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Abstract. In this paper, the notion of S-metric spaces will be introduced. We present
a coupled coincidence point theorems for multi-valued maps on complete S-metric spaces
using mixed g-monotone mappings. The single-valued case and an illustrative example are
given. Using a similar method as in [4] a common fixed point theorem for three single-valued
mappings is obtained in S-metric spaces.

1. INTRODUCTION

The Banach contraction principle is the most celebrated fixed point theo-
rem and has been generalized in various directions. Fixed point problems for
contractive mappings in metric spaces with a partially order have been studied
by many authors (see [1]-[8]). Bhaskar and Lakshmikantham [3] introduced
the concept of coupled fixed point and studied the problems of a uniqueness
of a coupled fixed point in partially ordered metric spaces. They applied their
theorems to problems of the existence of solution for a periodic boundary
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value problem. V. Lakshmikantham and Ciri¢ ([6]) established some coinci-
dence and common coupled fixed point theorems under nonlinear contractions
in partially ordered metric spaces.

In the present paper, we introduce the notion of S-metric spaces and give
some properties of them. A coupled coincidence point theorems for multi-
valued mappings on complete S-metric spaces will be proved. In addition, we
give an illustrative example for the single-valued case. Also, it will be proved
a common fixed point theorem for three single-valued mappings in complete
S-metric spaces.

We begin with the following definition.

Definition 1.1. Let X be a nonempty set. An S-metric on X is a function
S X3 —[0,00) that satisfies the following conditions, for each x,y, z,a € X,

(1) S(z,y,2) >
(2) E@“ Yy 2 )—Olfandonly1fa:_y_z

(3) S(z,y,2) < S(x,2,a) + S(y,y,a) + 5(z, 2, ).
The pair (X, S) is called an S-metric space.

Immediate examples of such S-metric spaces are:

(1) Let X =R™ and || - || a norm on X, then S(x,y,2) = ||y + z — 2z|| +
lly — z|| is an S-metric on X.

(2) Let X =R"™and ||-|| a norm on X, then S(z,y,2) = ||z —z||+ ||y — 2|
is an S-metric on X.

(3) Let X be a nonempty set, d is ordinary metric on X, then S(x,y, z) =
d(z,z) +d(y, z) is an S-metric on X.

Lemma 1.2. In an S-metric space, we have S(x,z,y) = S(y,y, x).
Proof. By third condition of S-metric, we have

S(z,xz,y) < S(z,x,z)+ S(x,z,z) + S(y,y,x) = S(y,y, ) (1.1)
and similarly

SW,y,x) < S, y,9) + 5, 9,9) + S, z,y) = Sz, 2,y). (1.2)
Hence by (1.1) and (1.2), we get S(z,z,y) = S(y,y, ). O

Definition 1.3. Let (X, S) be an S-metric space. For r > 0 and z € X we
define the open ball Bg(z,r) and closed ball Bg[z, ] with center x and radius
r as follows respectively:

Bs(z,r) ={y € X : S(y,y,x) <r},
Bglz,r]={y € X : S(y,y,x) <r}.
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Example 1.4. Let X = R. Denote S(z,y,2) = |y + z — 2z| + |y — 2| for all
z,y,z € R. Thus

Bs(1,2) ={yeR: S(y,y,1) <2} ={yeR:|ly—1| <1}
={yeR:0<y<2}=(0,2).

Definition 1.5. Let (X, S) be an S-metric space and A C X.

(1) If for every x € A there exists r > 0 such that Bg(z,r) C A, then the
subset A is called open subset of X.

(2) Subset A of X is said to be S-bounded if there exists r > 0 such that
S(z,xz,y) <r for all z,y € A.

(3) A sequence {z,} in X converges to z if and only if S(zp,xn,z) — 0
as n — oo. That is for each € > 0 there exists ng € N such that

Vn>nyg= S(xn,xn,z)<e

and we denote by lim,, . T, = x.

(4) Sequence {z,} in X is called a Cauchy sequence if for each ¢ > 0 ,
there exists ng € N such that S(x,, Ty, Ty) < € for each n,m > ny.

(5) The S-metric space (X, S) is said to be complete if every Cauchy se-
quence is convergent.

(6) Let 7 be the set of all A C X with z € A if and only if there exists
r > 0 such that Bg(z,r) C A. Then 7 is a topology on X (induced by
the S-metric 5).

Lemma 1.6. Let (X,S) be an S-metric space. If r > 0 and x € X, then the
ball Bg(x,r) is open subset of X.

Proof. Lety € Bg(xz,r), hence S(y,y,z) < r. If set § = S(x,z,y) and r’ = 5°
then we prove that Bg(y, ') C Bg(x,r). Let z € Bg(y,r’), then S(z, z,y) <1’
By third condition of S-metric we have

)

S(z,z,2) < S(z,2,9) + 5(z,2,9) + S(x,2,y) <2r' + 6 =7

Hence Bg(y,r’) € Bg(z,r). That is the ball Bg(x,r) is a open subset of
X. U

Lemma 1.7. Let (X,S) be an S-metric space. If sequence {xyn} in X con-
verges to x, then x is unique.

Proof. Let {x,} converges to x and y, then for each € > 0 there exist ny,ny € N
such that

Vn>n = S(ap,xn, ) <

=l o
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and

Vn>ne = S(zn,xn,y) < %

If set ng = max{ni,na}, then for every n > ng by third condition S-metric
we have:

S(x,x,y) <28(x,z,20) + Sy, 2n) < %‘i‘%:&

Hence S(z,z,y) =0so z =y. O

Lemma 1.8. Let (X,S) be an S-metric space. If sequence {x,} in X is
converges to x, then {x,} is a Cauchy sequence.

Proof. Since lim,, ,o, ;, = = then for each ¢ > 0 there exists ni,no € N such
that
n>ny = S(Tp, Ty, ) <
and
m > ng = S(Tm, Tm, ) <

If set ng = max{ni,n2}, then for every n,m > ng by third condition of S-
metric we have:

S(Zny Ty ) < 282y T, ) + STy Ty ) < % n g — e

Hence {z,} is a Cauchy sequence. O

Lemma 1.9. Let (X,S) be an S-metric space. If there exist sequences {xy}
and {yn} such that lim, oo Ty, = = and limy, o0 Yy, = y, then

lim S(CCn,ﬂEmyn) = S(x7x,y)'

n—oo

Proof. Since lim,, . , = z and lim,_, ¥y, = y, then for each € > 0 there
exist n1,n9 € N such that

Vn>ny = Sz, oy, ) <

1o

and

e
annQ js(ynaynvy) < Z

If set ng = max{ni,na}, then for every n > ng by third condition of S-metric
we have:

S(I‘n, -Tnayn) < 2S(l'na xnaf) + S(yna Yn, x)
< 28(@n, Tny ) + 28 (Yny Yn, y) + S, 2, )
< %—i—%%—S(a:,x,y):E—i-S(x,x,y).

Hence we have:
S(Tny Tn, yn) — S(z,z,y) < €. (1.3)
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On the other hand, we have

S(maxvy) S QS(aj,x,xn) +S(y7y7 :I;n)
< QS(ZE,{L‘,ZEn) +2S(y,y,yn) +S(xna$myn)
< %+%+S(:cn,xn,yn)=8+S(mn,xn,yn),
that is
S(z,x,y) — S(Tn, Tn,Yn) < €. (1.4)

Therefore by relations (1.3) and (1.4) we have |S(zp, Zn, yn) — S(z,z,y)| < ¢,
that is

lim S($naxnayn) = S(x,a:,y).

n—oo

2. MAIN RESULTS

Definition 2.1. ([3]) An element (z,y) € X x X is called a coupled fixed
point of the mapping F': X x X — X if

F(J},y) =T, F(y,;(}) =Y.

Definition 2.2. ([6]) An element (x,y) € X x X is called a coupled coincidence
point of a mappings F': X x X —- X and ¢g: X — X if

F(z,y) = gz, F(y,z) = gy.

Definition 2.3. ([6]) Let X be a non-empty set and F' : X x X — X and
g : X — X are mappings. We say F and g are commutative if

gF (z,y) = F(gx, gy)
for all x,y € X.

Definition 2.4. ([8]) Suppose (X, <) is a partially ordered set and A, h : X —
X are mappings of X into itself. We say A is h-non-decreasing if for z,y € X,

h(z) < h(y) implies A(z) < A(y).

Definition 2.5. ([6]) Suppose (X, <) is a partially ordered set and F' :
X xX — X and g : X — X are mappings. We say F' has the mixed g-
monotone property if F'is monotone g-non-decreasing in its first argument and
is monotone g-non-increasing in its second argument, if for x1,z9,y1,y2 € X,

g1 < gxy implies F(z1,y) < F(x2,y), Vy € X,
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and
gy1 < gy2 implies F(z,y2) < F(z,y1), Vo € X.

Example 2.6. Let X = R". Define a map F on X x X as follows:

x
F(z,y) = —.
() =7

If define

2
gr = a°,

then it is easy to see that F' and g are commutative and F' is g-non-decreasing
and non-increasing.Also, if define

A={(z,y) eRT xR : zy =1},
then for every (zg,y0) € A is a coupled coincidence point of F' and g.
In the proof of our first theorem we use the following lemma:

Lemma 2.7. Let (X,S) be an S-metric space. If there exist sequences {xy}
i X such that for everyn € N

S(:L'nv Tn, :L‘n+1) < ls(xnfla Tn—1, :L‘n)
for every 0 <1 < 1, then sequence {xy} is a Cauchy sequence.
Proof. For every n € N and x,, zp+1 € X, we have

S(Tpy Tny Tnt1) < 1S(Tp—1,Tn—1,2n)

< l2S(l‘n—27 Tn—2, xn—l)

IN

lns(iﬂo, zo, $1)-

Hence for every m > n and 0 < ! < 1 we have, by the triangle inequality,

m—2
S($n,xn, xm) S 2 Z S(wla xi7xi+1) + S(.’L‘mfl,l’mfl,xm)
1=n
< 1M 4 1S (20, w0, 1)
20"
S S(xo,xo,xl) — 0.

1-1
Therefore, for each € > 0 there exits ng € N such that, for each n,m > ng
S(Tn, Tn, Tm) < €.

These show that {x,} is a Cauchy sequence in X. O
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In the next Theorem, if we write (z,y) =<4 (u,v) for every z,y,u,v € X,
that is g(x) < g(u) and g(y) > g(v), where (X, <) is a partially ordered set
and g : X — X be a mapping.

Definition 2.8. Define ¥ = {¢ : [0,00) — [0,00) : % is continuous and
Y(t) < kt for some k € (0, 3), with ¢ () = 0 if and only if ¢ = 0}.

Theorem 2.9. Let (X, <) be a partially ordered set and (X, S) be a complete
S-metric space. Let FF: X x X — X and g : X — X be two functions
satisfying:
(i) F(X x X) Cg(X) and g is continuous and commutes with F,
(ii) F has the mized g-monotone property,
(i) S(F(z,y), F(z,y), F(2',y") < ¥(S(9z, g, 92') +S(9y, 9y, 9y')) for all
z,y, 2",y € X and ¢ € ¥ for which (z,y) =4 (2',v'),
(iv) if (xn,yn) € X x X are two sequences in X such that (Tn,yn) =4
($n+17yn+1) and 9Ty — gx and 9Yn — 9y, then (xnvyn) jg (‘7373/) fOT
alln € N,
(v) if there exists (zo,y0) € X x X with g(xo) < F(zo,y0) and g(yo) >
F(yo,20).
Then F and g have a coupled coincidence point. That is there exist u,v € X
such that gu = F(u,v) and gv = F(v,u).
Proof. Since F(X x X) C g(X), by (v) we can choose z1,y1 € X such that
gr1 = F(z0,y0) and gy1 = F(yo, o). Again from F(X x X) C g(X) we can
choose x2,y2 € X such that gre = F(x1,y1) and gy2 = F(y1,x1). Continuing
this process we can construct two sequences {z,} and {y,} in X such that
9Tn+1 = F(zpn,yn) and gynit1 = F(yn,x,) for all n > 0. (2.1)

Since g(wo) < F(zo,y0) and g(x1) = F(zo,y0), we have g(zo) < g(z1). Then
from (ii) we have,

F(z0,y0) < F(21,90).-
Similarly, since g(yo) = F(yo,%0) and g(y1) = F(yo,z0), we have g(y1) <
9(y0). Then from (ii) we have,

F(z,y0) < F(z,y1) Yo € X.

In particular, we get F(z1,y0) < F(x1,y1). Thus g(z1) < g(x2). Again from
(ii) we have,F(xz1,y1) < F(z2,y2), that is, g(z2) < g(x3). Continuing we
obtain

F(zo,v0) (x1,91) < F(x2,12) < F(23,93) < -+~

<F <
< F(xp,yn) < F(Tpt1,Ynt1) < - .
That is

g(x()) S g(l’l) S g<$2) S S g(xn+1) S g(xn+2) .
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Similarly, since g(yo) > F'(yo, o) and g(y1) = F(yo, o), we have g(y1) <
9(y0). Then from (ii) we have,

F(ylvxl) < F(?/O,$1)»

Since g(zo) < g(x1) from (i) we have, F(yo,z1) < F(yo,z0). Thus glyn) <
9(y1). Again from (ii) we have,F'(yq,z2) < F(y1,x1), that is, g(y3) < g(y2).
Continuing we obtain

o < F(Ynt1, Tnt1) < F(yn, Tn)
<o < Fys,xs) < F(y2,z2) < F(y1, z1) < F(yo, o).

That is
o L 9Wna2) L 9(Yna1) <o g(y2) < g(y1) < 9(vo)-

Since g(zn) < g(@n+1) and g(yn) = g(yn+1), that is (zn, yn) Zg (Tn+1, Ynt1)-
From (iii) we have
S(F(:Env yn)7 F(:L'm yn)a F($n+1a yn+1))

S w(s(gxnagxnagxn—i-l) +S(9yn7gyn7gyn+1))
Y(0n).

Similarly, since g(yn+1) < g(yn) and g(n41) > g(xn), that is (Yny1, Tnt1) =2y
(Yn, Tn). From (iii) we have,

5(9$n+17 9Tn+1, 9$n+2)

S(9Yn+15 9Yn+1, 9Yn+2) < V(S(9Yn: 9Yn, 9Yn+1) + S(gTn, 9Tn, gTni1))
= w(dn)y

where
On = S(92n, 9Tn, 9Tn+1) + S(9Yns 9Yn: GYn+1)-
Adding the above inequalities we obtain
Ont1 < 2¢(0y,) < 2k,

Thus, we have

5n§l5n—1§§ln 507

where [ = 2k. That is, we have

S(9%n, 9T, 9Tn41)+S(9Yn, 9Yn, gYn+1) < 1" [S(920, 920, 921)+S(9Y0, 9Y0, 9Y1)]-
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Hence for every m > n and 0 < ! < 1 we have, by the triangle inequality,

S(97n, gTn, 92m) + S(9Yn> 9Yn, 9Ym)
< 2[S(92n, 9Tn, 9Tn+1) + S(9Yn,s 9Yn, 9Yn+1)]
+ 2[S(9%n11, 9Tn+1, 9Tns2) + S(GYnt1, GYn+1, 9Yn+2)]

+ 2[S(92Zm—1, 9Tm—1, 9Zm) + S(9Ym—1, 9Ym—1, 9Ym)]
<" 1M MY [S (g, g, g1) + S(9Y0, 9Y0, 9y )]
2"
<
=1-1
— 0.

S(gxo, gzo, g21) + S(9v0, 9Y0, 9Y1)

Therefore, for each € > 0 there exits ng € N such that, for each n,m > ng

S(92n, 9T, 9Tm) + S(9Yn; 9Yn, gym) < €.
Hence
S(9xn, gTn, gTm) < € and S(gYn, GYn, Gym) < €.
These shows that {gz,} and {gy,} are Cauchy sequences in X. Since X is
complete, there exist x,y € X such that

lim gz, =z and lim gy, = v. (2.2)
n—oo

n—oo

From (2.2) and continuity of g, we have

lim ggz, = gr and lim ggy, = gy. (2.3)
n—oo

n—0o0

From (2.1) and commutativity of F' and g, we have

992n+1 = 9F (@n, yn) = F(9%n, gyn) (2.4)
and
99Yn+1 = 9F (Yn, 2n) = F(gyn, gn). (2.5)
On the other hand, since gz, — z, and gy, — y as n — oo, then by (2.3),
(2.4) we get
S(99n+1,99%n+1, F(2,y)) = S(gF (20, yn), gF (20, yn), F(2,y))
= S(F(gzn, gyn), F(9n, gyn), F (2, 1))
< Y(S(99%n, 997n, gz) + S(99Yn, 99Yn> 9Y))-

So letting n — oo by Lemmal.9 yields S(gz, gz, F(x,y)) < 0. Hence gx =
F(z,y). Similarly one can show that ¢g(y) = F(y, ). O
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Corollary 2.10. Let (X, <) be a partially ordered set and (X, S) be a complete
S-metric space. Let there exists function F : X x X — X satisfying:

(i) F has the mized I-monotone property, where I is identity map,
(ii)
S(F(z,y), F(z,y), F(u,v)) < ¢(S(z,z,u) + S(y,y,v))

for all x,y,u,v € X and ¢ € ¥, where (x,y) <1 (u,v),
(iii) if {xn} and{yn} in X are two sequences such that (Tpn,Yn) =1 (Tn+1, Yn+1)
with x, — x and y, — y implies that (zn,yn) =1 (z,y), for all
n €N,
(iv) if there exists (zo,yo) € X x X with zo < F(x0,y0) and yo > F(yo, zo)-

Then there exist two points x,y € X such that v = F(z,y) and y = F(y,x).

Proof. 1f set g = I identity map in Theorem 2.9, then the proof is complete.
O

Example 2.11. Let (X, <) be a partially ordered set and (X, .S) be a complete
S-metric space, where X = [—3,3]. For any z,y,z € X, define S(z,y,2) =
|z — z| + |y — z| and a mapping F': X x X — X by

F(z,y) = 2sin (112(;10 - y)) +2.

It is easy to see that F' is a I-non-decreasing and non-increasing mapping and,
for some k € (%, 3),
S(F(z,y), F(x,y), F(u,v)) < k[S(z,2z,u) + S5y, y,v)]

for all z,y,u,v € X, where (z,y) <1 (u,v).

If {x,,} and {y,} in X are two sequences such that (z,,yn) =1 (Tnt1,Yn+1)
and x, — = and y, — y, then (z,,y,) <1 (z,y) for all n € N. If g = 2,yp =
2 € X, then 2 < F(2,2) and 2 > F(2,2). Therefore, all the conditions of
Corollary 2.10 hold and so there exists x = 3,y = 1 € X such that 3 = F'(3,1)
and 1 = F(1,3).

Theorem 2.12. Let (X, S) be a bounded, complete S-metric space, P and Q
be one to one continuous mapping from X into X, A: X — PXQX be
continuous and P and QQ be commutative with A. If for every x € X there
exists n(x) € N so that for every y € X:

S(A" @z, An@ g AM®y) < qmin{S(Qz, Qz, Py), S(Pz, Px,Qy)}

where q € (0,1), then there exists unique element z € X such that z = Az =
Pz=Qz.
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Proof. The proof is similar to the proof of Theorem 1 from Hazi¢ [4]. Let
zo € X. Since AX C PX [ QX we can define the sequence {zy, }nen from X
in the following way:

Quop_y = A™@2=2)g0, o k€N,

Pxop = An(‘r%*l)wgk,h ke N.

Let

_ Qx2k—17 n =2k — 17
Y= Pxgp, n=2k

Let n = 2k. Then

SWny Yns Yn+1) = S(Y2k: Yok, Yor+1) = S(Prok, Prog, QTok+1)

S(AMER=) oy, AT gy g AN ) )

S(AME) gy AP gy AR Pl Py

= S(A" T gy g, ANy g AME) P AN @) g )
S

(AM@2k=1) g A1) g AE2k-1) G =T An(T2R) g

—~~

< q8(Qrop_1, Quop_1, AMF2) oy 1)

(
(An@2=2)gop o AME2=2 g0y o AN QTIQry )

q

< q2kS(P9:0, Pxy, A"(z%)xg).
Similarly, for n =2k 4+ 1
S(Yott1s Yokt 1s Yorro) < q*¥TES(Pg, Pag, A"2+1) ).
We shall prove that {y, }nen is a Cauchy sequence.

S(yna Yn, yn+m) < QS(yna Yn, ynJrl) + S(yn+1a Yn+1, yn+m)
< 2(S(Yns Yns YUnt1) + S(Wnt1: Unt1, Ynt2)
+ -+ S(yn+mfla Yn+m—1, yner))
for every n,m € N and ¢q € (0, 1), it follows that {y, }nen is a Cauchy sequence.
So there exists z € X such that lim y, = z, ie, lim S(yn,yn,2) = 0.
n—oo n—oo
Since {Pxo treny and {Qzax—1}ren are subsequence of the sequence {yn }nen
it follows that

lim S(Pxog, Prok,2) =0 and lim S(Qzop_1, Qrok—1,2) = 0.
k—o0 k—o00
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Since
S(Pxoy, Proj, Axay)

= S(Pxoy, Pxoy, AP 1 Pxyy)

= S(Pxoy, Pxoy, APilAn(mfl)xgk_l)

= S(A"TR= ) oy AN gy g AME-) P Agyy )
< qS(Quar—1, Qron—1, Avap_1)

< q%S(P:cO, Pxg, Axg).

Taking the limit as k — oo we obtain lim Axgy = z, i.e.,
n—oo

lim S(z,z, Azax) = 0.

n—o0

Then we have the following
S(Az,Az,Pz) < 2S(Az, Az, APxsy) + S(Pz, Pz, APxoy)
= 2S(Az, Az, APxzoy) + S(Pz, Pz, PAxyy).
Taking the limit as k — oo we obtain S(Az, Az, Pz) = 0 which implies Az =
Pz. Similarly we can prove that Az = Qz. Let us prove that kl;rgo Ao, = 2.
S(Pxay, Pxog, A2x2k)
= S(A(m—l)mgk,l, An(x%—l)x%,l,AQP_lPka)
= S(AM@2k-V gy | AMEm-D g AZPTLAN@R-D gy, )

< ¢S(Qzop—1, Qua_1, A%xo)_1)

< ¢**S(Px, Pxo, A*x0)

and letting k — oo we have klim A%x9;, = 2. Using continuity of A we have
—00

Az = A(lim Azgp) = lim A%z, = 2.
n—oo n—oo
Now, it remains to be prove the uniqueness of the common fixed point. Sup-

pose that there exists another common fixed point p, p # z. As z = Az =
A%z = ... = A2z we have

S(z,z,p) = S(A”(Z)Z,A"(Z)z,A”(Z)p)
< ¢min{S(Qz,Qz, Pp), S(Pz, Pz,Qp)}
= qmin{S(z,z,p), S(z,z,p)}
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and final result z = p. O
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