utt − uxx − εuxxtt + λ |ut|q−2 ut +K |u|p−2 u = F (x, t),

0 < x < 1, 0 < t < T,
(−1)i [εu′′x(i, t) + ux(i, t)] = hiu(i, t) + gi(t),

u(0) = ũ0, u
′(0) = ũ1.

(4.1)

We shall study asymptotic behavior of the solution of (Pε) as ε→ 0+.

Theorem 4.1. Let T > 0, p > 2, q > 1, λ > 0, K > 0. Let (H2)− (H5) hold.
Then
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(i) Problem (P0) corresponding to ε = 0 has a unique weak solution ū0

satisfying

ū0 ∈ L∞
(
0, T ;H1

)
, ū′0 ∈ L∞

(
0, T ;L2

)
. (4.2)

(ii) The solution uε converges to ū0, as ε→ 0+, in the following sense

uε → ū0 in L∞(0, T ;H1) weakly*,

u′ε → ū′0 in L∞(0, T ;L2) weakly*.

(iii) If ū′′0 ∈ L2(0, T ;H2), then solution uε converges strongly in W (QT ) to
ū0, as ε→ 0+, where

W (QT ) = {v ∈ L∞(0, T ;H1) : v′ ∈ L∞(0, T ;L2)}. (4.3)

Furthermore, we have the estimation

‖u′ε − ū′0‖L∞(0,T ;L2) + ‖uε − ū0‖L∞(0,T ;H1) ≤ CT
√
ε, (4.4)

where CT is a posistive constant depending only on T.

Proof. First, we note that if the small parameter ε > 0 satisfy 0 < ε < 1 then
a priori estimates of the sequence {um} in the proof of Theorem 2.4 for Prob.
(Pε) satisfy

‖u′m(t)‖2 + ‖um(t)‖2H1 + ε ‖u′mx(t)‖2

+ ‖um(t)‖pLp + λ
∫ t

0 ‖u
′
m(s)‖qLq ds ≤ CT ,

(4.5)

for all t ∈ [0, T ] and for all m, and CT is a constant depending only on T, p,
K, h0, h1, ũ0, ũ1, F, g0, g1 (independent of ε). Hence, the limit u = uε of
the sequence {um} as m→ +∞, in suitable function spaces is a unique weak
solution of Prob. (Pε) satisfying

‖u′ε(t)‖
2 + ‖uε(t)‖2H1 + ε ‖u′εx(t)‖2

+ ‖uε(t)‖pLp + λ
∫ t

0 ‖u
′
ε(s)‖

q
Lq ds ≤ CT ,

(4.6)

for all t ∈ [0, T ] and for all ε ∈ (0, 1).
Let {εm} be a sequence such that εm > 0, εm → 0 as m → +∞. We

put um = uεm , we deduce from (4.6), that, there exists a subsequence of the
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sequence {um} still denoted by {um}, such that

um → ū0 in L∞(0, T ;H1) weakly*,

u′m → ū′0 in L∞(0, T ;L2) weakly*,
√
εmu

′
m → ζ in L∞(0, T ;H1) weakly*,

um → ū0 in L∞(0, T ;Lp) weakly*,

u′m → ū′0 in Lq(QT ) weakly,

|um|p−2 um → χ0 in L∞(0, T ;Lp
′
) weakly*,

|u′m|
p−2 u′m → χ1 in Lq

′
(QT ) weakly.

(4.7)

By the compactness lemma of Lions ([7]: p. 57), we can deduce from (4.7)1,2

the existence of a subsequence still denoted by {um}, such that

um → ū0 strongly in L2(QT ) and a.e. in QT . (4.8)

It follows from (4.7)2,3, that ζ = 0. Hence, we obtain from (4.7)3 that
√
εmu

′
m → 0 in L∞(0, T ;H1) weakly*. (4.9)

Similarly

|um|p−2um → |ū0|p−2ū0 strongly in L2(QT ), (4.10)

and

χ1 = |ū′0|q−2ū′0. (4.11)

By passing to the limit, as in the proof of Theorem 2.3, we conclude that ū0

is a unique weak solution of Prob. (P0) corresponding to ε = 0 satisfying

ū0 ∈ L∞
(
0, T ;H1

)
, ū′0 ∈ L∞

(
0, T ;L2

)
. (4.12)

Hence, (i) and (ii) are proved.
Next, put u = uε− ū0, then u is the weak solution of the following problem

(Pε)


u′′ −∆u− ε∆u′′ + λ

(
|u′ε|

q−2 u′ε − |ū′0|
q−2 ū′0

)
+K

(
|uε|p−2 uε − |ū0|p−2 ū0

)
= ε∆ū′′0, 0 < x < 1, 0 < t < T,

(−1)i [εu′′x(i, t) + ux(i, t)] = hiu(i, t)− (−1)iεū′′0x(i, t),

u(0) = u′(0) = 0.
(4.13)

Using again Lemma 2.3, we prove in a manner similar to the above part and
the result is

σ(t) = 2ε
∫ t

0 〈∆ū
′′
0, u
′(s)〉 ds+ 2ε

∑1
i=0

∫ t
0 (−1)iū′′0x(i, s)u′(i, s)ds

−2K
∫ t

0

〈
|uε(s)|p−2 uε(s)− |ū0(s)|p−2 ū0(s), u′(s)

〉
ds,

(4.14)



24 N. T. Duy, L. T. P. Ngoc and N. A. Triet

where

σ(t) = ‖u′(t)‖2 + ε ‖u′x(t)‖2 + ‖ux(t)‖2 +
∑1

i=0 hiu
2(i, t)

+2λ
∫ t

0

〈
|u′ε(s)|

q−2 u′ε(s)− |ū′0(s)|q−2 ū′0(s), u′(s)
〉
ds.

(4.15)

Note that
∫ t

0

〈
|u′ε(s)|

q−2 u′ε(s)− |ū′0(s)|q−2 ū′0(s), u′(s)
〉
≥ 0,

σ(t) ≥ ‖u′(t)‖2 + ε ‖u′x(t)‖2 ≥ ε ‖u′(t)‖2H1 ,

σ(t) ≥ ‖u′(t)‖2 + α0 ‖u(t)‖2H1 ≥ 2
√
α0 ‖u(t)‖H1 ‖u′(t)‖ .

(4.16)

By (2.41), (4.6), (4.16), we estimate all terms in the righthand side of (4.14)
as follows

2ε
∫ t

0 〈∆ū
′′
0(s), u′(s)〉 ds ≤ 2ε

∫ t
0 ‖∆ū

′′
0(s)‖ ‖u′(s)‖ ds

≤ 2ε
∫ t

0 ‖ū
′′
0(s)‖H2 ‖u′(s)‖ ds

≤ ε2
∫ t

0 ‖ū
′′
0(s)‖2H2 ds+

∫ t
0 ‖u

′(s)‖2 ds
≤ ε2 ‖ū′′0‖

2
L2(0,T ;H2) +

∫ t
0 σ(s)ds,

(4.17)

2ε
∑1

i=0

∫ t
0 (−1)iū′′0x(i, s)u′(i, s)ds

≤ 8ε
∫ t

0 ‖ū
′′
0x(s)‖H1 ‖u′(s)‖H1 ds

≤ 8ε
∫ t

0 ‖ū
′′
0(s)‖H2 ‖u′(s)‖H1 ds

≤ 16ε
∫ t

0 ‖ū
′′
0(s)‖2H2 ds+ ε

∫ t
0 ‖u

′(s)‖2H1 ds

≤ ε ‖ū′′0‖
2
L2(0,T ;H2) +

∫ t
0 σ(s)ds,

(4.18)

−2K
∫ t

0

〈
|uε(s)|p−2 uε(s)− |ū0(s)|p−2 ū0(s), u′(s)

〉
ds

≤ 2K(p− 1)Cp−2
T

∫ t
0 ‖u(s)‖ ‖u′(s)‖ ds

≤ K(p− 1)Cp−2
T

1√
α0

∫ t
0 σ(s)ds.

(4.19)

Combining (4.14), (4.17), (4.18), (4.19), the result is

σ(t) ≤ 2ε ‖ū′′0‖
2
L2(0,T ;H2) +

[
2 + (p− 1)Cp−2

T
K√
α0

] ∫ t
0 σ(s)ds. (4.20)

By Gronwall’s Lemma, (4.20) leads to

σ(t) ≤ 2ε ‖ū′′0‖
2
L2(0,T ;H2) exp

(
T
[
2 + (p− 1)Cp−2

T
K√
α0

])
≡ C̄T ε, ∀t ∈ [0, T ].

(4.21)

Consequently

‖u′ε − ū′0‖L∞(0,T ;L2) + ‖uε − ū0‖L∞(0,T ;H1) ≤ CT
√
ε, (4.22)

where CT is a constant depending only on T. Thus, (iii) is proved. Theorem
4.1 is proved completely. �
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