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Abstract. In this paper, we establish some strong convergence results and a weak conver-

gence result for nearly asymptotically nonexpansive mappings under suitable conditions in

the setting of Banach spaces.

1. Introduction

Let E be a real Banach space and C be a nonempty subset of E. Let
T : C → C be a mapping, then we denote the set of all fixed points of T by
F (T ). A self mapping T : C → C is said to be Lipschitzian if for each n ∈ N,
there exists a positive number kn such that

‖Tnx− Tny‖ ≤ kn‖x− y‖

for all x, y ∈ C.

A Lipschitzian mapping T is said to be uniformly k-Lipschitzian if kn = k
for all n ∈ N and asymptotically nonexpansive [4] if kn ≥ 1 for all n ∈ N with
limn→∞ kn = 1.

It is easy to observe that every nonexpansive mapping T (i.e., ‖Tx−Ty‖ ≤
‖x − y‖ for all x, y ∈ C) is asymptotically nonexpansive with constant se-
quence {1} and every asymptotically nonexpansive mapping is uniformly k-
Lipschitzian with k = supn∈N{kn}.
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Fix a sequence {an} ⊂ [0,∞) with limn→∞ an = 0, then according to Agar-
wal et al. [1], T is said to be nearly Lipschitzian with respect to {an} if for each
n ∈ N, there exist constants kn ≥ 0 such that ‖Tnx−Tny‖ ≤ kn(‖x−y‖+an)
for all x, y ∈ C. The infimum of constants kn for which the above inequality
holds is denoted by η(Tn) and is called nearly Lipschitz constant.

A nearly Lipschitzian mapping T with sequence {an, η(Tn)} is said to be
nearly asymptotically nonexpansive if η(Tn)≥1 for all n∈N and limn→∞ η(Tn)
= 1 and nearly uniformly k-Lipschitzian if η(Tn) ≤ k for all n ∈ N.

In 2007, Agarwal et al. [1] introduced the following iteration process:

x1 = x ∈ C,
xn+1 = (1− αn)Tnxn + αnT

nyn,

yn = (1− βn)xn + βnT
nxn, n ≥ 1 (1.1)

where {αn} and {βn} are sequences in (0, 1). They showed that this process
converge at a rate same as that of Picard iteration and faster than Mann for
contractions and also they established some weak convergence theorems using
suitable conditions in the framework of uniformly convex Banach space.

Recently, Khan et al. [6] studied the modified two-step iteration process for
two mappings as follows:

x1 = x ∈ C,
xn+1 = (1− αn)Tnxn + αnS

nyn,

yn = (1− βn)xn + βnT
nxn, n ≥ 1 (1.2)

where {αn} and {βn} are sequences in (0, 1). They established weak and
strong convergence theorems in the setting of real Banach spaces.

Inspired and motivated by [1, 6] and some others, in this paper we introduce
the following three-step iteration scheme as follows:

x1 = x ∈ C,
xn+1 = (1− αn)Tnxn + αnT

nyn,

yn = (1− βn)xn + βnT
nzn,

zn = (1− γn)xn + γnT
nxn, n ≥ 1 (1.3)

where {αn}, {βn} and {γn} are sequences in (0, 1).

If we put γn = 0 for all n ≥ 1, then scheme (1.3) reduces to the scheme
(1.1) and if we put S = T , then scheme (1.2) also reduces to the scheme (1.1).

The three-step iterative approximation problems were studied extensively
by Noor [7, 8], Glowinsky and Le Tallec [3] and Haubruge et al [5]. It has
been shown [3] that three step iterative scheme gives better numerical results
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than the two step and one step approximate iterations. Thus we conclude that
three step scheme plays an important and significant role in solving various
problems, which arise in pure and applied sciences.

The aim of this paper is to establish some strong convergence theorems
and a weak convergence theorem of newly proposed iteration scheme (1.3) for
nearly asymptotically nonexpansive mapping in the framework of real Banach
spaces.

2. Preliminaries

For the sake of convenience, we restate the following concepts.

A mapping T : C → C is said to be demiclosed at zero, if for any sequence
{xn} in C, the condition xn converges weakly to x ∈ C and Txn converges
strongly to 0 imply Tx = 0.

A mapping T : C → C is said to be semi-compact [2] if for any bounded
sequence {xn} in C such that ‖xn − Txn‖ → 0 as n→∞, then there exists a
subsequence {xnk

} ⊂ {xn} such that xnk
→ x∗ ∈ C strongly.

We say that a Banach space E satisfies the Opial’s condition [9] if for each
sequence {xn} in E weakly convergent to a point x and for all y 6= x

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖.

The examples of Banach spaces which satisfy the Opial’s condition are
Hilbert spaces and all Lp[0, 2π] with 1 < p 6= 2 fail to satisfy Opial’s con-
dition [9].

Now, we state the following useful lemma to prove our main results.

Lemma 2.1. ([14]) Let {αn}∞n=1, {βn}∞n=1 and {rn}∞n=1 be sequences of non-
negative numbers satisfying the inequality

αn+1 ≤ (1 + βn)αn + rn, ∀n ≥ 1.

If
∑∞

n=1 βn <∞ and
∑∞

n=1 rn <∞, then limn→∞ αn exists.

3. Main Results

In this section, we prove some strong convergence theorems and a weak
convergence theorem for nearly asymptotically nonexpansive mapping in the
framework of real Banach space.

Theorem 3.1. Let E be a real Banach space and C be a nonempty closed
convex subset of E. Let T : C → C be a nearly asymptotically nonexpansive
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mapping with sequence {an, η(Tn)} and F (T ) 6= ∅ such that
∑∞

n=1 an < ∞
and

∑∞
n=1

(
η(Tn) − 1

)
< ∞. Let {xn} be the three-step iteration defined by

(1.3). Then {xn} converges strongly to a fixed point of the mapping T if and
only if lim infn→∞ d(xn, F (T )) = 0.

Proof. The necessity is obvious. Thus we only prove the sufficiency. Let
q ∈ F (T ). For the sake of convenience, set

Bnx = (1− γn)x+ γnT
nx,

Anx = (1− βn)x+ βnT
nBnx

and

Wnx = (1− αn)Tnx+ αnT
nAnx.

Then zn = Bnxn, yn = Anxn and xn+1 = Wnxn. Moreover, it is clear that q
is a fixed point of Wn for all n. Let η = supn∈N η(Tn). Consider

‖Bnx−Bny‖ = ‖((1−γn)x+γnT
nx)−((1−γn)y+γnT

ny)‖
= ‖(1− γn)(x− y) + γn(Tnx− Tny)‖
≤ (1− γn)‖x− y‖+ γnη(Tn)(‖x− y‖+ an)

≤ (1− γn)η(Tn)‖x− y‖+ γnη(Tn)‖x− y‖
+γnanη(Tn)

≤ η(Tn)‖x− y‖+ anη(Tn). (3.1)

Choosing x = xn and y = q, we get

‖zn − q‖ ≤ η(Tn)‖xn − q‖+ anη(Tn). (3.2)

Next consider,

‖Anx−Any‖ = ‖((1−βn)x+βnT
nBnx)−((1−βn)y+βnT

nBny)‖
= ‖(1− βn)(x− y) + βn(TnBnx− TnBny)‖
≤ (1− βn)‖x− y‖+ βnη(Tn)(‖Bnx−Bny‖+ an)

≤ (1− βn)η(Tn)‖x− y‖+ βnη(Tn)‖Bnx−Bny‖
+βnanη(Tn)

≤ (1− βn)η(Tn)‖x− y‖+ βnη(Tn)‖Bnx−Bny‖
+βnanη(Tn). (3.3)
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Now using (3.1) in (3.3), we get

‖Anx−Any‖ ≤ (1− βn)η(Tn)‖x− y‖+ βnη(Tn)[η(Tn)‖x− y‖
+anη(Tn)] + βnanη(Tn)

≤ (1− βn)(η(Tn))2‖x− y‖+ βn(η(Tn))2‖x− y‖
+anβn(η(Tn))2 + βnanη(Tn)

≤ (η(Tn))2‖x− y‖+ anη(Tn)(1 + η(Tn)). (3.4)

Choosing x = xn and y = q, we get

‖yn − q‖ ≤ (η(Tn))2‖xn − q‖+ anη(Tn)(1 + η(Tn)). (3.5)

Finally, consider

‖Wnx−Wny‖
= ‖((1− αn)Tnx+ αnT

nAnx)− ((1− αn)Tny + αnT
nAny)‖

= ‖(1− αn)(Tnx− Tny) + αn(TnAnx− TnAny)‖
≤ (1− αn)η(Tn)(‖x− y‖+ an) + αnη(Tn)(‖Anx−Any‖+ an)

= (1− αn)η(Tn)‖x− y‖+ αnη(Tn)‖Anx−Any‖
+anη(Tn). (3.6)

Now using (3.4) in (3.6), we get

‖Wnx−Wny‖ ≤ (1− αn)η(Tn)‖x− y‖+ αnη(Tn)[(η(Tn))2‖x− y‖
+anη(Tn)(1 + η(Tn))] + anη(Tn)

≤ (1− αn)(η(Tn))3‖x− y‖+ αn(η(Tn))3‖x− y‖
+αnan(η(Tn))2(1 + η(Tn)) + anη(Tn)

≤ (η(Tn))3‖x− y‖+ anη(Tn)[1 + η(Tn) + (η(Tn))2]

≤ (η(Tn))3‖x− y‖+ anη(1 + η + η2)

= [1 + (µn − 1)]‖x− y‖+ νn, (3.7)

where µn = (η(Tn))3 and νn = anη(1 + η + η2). Moreover,

∞∑
n=1

(µn − 1) =
∞∑
n=1

(
(η(Tn))3 − 1

)
=

∞∑
n=1

(
(η(Tn))2 + η(Tn) + 1

)
(η(Tn)− 1)

≤ (η2 + η + 1)
∞∑
n=1

(η(Tn)− 1) <∞,
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and
∑∞

n=1 νn < ∞ since by hypothesis
∑∞

n=1 an < ∞. Choosing x = xn and
y = q in (3.7), we get

‖xn+1 − q‖ = ‖Wnxn − q‖ ≤ [1 + (µn − 1)]‖xn − q‖+ νn. (3.8)

Applying Lemma 2.1 in (3.8), we have limn→∞ ‖xn − q‖ exists.
Next, we shall prove that {xn} is a Cauchy sequence. Since 1 + x ≤ ex for

x ≥ 0, therefore, for any m,n ≥ 1 and for given q ∈ F (T ), from (3.8) with
taking µn − 1 = tn, we have

‖xn+m − q‖ ≤ (1 + tn+m−1)‖xn+m−1 − q‖+ νn+m−1

≤ etn+m−1‖xn+m−1 − q‖+ νn+m−1

≤ etn+m−1 [etn+m−2‖xn+m−2 − q‖+ νn+m−2] + νn+m−1

≤ e(tn+m−1+tn+m−2)‖xn+m−2 − q‖
+e(tn+m−1+tn+m−2)[νn+m−2 + νn+m−1]

≤ . . .

≤ e

(∑n+m−1
k=n tk

)
‖xn − q‖+ e

(∑n+m−1
k=n tk

)
n+m−1∑
k=n

νk

≤ e

(∑∞
n=1 tk

)
‖xn − q‖+ e

(∑∞
n=1 tk

)
n+m−1∑
k=n

νk

= R ‖xn − q‖+R
n+m−1∑
k=n

νk (3.9)

where R = e

(∑∞
n=1 tk

)
<∞. Since

lim
n→∞

d(xn, F (T )) = 0,

∞∑
n=1

νn <∞ (3.10)

for any given ε > 0, there exists a positive integer n1 such that

d(xn, F (T )) <
ε

4(R+ 1)
,

n+m−1∑
k=n

νk <
ε

2R
, ∀n ≥ n1. (3.11)

Hence, there exists q1 ∈ F (T ) such that

‖xn − q1‖ <
ε

2(R+ 1)
, ∀n ≥ n1. (3.12)
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Consequently, for any n ≥ n1 and m ≥ 1, from (3.9), we have

‖xn+m − xn‖ ≤ ‖xn+m − q1‖+ ‖xn − q1‖

≤ R ‖xn − q1‖+R
n+m−1∑
k=n

νk + ‖xn − q1‖

= (R+ 1)‖xn − q1‖+R
n+m−1∑
k=n

νk

< (R+ 1)
ε

2(R+ 1)
+R

ε

2R
= ε. (3.13)

This implies that {xn} is a Cauchy sequence in E and so is convergent since
E is complete. Let limn→∞ xn = q∗. Then q∗ ∈ C. It remains to show that
q∗ ∈ F (T ). Let ε1 > 0 be given. Then there exists a natural number n2
such that ‖xn − q∗‖ < ε1

4 for all n ≥ n2. Since limn→∞ d(xn, F (T )) = 0,
there exists a natural number n3 ≥ n2 such that for all n ≥ n3 we have
d(xn, F (T )) < ε1

5 and in particular we have d(xn3 , F (T )) ≤ ε1
5 . Therefore,

there exists w∗ ∈ F (T ) such that ‖xn3 − w∗‖ < ε1
4 . For any n ≥ n3, we have

‖Tq∗ − q∗‖ ≤ ‖Tq∗ − w∗‖+ ‖w∗ − q∗‖
≤ 2‖q∗ − w∗‖

≤ 2
(
‖q∗ − xn3‖+ ‖xn3 − w∗‖

)
< 2

(ε1
4

+
ε1
4

)
< ε1.

This implies that Tq∗ = q∗ and hence q∗ ∈ F (T ). This shows that q∗ is a fixed
point of T . Thus {xn} converges strongly to a fixed point of the mapping T .
This completes the proof. �

Theorem 3.2. Let E be a real Banach space and C be a nonempty closed
convex subset of E. Let T : C → C be a nearly asymptotically nonexpansive
mapping with sequence {an, η(Tn)} and F (T ) 6= ∅ such that

∑∞
n=1 an < ∞

and
∑∞

n=1

(
η(Tn) − 1

)
< ∞. Let {xn} be the three-step iteration defined by

(1.3). If T satisfies the following conditions:

(i) limn→∞ ‖xn − Txn‖ = 0.
(ii) If the sequence {zn} in C satisfies limn→∞ ‖zn − Tzn‖ = 0, then

lim infn→∞ d(zn, F (T )) = 0 or lim supn→∞ d(zn, F (T )) = 0.

Then the sequence {xn} converges strongly to a fixed point of T .

Proof. It follows from the hypothesis that limn→∞ ‖xn−Txn‖ = 0. From (ii),
lim infn→∞ d(xn, F (T )) = 0 or lim supn→∞ d(xn, F (T )) = 0. Therefore, the
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sequence {xn} must converges to a fixed point of T by Theorem 3.1. This
completes the proof. �

Theorem 3.3. Let E be a real Banach space and C be a nonempty closed
convex subset of E. Let T : C → C be a nearly asymptotically nonexpansive
mapping with sequence {an, η(Tn)} and F (T ) 6= ∅ such that

∑∞
n=1 an < ∞

and
∑∞

n=1

(
η(Tn) − 1

)
< ∞. Let {xn} be the three-step iteration defined by

(1.3). If T satisfies the following conditions:

(A1) limn→∞ ‖xn − Txn‖ = 0,
(A2) there exists a constant K > 0 such that ‖xn − Txn‖ ≥ K d(xn, F (T ))

for all n ≥ 1.

Then {xn} converges strongly to a fixed point of the mapping T .

Proof. From conditions (A1) and (A2), we have limn→∞ d(xn, F (T )) = 0, it
follows as in the proof of Theorem 3.1, that {xn} must converges strongly to
a fixed point of the mapping T . This completes the proof. �

Theorem 3.4. Let E be a real Banach space and C be a nonempty closed
convex subset of E. Let T : C → C be a nearly asymptotically nonexpansive
mapping with sequence {an, η(Tn)} and F (T ) 6= ∅ such that

∑∞
n=1 an < ∞

and
∑∞

n=1

(
η(Tn) − 1

)
< ∞. Let {xn} be the three-step iteration defined by

(1.3). If T is semi-compact and limn→∞ ‖xn − Txn‖ = 0, then the sequence
{xn} converges to a fixed point of T .

Proof. From the hypothesis, we have limn→∞ ‖xn−Txn‖ = 0. Also, since T is
semi-compact, there exists a subsequence {xnj} of {xn} such that xnj → q ∈ C
and we make use of the fact that every nearly asymptotically nonexpansive
mapping is nearly k-Lipschitzian. Hence, we have

‖q − Tq‖ ≤ ‖q − xnj‖+ ‖xnj − Txnj‖+ ‖Txnj − Tq‖
≤ (1 + k1)‖q − xnj‖+ ‖xnj − Txnj‖ → 0.

Thus q ∈ F (T ). By (3.8),

‖xn+1 − q‖ ≤ [1 + (µn − 1)]‖xn − q‖+ νn.

Since
∑∞

n=1(µn−1) <∞ and
∑∞

n=1 νn <∞, by Lemma 2.1, limn→∞ ‖xn− q‖
exists and xnj → q ∈ F (T ) gives that xn → q ∈ F (T ). This shows that {xn}
converges to a fixed point of T . This completes the proof. �

Theorem 3.5. Let E be a real Banach space satisfying Opial’s condition and
C be a nonempty closed convex subset of E. Let T : C → C be a nearly
asymptotically nonexpansive mapping with sequence {an, η(Tn)} and F (T ) 6= ∅
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such that
∑∞

n=1 an < ∞ and
∑∞

n=1

(
η(Tn)− 1

)
< ∞. Let {xn} be the three-

step iteration defined by (1.3). Suppose that T has a fixed point, I − T is
demiclosed at zero and {xn} is an approximating fixed point sequence for T ,
that is, limn→∞ ‖xn − Txn‖ = 0. Then {xn} converges weakly to a fixed point
of T .

Proof. Let p be a fixed point of T . Then limn→∞ ‖xn − p‖ exists as proved
in Theorem 3.1. We prove that {xn} has a unique weak subsequential limit
in F (T ). For, let u and v be weak limits of the subsequences {xni} and
{xnj} of {xn}, respectively. By hypothesis of the theorem, we know that
limn→∞ ‖xn − Txn‖ = 0 and I − T is demiclosed at zero, therefore we obtain
Tu = u. Thus u ∈ F (T ). Again in the same fashion, we can prove that
v ∈ F (T ). Next, we prove the uniqueness. To this end, if u and v are distinct
then by Opial’s condition,

lim
n→∞

‖xn − u‖ = lim
ni→∞

‖xni − u‖

< lim
ni→∞

‖xni − v‖ = lim
n→∞

‖xn − v‖ = lim
nj→∞

‖xnj − v‖

< lim
nj→∞

‖xnj − u‖ = lim
n→∞

‖xn − u‖.

This is a contradiction. Hence u = v ∈ F (T ). Thus {xn} converges weakly to
a fixed point of T . This completes the proof. �

Remark 3.6. Our results extend and generalize the corresponding results of
[10]-[15] and many others from the existing literature to the case of three-step
iteration scheme and more general class of nonexpansive and asymptotically
nonexpansive mappings considered in this paper.
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