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Abstract. In this paper, the notion of S-metric spaces will be introduced. We present

a coupled coincidence point theorems for multi-valued maps on complete S-metric spaces

using mixed g-monotone mappings. The single-valued case and an illustrative example are

given. Using a similar method as in [4] a common fixed point theorem for three single-valued

mappings is obtained in S-metric spaces.

1. Introduction

The Banach contraction principle is the most celebrated fixed point theo-
rem and has been generalized in various directions. Fixed point problems for
contractive mappings in metric spaces with a partially order have been studied
by many authors (see [1]-[8]). Bhaskar and Lakshmikantham [3] introduced
the concept of coupled fixed point and studied the problems of a uniqueness
of a coupled fixed point in partially ordered metric spaces. They applied their
theorems to problems of the existence of solution for a periodic boundary
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value problem. V. Lakshmikantham and Ćirić ([6]) established some coinci-
dence and common coupled fixed point theorems under nonlinear contractions
in partially ordered metric spaces.

In the present paper, we introduce the notion of S-metric spaces and give
some properties of them. A coupled coincidence point theorems for multi-
valued mappings on complete S-metric spaces will be proved. In addition, we
give an illustrative example for the single-valued case. Also, it will be proved
a common fixed point theorem for three single-valued mappings in complete
S-metric spaces.

We begin with the following definition.

Definition 1.1. Let X be a nonempty set. An S-metric on X is a function
S : X3 → [0,∞) that satisfies the following conditions, for each x, y, z, a ∈ X,

(1) S(x, y, z) ≥ 0,
(2) S(x, y, z) = 0 if and only if x = y = z,
(3) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

The pair (X,S) is called an S-metric space.

Immediate examples of such S-metric spaces are:

(1) Let X = Rn and || · || a norm on X, then S(x, y, z) = ||y + z − 2x||+
||y − z|| is an S-metric on X.

(2) Let X = Rn and || · || a norm on X, then S(x, y, z) = ||x−z||+ ||y−z||
is an S-metric on X.

(3) Let X be a nonempty set, d is ordinary metric on X, then S(x, y, z) =
d(x, z) + d(y, z) is an S-metric on X.

Lemma 1.2. In an S-metric space, we have S(x, x, y) = S(y, y, x).

Proof. By third condition of S-metric, we have

S(x, x, y) ≤ S(x, x, x) + S(x, x, x) + S(y, y, x) = S(y, y, x) (1.1)

and similarly

S(y, y, x) ≤ S(y, y, y) + S(y, y, y) + S(x, x, y) = S(x, x, y). (1.2)

Hence by (1.1) and (1.2), we get S(x, x, y) = S(y, y, x). �

Definition 1.3. Let (X,S) be an S-metric space. For r > 0 and x ∈ X we
define the open ball BS(x, r) and closed ball BS [x, r] with center x and radius
r as follows respectively:

BS(x, r) = {y ∈ X : S(y, y, x) < r},
BS [x, r] = {y ∈ X : S(y, y, x) ≤ r}.



Fixed point results in S-metric spaces 57

Example 1.4. Let X = R. Denote S(x, y, z) = |y + z − 2x| + |y − z| for all
x, y, z ∈ R. Thus

BS(1, 2) = {y ∈ R : S(y, y, 1) < 2} = {y ∈ R : |y − 1| < 1}
= {y ∈ R : 0 < y < 2} = (0, 2).

Definition 1.5. Let (X,S) be an S-metric space and A ⊂ X.

(1) If for every x ∈ A there exists r > 0 such that BS(x, r) ⊂ A, then the
subset A is called open subset of X.

(2) Subset A of X is said to be S-bounded if there exists r > 0 such that
S(x, x, y) < r for all x, y ∈ A.

(3) A sequence {xn} in X converges to x if and only if S(xn, xn, x) → 0
as n→∞. That is for each ε > 0 there exists n0 ∈ N such that

∀ n ≥ n0 =⇒ S(xn, xn, x) < ε

and we denote by limn→∞ xn = x.
(4) Sequence {xn} in X is called a Cauchy sequence if for each ε > 0 ,

there exists n0 ∈ N such that S(xn, xn, xm) < ε for each n,m ≥ n0.
(5) The S-metric space (X,S) is said to be complete if every Cauchy se-

quence is convergent.
(6) Let τ be the set of all A ⊂ X with x ∈ A if and only if there exists

r > 0 such that BS(x, r) ⊂ A. Then τ is a topology on X (induced by
the S-metric S).

Lemma 1.6. Let (X,S) be an S-metric space. If r > 0 and x ∈ X, then the
ball BS(x, r) is open subset of X.

Proof. Let y ∈ BS(x, r), hence S(y, y, x) < r. If set δ = S(x, x, y) and r′ = r−δ
2

then we prove that BS(y, r′) ⊆ BS(x, r). Let z ∈ BS(y, r′), then S(z, z, y) < r′.
By third condition of S-metric we have

S(z, z, x) ≤ S(z, z, y) + S(z, z, y) + S(x, x, y) < 2r′ + δ = r

Hence BS(y, r′) ⊆ BS(x, r). That is the ball BS(x, r) is a open subset of
X. �

Lemma 1.7. Let (X,S) be an S-metric space. If sequence {xn} in X con-
verges to x, then x is unique.

Proof. Let {xn} converges to x and y, then for each ε > 0 there exist n1, n2 ∈ N
such that

∀ n ≥ n1 =⇒ S(xn, xn, x) <
ε

4
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and
∀ n ≥ n2 =⇒ S(xn, xn, y) <

ε

2
.

If set n0 = max{n1, n2}, then for every n ≥ n0 by third condition S-metric
we have:

S(x, x, y) ≤ 2S(x, x, xn) + S(y, y, xn) <
ε

2
+
ε

2
= ε.

Hence S(x, x, y) = 0 so x = y. �

Lemma 1.8. Let (X,S) be an S-metric space. If sequence {xn} in X is
converges to x, then {xn} is a Cauchy sequence.

Proof. Since limn→∞ xn = x then for each ε > 0 there exists n1, n2 ∈ N such
that

n ≥ n1 ⇒ S(xn, xn, x) <
ε

4
and

m ≥ n2 ⇒ S(xm, xm, x) <
ε

2
.

If set n0 = max{n1, n2}, then for every n,m ≥ n0 by third condition of S-
metric we have:

S(xn, xn, xm) ≤ 2S(xn, xn, x) + S(xm, xm, x) <
ε

2
+
ε

2
= ε.

Hence {xn} is a Cauchy sequence. �

Lemma 1.9. Let (X,S) be an S-metric space. If there exist sequences {xn}
and {yn} such that limn→∞ xn = x and limn→∞ yn = y, then

lim
n→∞

S(xn, xn, yn) = S(x, x, y).

Proof. Since limn→∞ xn = x and limn→∞ yn = y, then for each ε > 0 there
exist n1, n2 ∈ N such that

∀ n ≥ n1 ⇒ S(xn, xn, x) <
ε

4
and

∀ n ≥ n2 ⇒ S(yn, yn, y) <
ε

4
.

If set n0 = max{n1, n2}, then for every n ≥ n0 by third condition of S-metric
we have:

S(xn, xn, yn) ≤ 2S(xn, xn, x) + S(yn, yn, x)

≤ 2S(xn, xn, x) + 2S(yn, yn, y) + S(x, x, y)

<
ε

2
+
ε

2
+ S(x, x, y) = ε+ S(x, x, y).

Hence we have:
S(xn, xn, yn)− S(x, x, y) < ε. (1.3)
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On the other hand, we have

S(x, x, y) ≤ 2S(x, x, xn) + S(y, y, xn)

≤ 2S(x, x, xn) + 2S(y, y, yn) + S(xn, xn, yn)

<
ε

2
+
ε

2
+ S(xn, xn, yn) = ε+ S(xn, xn, yn),

that is

S(x, x, y)− S(xn, xn, yn) < ε. (1.4)

Therefore by relations (1.3) and (1.4) we have |S(xn, xn, yn)− S(x, x, y)| < ε,
that is

lim
n→∞

S(xn, xn, yn) = S(x, x, y).

�

2. Main Results

Definition 2.1. ([3]) An element (x, y) ∈ X × X is called a coupled fixed
point of the mapping F : X ×X → X if

F (x, y) = x, F (y, x) = y.

Definition 2.2. ([6]) An element (x, y) ∈ X×X is called a coupled coincidence
point of a mappings F : X ×X → X and g : X → X if

F (x, y) = gx, F (y, x) = gy.

Definition 2.3. ([6]) Let X be a non-empty set and F : X × X → X and
g : X → X are mappings. We say F and g are commutative if

gF (x, y) = F (gx, gy)

for all x, y ∈ X.

Definition 2.4. ([8]) Suppose (X,≤) is a partially ordered set and A, h : X →
X are mappings of X into itself. We say A is h-non-decreasing if for x, y ∈ X,

h(x) ≤ h(y) implies A(x) ≤ A(y).

Definition 2.5. ([6]) Suppose (X,≤) is a partially ordered set and F :
X × X → X and g : X → X are mappings. We say F has the mixed g-
monotone property if F is monotone g-non-decreasing in its first argument and
is monotone g-non-increasing in its second argument, if for x1, x2, y1, y2 ∈ X,

gx1 ≤ gx2 implies F (x1, y) ≤ F (x2, y), ∀y ∈ X,
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and

gy1 ≤ gy2 implies F (x, y2) ≤ F (x, y1), ∀x ∈ X.

Example 2.6. Let X = R+. Define a map F on X ×X as follows:

F (x, y) =
x

y
.

If define

gx = x2,

then it is easy to see that F and g are commutative and F is g-non-decreasing
and non-increasing.Also, if define

A = {(x, y) ∈ R+ × R+ : xy = 1},

then for every (x0, y0) ∈ A is a coupled coincidence point of F and g.

In the proof of our first theorem we use the following lemma:

Lemma 2.7. Let (X,S) be an S-metric space. If there exist sequences {xn}
in X such that for every n ∈ N

S(xn, xn, xn+1) ≤ lS(xn−1, xn−1, xn)

for every 0 < l < 1, then sequence {xn} is a Cauchy sequence.

Proof. For every n ∈ N and xn, xn+1 ∈ X, we have

S(xn, xn, xn+1) ≤ lS(xn−1, xn−1, xn)

≤ l2S(xn−2, xn−2, xn−1)

...

≤ lnS(x0, x0, x1).

Hence for every m > n and 0 < l < 1 we have, by the triangle inequality,

S(xn, xn, xm) ≤ 2

m−2∑
i=n

S(xi, xi, xi+1) + S(xm−1, xm−1, xm)

≤ 2[ln + ln+1 + · · ·+ lm−1]S(x0, x0, x1)

≤ 2ln

1− l
S(x0, x0, x1) −→ 0.

Therefore, for each ε > 0 there exits n0 ∈ N such that, for each n,m ≥ n0
S(xn, xn, xm) < ε.

These show that {xn} is a Cauchy sequence in X. �
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In the next Theorem, if we write (x, y) �g (u, v) for every x, y, u, v ∈ X,
that is g(x) ≤ g(u) and g(y) ≥ g(v), where (X,≤) is a partially ordered set
and g : X → X be a mapping.

Definition 2.8. Define Ψ = {ψ : [0,∞) → [0,∞) : ψ is continuous and
ψ(t) ≤ kt for some k ∈ (0, 12), with ψ(t) = 0 if and only if t = 0}.

Theorem 2.9. Let (X,≤) be a partially ordered set and (X,S) be a complete
S-metric space. Let F : X × X → X and g : X → X be two functions
satisfying:

(i) F (X ×X) ⊆ g(X) and g is continuous and commutes with F ,
(ii) F has the mixed g-monotone property,

(iii) S(F (x, y), F (x, y), F (x′, y′)) ≤ ψ(S(gx, gx, gx′)+S(gy, gy, gy′)) for all
x, y, x′, y′ ∈ X and ψ ∈ Ψ for which (x, y) �g (x′, y′),

(iv) if (xn, yn) ∈ X × X are two sequences in X such that (xn, yn) �g
(xn+1, yn+1) and gxn → gx and gyn → gy, then (xn, yn) �g (x, y) for
all n ∈ N,

(v) if there exists (x0, y0) ∈ X × X with g(x0) ≤ F (x0, y0) and g(y0) ≥
F (y0, x0).

Then F and g have a coupled coincidence point. That is there exist u, v ∈ X
such that gu = F (u, v) and gv = F (v, u).

Proof. Since F (X × X) ⊆ g(X), by (v) we can choose x1, y1 ∈ X such that
gx1 = F (x0, y0) and gy1 = F (y0, x0). Again from F (X ×X) ⊆ g(X) we can
choose x2, y2 ∈ X such that gx2 = F (x1, y1) and gy2 = F (y1, x1). Continuing
this process we can construct two sequences {xn} and {yn} in X such that

gxn+1 = F (xn, yn) and gyn+1 = F (yn, xn) for all n ≥ 0. (2.1)

Since g(x0) ≤ F (x0, y0) and g(x1) = F (x0, y0), we have g(x0) ≤ g(x1). Then
from (ii) we have,

F (x0, y0) ≤ F (x1, y0).

Similarly, since g(y0) ≥ F (y0, x0) and g(y1) = F (y0, x0), we have g(y1) ≤
g(y0). Then from (ii) we have,

F (x, y0) ≤ F (x, y1) ∀x ∈ X.
In particular, we get F (x1, y0) ≤ F (x1, y1). Thus g(x1) ≤ g(x2). Again from
(ii) we have,F (x1, y1) ≤ F (x2, y2), that is, g(x2) ≤ g(x3). Continuing we
obtain

F (x0, y0) ≤ F (x1, y1) ≤ F (x2, y2) ≤ F (x3, y3) ≤ · · ·
≤ F (xn, yn) ≤ F (xn+1, yn+1) ≤ · · · .

That is
g(x0) ≤ g(x1) ≤ g(x2) ≤ · · · ≤ g(xn+1) ≤ g(xn+2) · · · .
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Similarly, since g(y0) ≥ F (y0, x0) and g(y1) = F (y0, x0), we have g(y1) ≤
g(y0). Then from (ii) we have,

F (y1, x1) ≤ F (y0, x1).

Since g(x0) ≤ g(x1) from (ii) we have, F (y0, x1) ≤ F (y0, x0). Thus g(y2) ≤
g(y1). Again from (ii) we have,F (y2, x2) ≤ F (y1, x1), that is, g(y3) ≤ g(y2).
Continuing we obtain

· · · ≤ F (yn+1, xn+1) ≤ F (yn, xn)

≤ · · · ≤ F (y3, x3) ≤ F (y2, x2) ≤ F (y1, x1) ≤ F (y0, x0).

That is

· · · ≤ g(yn+2) ≤ g(yn+1) ≤ · · · g(y2) ≤ g(y1) ≤ g(y0).

Since g(xn) ≤ g(xn+1) and g(yn) ≥ g(yn+1), that is (xn, yn) �g (xn+1, yn+1).
From (iii) we have

S(gxn+1, gxn+1, gxn+2) = S(F (xn, yn), F (xn, yn), F (xn+1, yn+1))

≤ ψ(S(gxn, gxn, gxn+1) + S(gyn, gyn, gyn+1))

= ψ(δn).

Similarly, since g(yn+1) ≤ g(yn) and g(xn+1) ≥ g(xn), that is (yn+1, xn+1) �g
(yn, xn). From (iii) we have,

S(gyn+1, gyn+1, gyn+2) ≤ ψ(S(gyn, gyn, gyn+1) + S(gxn, gxn, gxn+1))

= ψ(δn),

where

δn = S(gxn, gxn, gxn+1) + S(gyn, gyn, gyn+1).

Adding the above inequalities we obtain

δn+1 ≤ 2ψ(δn) ≤ 2kδn.

Thus, we have

δn ≤ l δn−1 ≤ · · · ≤ ln δ0,

where l = 2k. That is, we have

S(gxn, gxn, gxn+1)+S(gyn, gyn, gyn+1) ≤ ln [S(gx0, gx0, gx1)+S(gy0, gy0, gy1)].
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Hence for every m > n and 0 < l < 1 we have, by the triangle inequality,

S(gxn, gxn, gxm) + S(gyn, gyn, gym)

≤ 2[S(gxn, gxn, gxn+1) + S(gyn, gyn, gyn+1)]

+ 2[S(gxn+1, gxn+1, gxn+2) + S(gyn+1, gyn+1, gyn+2)]

...

+ 2[S(gxm−1, gxm−1, gxm) + S(gym−1, gym−1, gym)]

≤ 2[ln + ln+1 + · · ·+ lm−1][S(gx0, gx0, gx1) + S(gy0, gy0, gy1)]

≤ 2ln

1− l

[
S(gx0, gx0, gx1) + S(gy0, gy0, gy1)

]
→ 0.

Therefore, for each ε > 0 there exits n0 ∈ N such that, for each n,m ≥ n0
S(gxn, gxn, gxm) + S(gyn, gyn, gym) < ε.

Hence

S(gxn, gxn, gxm) < ε and S(gyn, gyn, gym) < ε.

These shows that {gxn} and {gyn} are Cauchy sequences in X. Since X is
complete, there exist x, y ∈ X such that

lim
n→∞

gxn = x and lim
n→∞

gyn = y. (2.2)

From (2.2) and continuity of g, we have

lim
n→∞

ggxn = gx and lim
n→∞

ggyn = gy. (2.3)

From (2.1) and commutativity of F and g, we have

ggxn+1 = gF (xn, yn) = F (gxn, gyn) (2.4)

and

ggyn+1 = gF (yn, xn) = F (gyn, gxn). (2.5)

On the other hand, since gxn → x, and gyn → y as n → ∞, then by (2.3),
(2.4) we get

S(ggxn+1, ggxn+1, F (x, y)) = S(gF (xn, yn), gF (xn, yn), F (x, y))

= S(F (gxn, gyn), F (gxn, gyn), F (x, y))

≤ ψ(S(ggxn, ggxn, gx) + S(ggyn, ggyn, gy)).

So letting n → ∞ by Lemma1.9 yields S(gx, gx, F (x, y)) ≤ 0. Hence gx =
F (x, y). Similarly one can show that g(y) = F (y, x). �
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Corollary 2.10. Let (X,≤) be a partially ordered set and (X,S) be a complete
S-metric space. Let there exists function F : X ×X → X satisfying:

(i) F has the mixed I-monotone property, where I is identity map,
(ii)

S(F (x, y), F (x, y), F (u, v)) ≤ ψ(S(x, x, u) + S(y, y, v))

for all x, y, u, v ∈ X and ψ ∈ Ψ, where (x, y) �I (u, v),
(iii) if {xn}and{yn} in X are two sequences such that (xn, yn)�I (xn+1, yn+1)

with xn −→ x and yn −→ y implies that (xn, yn) �I (x, y), for all
n ∈ N,

(iv) if there exists (x0, y0) ∈ X×X with x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0).

Then there exist two points x, y ∈ X such that x = F (x, y) and y = F (y, x).

Proof. If set g = I identity map in Theorem 2.9, then the proof is complete.
�

Example 2.11. Let (X,≤) be a partially ordered set and (X,S) be a complete
S-metric space, where X = [−3, 3]. For any x, y, z ∈ X, define S(x, y, z) =
|x− z|+ |y − z| and a mapping F : X ×X → X by

F (x, y) = 2 sin
( π

12
(x− y)

)
+ 2.

It is easy to see that F is a I-non-decreasing and non-increasing mapping and,
for some k ∈ (π8 ,

1
2),

S(F (x, y), F (x, y), F (u, v)) ≤ k[S(x, x, u) + S(y, y, v)]

for all x, y, u, v ∈ X, where (x, y) �I (u, v).
If {xn} and {yn} in X are two sequences such that (xn, yn) �I (xn+1, yn+1)

and xn → x and yn → y, then (xn, yn) �I (x, y) for all n ∈ N. If x0 = 2, y0 =
2 ∈ X, then 2 ≤ F (2, 2) and 2 ≥ F (2, 2). Therefore, all the conditions of
Corollary 2.10 hold and so there exists x = 3, y = 1 ∈ X such that 3 = F (3, 1)
and 1 = F (1, 3).

Theorem 2.12. Let (X,S) be a bounded, complete S-metric space, P and Q
be one to one continuous mapping from X into X, A : X → PX

⋂
QX be

continuous and P and Q be commutative with A. If for every x ∈ X there
exists n(x) ∈ N so that for every y ∈ X:

S(An(x)x,An(x)x,An(x)y) ≤ qmin{S(Qx,Qx, Py), S(Px, Px,Qy)}

where q ∈ (0, 1), then there exists unique element z ∈ X such that z = Az =
Pz = Qz.
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Proof. The proof is similar to the proof of Theorem 1 from Hažić [4]. Let
x0 ∈ X. Since AX ⊆ PX

⋂
QX we can define the sequence {xn}n∈N from X

in the following way:

Qx2k−1 = An(x2k−2)x2k−2, k ∈ N,

Px2k = An(x2k−1)x2k−1, k ∈ N.

Let

yn =

{
Qx2k−1, n = 2k − 1,
Px2k, n = 2k.

Let n = 2k. Then

S(yn, yn, yn+1) = S(y2k, y2k, y2k+1) = S(Px2k, Px2k, Qx2k+1)

= S(An(x2k−1)x2k−1, A
n(x2k−1)x2k−1, A

n(x2k)x2k)

= S(An(x2k−1)x2k−1, A
n(x2k−1)x2k−1, A

n(x2k)P−1Px2k)

= S(An(x2k−1)x2k−1, A
n(x2k−1)x2k−1, A

n(x2k)P−1An(x2k−1)x2k−1)

= S(An(x2k−1)x2k−1, A
n(x2k−1)x2k−1, A

n(x2k−1)S−1An(x2k)x2k−1)

≤ q S(Qx2k−1, Qx2k−1, A
n(x2k)x2k−1)

= q S(An(x2k−2)x2k−2, A
n(x2k−2)x2k−2, A

n(x2k)Q−1Qx2k−1)

...

≤ q2kS(Px0, Px0, A
n(x2k)x0).

Similarly, for n = 2k + 1

S(y2k+1, y2k+1, y2k+2) ≤ q2k+1S(Px0, Px0, A
n(x2k+1)x0).

We shall prove that {yn}n∈N is a Cauchy sequence.

S(yn, yn, yn+m) ≤ 2S(yn, yn, yn+1) + S(yn+1, yn+1, yn+m)

≤ 2(S(yn, yn, yn+1) + S(yn+1, yn+1, yn+2)

+ · · ·+ S(yn+m−1, yn+m−1, yn+m))

for every n,m ∈ N and q ∈ (0, 1), it follows that {yn}n∈N is a Cauchy sequence.
So there exists z ∈ X such that lim

n→∞
yn = z, i.e., lim

n→∞
S(yn, yn, z) = 0.

Since {Px2k}k∈N and {Qx2k−1}k∈N are subsequence of the sequence {yn}n∈N
it follows that

lim
k→∞

S(Px2k, Px2k, z) = 0 and lim
k→∞

S(Qx2k−1, Qx2k−1, z) = 0.
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Since

S(Px2k, Px2k, Ax2k)

= S(Px2k, Px2k, AP
−1Px2k)

= S(Px2k, Px2k, AP
−1An(x2k−1)x2k−1)

= S(An(x2k−1)x2k−1, A
n(x2k−1)x2k−1, A

n(x2k−1)P−1Ax2k−1)

≤ qS(Qx2k−1, Qx2k−1, Ax2k−1)

...

≤ q2kS(Px0, Px0, Ax0).

Taking the limit as k →∞ we obtain lim
n→∞

Ax2k = z, i.e.,

lim
n→∞

S(z, z, Ax2k) = 0.

Then we have the following

S(Az,Az, Pz) ≤ 2S(Az,Az,APx2k) + S(Pz, Pz,APx2k)

= 2S(Az,Az,APx2k) + S(Pz, Pz, PAx2k).

Taking the limit as k →∞ we obtain S(Az,Az, Pz) = 0 which implies Az =
Pz. Similarly we can prove that Az = Qz. Let us prove that lim

k→∞
A2x2k = z.

S(Px2k, Px2k, A
2x2k)

= S(A(x2k−1)x2k−1, A
n(x2k−1)x2k−1, A

2P−1Px2k)

= S(An(x2k−1)x2k−1, A
n(x2k−1)x2k−1, A

2P−1An(x2k−1)x2k−1)

≤ qS(Qx2k−1, Qx2k−1, A
2x2k−1)

...

≤ q2kS(Px0, Px0, A
2x0)

and letting k →∞ we have lim
k→∞

A2x2k = z. Using continuity of A we have

Az = A( lim
n→∞

Ax2k) = lim
n→∞

A2x2k = z.

Now, it remains to be prove the uniqueness of the common fixed point. Sup-
pose that there exists another common fixed point p, p 6= z. As z = Az =
A2z = · · · = An(z)z, we have

S(z, z, p) = S(An(z)z,An(z)z,An(z)p)

≤ qmin{S(Qz,Qz, Pp), S(Pz, Pz,Qp)}
= qmin{S(z, z, p), S(z, z, p)}
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and final result z = p. �

Acknowledgments: The third author is supported by MNTRRS 174009.

References
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