THE OPTIMAL LOWER BOUND FOR A POLYNOMIAL NORM WHICH IS A PRODUCT OF LINEAR AND CONTINUOUS FORMS IN A HILBERT SPACE

Alexandros Pappas ${ }^{1}$, Perikles Papadopoulos ${ }^{2}$ and Eleni Theofili ${ }^{3}$
${ }^{1}$ Civil Engineering Department, School of Technological Applications Technological Educational Institution (TEI) of Piraeus, Athens, Greece e-mail: alpappas@teipir.gr
${ }^{2}$ Electronics Engineering Department, School of Technological Applications Technological Educational Institution (TEI) of Piraeus, Athens, Greece e-mail: ppapadop@teipir.gr
${ }^{3}$ Civil Engineering Department, School of Technological Applications Technological Educational Institution (TEI) of Piraeus, Athens, Greece
e-mail: theofiliselenis@yahoo.gr

Abstract

The estimation of lower bounds for the norms of homogeneous polynomials which are products of linear forms in a Banach space, was obtained by K. Ball in a very precise description in the case where H is a complex Hilbert space with dimension $\geq n$. He also managed to obtain a better bound estimate for $c_{n}(H)=n^{-n / 2}$. The above result is taken as a corollary of Ball's theorem, which is not valid in the case of real Hilbert spaces. In this paper we studied the reasonable question if the above result is valid in the case of real Hilbert spaces.

1. Introduction

We define polynomials in infinite dimension spaces using multilinear mappings. Let E and F be two vector spaces on \mathbf{K}, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}. We shall call the mapping $L: E^{n} \rightarrow F$ n-linear form if the mapping $x_{i} \mapsto$ $L\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right), i=1,2, \ldots, n$, is linear. Also we shall call the $L: E^{n} \rightarrow$

[^0]F symmetric if
$$
L\left(x_{1}, x_{2}, \ldots, x_{n}\right)=L\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right),
$$
for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in E^{n}$ and every permutation of the first n natural numbers. If $L: E^{n} \rightarrow F$ is a n-linear form we put:
$$
S(L)\left(x_{1}, x_{2}, \ldots, x_{n}\right):=\frac{1}{n!} \sum_{\sigma \in S_{n}} L\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)
$$
where S_{n} is the set of all permutations of the first n natural numbers. Obviously $S(L): E^{n} \rightarrow F$ is a symmetric n-linear form. We put
$$
\widehat{L}(x):=L(x, x, \ldots, x), \quad \forall x \in E .
$$

Definition 1.1. We define the mapping $P: E \rightarrow F$ as a homogeneous polynomial of n-degree if there exists an n-linear form $L: E^{n} \rightarrow F$ such that $P=\widehat{L}$, i.e.,

$$
P(x)=\widehat{L}(x)=L(x, x, \ldots, x) .
$$

Generally there is no a bijection between the n-linear forms and the homogeneous polynomials of n-degree. Though there exists a bijection between the symmetric n-linear forms and the homogeneous polynomials of n-degree.

The proof of this claim is based on the following Lemma where we use the polarization formulas.

Lemma 1.2. If $L: E^{n} \rightarrow F$ is a symmetric n-linear form and $P: E \rightarrow F a$ homogeneous polynomial of n-degree with $P=\widehat{L}$, then:

$$
L\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{1}{2^{n} n!} \sum_{\varepsilon_{i}= \pm 1} \varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{n} P\left(\sum_{k=1}^{n} \varepsilon_{k} x_{k}\right),
$$

where the sum is over all $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n} \in\{-1,1\}$.
Definition 1.3. We define the mapping $P: E \rightarrow F$ as a polynomial of n degree, if $P=P_{n}+P_{n-1}+\cdots+P_{0}$ where $P_{k}, 1 \leq k \leq n$ is a homogeneous polynomial of k-degree, $P_{n} \neq 0$ and P_{0} is a constant mapping.

2. Optimal lower bound for norms of linear products of polynomials on a Banach space

Let P_{1}, \ldots, P_{n} be polynomials in a Banach space E. Then the product $P_{1} \cdots P_{n}: E \rightarrow \mathbb{K}$ with $\left(P_{1} \cdots P_{n}\right)(x):=P_{1}(x) \cdots P_{n}(x)$, for all $x \in E$, is also a polynomial. We also have that the following relation holds true:

$$
\left\|P_{1} \cdots P_{n}\right\| \leq\left\|P_{1}\right\| \cdots\left\|P_{n}\right\| .
$$

Problem: Find a positive constant M, depending only on the degrees of polynomials, such that

$$
\begin{equation*}
\left\|P_{1}\right\| \cdots\left\|P_{n}\right\| \leq M \cdot\left\|P_{1} \cdots P_{n}\right\| \tag{2.1}
\end{equation*}
$$

A number of inequalities of this type has already appeared in the literature. In the classical setting of single complex variable polynomials with the supremum norm, Mahler [5] established relation (2.1) with $M=2^{m}$ where $\operatorname{deg}\left(P_{1} \cdots P_{n}\right)=m$. Kroó and Pritsker [4] improved the above constant and proved that $M=2^{m-1}$. Generally constant 2^{m-1} can't be improved any more. In the general case of complex Banach spaces Benítez, Sarantopoulos and Tonge [3] obtained the optimal constant:

$$
M=\frac{\left(m_{1}+\cdots+m_{n}\right)^{m_{1}+\cdots+m_{n}}}{m_{1}^{m_{1}} \cdots m_{n}^{m_{n}}}
$$

where $\operatorname{deg} P_{k}=m_{k}, k=1,2, \ldots, n$. It is easy to see that on the space $E=\ell_{1}$ the homogenous polynomials:

$$
P_{j}\left(\left(x_{a}\right)_{a=1}^{\infty}\right):=x_{m_{1}+\cdots+m_{j-1}+1} \cdots x_{m_{1}+\cdots+m_{j}}
$$

with $m_{0}:=0, j=1, \ldots, n$ and $\operatorname{deg} P_{j}=m_{j}$ satisfy the following:

$$
\left\|P_{1}\right\| \cdots\left\|P_{n}\right\|=\frac{\left(m_{1}+\cdots+m_{n}\right)^{m_{1}+\cdots+m_{n}}}{m_{1}^{m_{1}} \cdots m_{n}^{m_{n}}}\left\|P_{1} \cdots P_{n}\right\| .
$$

Especially, if E is a complex Banach space and $L_{k} \in E^{*}, k=1, \ldots, n$, then

$$
\left\|L_{1}\right\| \cdots\left\|L_{n}\right\| \leq n^{n} \cdot\left\|L_{1} \cdots L_{n}\right\|
$$

and the constant n^{n} is the best possible.

3. Optimal lower bound for norms of linear products of polynomials on a Hilbert space

3.1. \mathbf{H} is a complex Hilbert space. In some Banach spaces constant n^{n} can be improved. Arias-de-Reyna [1] proved that

$$
\left\|L_{1}\right\| \cdots\left\|L_{n}\right\| \leq n^{\frac{n}{2}} \cdot\left\|L_{1} \cdots L_{n}\right\|,
$$

where $L_{k} \in H^{*}, k=1, \ldots, n$ and $(H,\langle\cdot, \cdot\rangle)$ is a complex Hilbert space.
We also have that, if $a_{k} \in H$ with $\left\|a_{k}\right\|=1, k=1, \ldots, n$, the above inequality takes the following form

$$
\begin{equation*}
\sup _{\|x\|=1}\left|\left\langle a_{1}, x\right\rangle \cdots\left\langle a_{n}, x\right\rangle\right| \geq n^{-n / 2} \tag{3.1}
\end{equation*}
$$

Recently Ball [2] proved the next theorem:

Theorem 3.1. Let $\left(a_{j}\right)_{1}^{n}$ be a sequence of normed one vectors in a complex Hilbert space and $\left(t_{j}\right)_{1}^{n}$ is a sequence of non-negative numbers with $\sum_{j=1}^{n} t_{j}^{2}=1$. Then there exist a unit vector x such that

$$
\left|\left\langle a_{j}, x\right\rangle\right| \geq t_{j}, \quad j=1, \ldots, n
$$

3.2. H is a real Hilbert space. Just like in the complex case, for a real Hilbert space $(H,\langle\cdot, \cdot\rangle)$, with $a_{k} \in H$ and $\left\|a_{k}\right\|=1(1 \leq k \leq n)$, we have that

$$
\sup _{\|x\|=1}\left|\left\langle a_{1}, x\right\rangle \cdots\left\langle a_{n}, x\right\rangle\right| \geq n^{-n / 2}
$$

The question is if we obtain the same result for a real Hilbert space.
Lemma 3.2. Let $a_{1}, a_{2}, \ldots, a_{n}$ unit vectors in a Hilbert space. If we have that

$$
\sup _{\|x\| \leq 1}\left|\left\langle a_{1}, x\right\rangle\left\langle a_{2}, x\right\rangle \cdots\left\langle a_{n}, x\right\rangle\right|=\left|\left\langle a_{1}, \xi\right\rangle\left\langle a_{2}, \xi\right\rangle \cdots\left\langle a_{n}, \xi\right\rangle\right|
$$

for $\xi \in H$ with $\|\xi\|=1$, then we get

$$
\begin{equation*}
n \xi=\frac{a_{1}}{\left\langle a_{1}, \xi\right\rangle}+\cdots+\frac{a_{n}}{\left\langle a_{n}, \xi\right\rangle} \tag{3.2}
\end{equation*}
$$

Remark 3.3. If $H=\mathbb{R}^{n}$ or \mathbb{C}^{n}, from the previous Lemma, we get that

$$
\xi_{1}\left\langle a_{1}, \xi\right\rangle=\cdots=\xi_{n}\left\langle a_{n}, \xi\right\rangle=\frac{1}{n}
$$

where $\xi=\xi_{1} a_{1}+\cdots+\xi_{n} a_{n}$.
Now we are able to prove the next theorem:
Theorem 3.4. Let $a_{1}, \ldots, a_{n} n$-linear unit vectors which are also independent in the Euclid space \mathbb{R}^{n}. Then the next estimate holds:

$$
\max _{\|x\|_{2}=1}\left|\left\langle a_{1}, x\right\rangle\left\langle a_{2}, x\right\rangle \cdots\left\langle a_{n}, x\right\rangle\right| \geq\left(\frac{t_{1}}{n}\right)^{\frac{n}{2}}
$$

where t_{1} is the lowest eigenvalue of the matrix Gram A of the unit vectors a_{1}, \ldots, a_{n}, that is, $A=\left[\left\langle a_{i}, a_{j}\right\rangle\right], i, j=1,2, \ldots, n$.

Proof. If $\xi=\xi_{1} a_{1}+\cdots+\xi_{n} a_{n} \in \mathbb{R}^{n}$ with $\|\xi\|_{2}=1$ and

$$
\max _{\|x\|_{2}=1}\left|\left\langle a_{1}, x\right\rangle\left\langle a_{2}, x\right\rangle \cdots\left\langle a_{n}, x\right\rangle\right|=\left|\left\langle a_{1}, \xi\right\rangle\left\langle a_{2}, \xi\right\rangle \cdots\left\langle a_{n}, \xi\right\rangle\right|,
$$

then from (3.2) we get

$$
\begin{aligned}
\left|\left\langle a_{1}, \xi\right\rangle\left\langle a_{2}, \xi\right\rangle \cdots\left\langle a_{n}, \xi\right\rangle\right| & =\frac{1}{n^{n}} \cdot \frac{1}{\left|\xi_{1} \cdots \xi_{n}\right|}=\frac{1}{n^{n}} \cdot\left(\frac{1}{\xi_{1}^{2} \cdots \xi_{n}^{2}}\right)^{\frac{1}{2}} \\
& \geq \frac{1}{n^{n}} \cdot\left(\frac{n}{\xi_{1}^{2}+\cdots+\xi_{n}^{2}}\right)^{\frac{n}{2}} \\
& =\frac{1}{n^{n / 2}} \cdot \frac{1}{\left(\xi_{1}^{2}+\cdots+\xi_{n}^{2}\right)^{n / 2}} .
\end{aligned}
$$

Thus we have that:

$$
\begin{equation*}
\left|\left\langle a_{1}, \xi\right\rangle\left\langle a_{2}, \xi\right\rangle \cdots\left\langle a_{n}, \xi\right\rangle\right| \geq \frac{1}{n^{n / 2}} \cdot \frac{1}{\left(\xi_{1}^{2}+\cdots+\xi_{n}^{2}\right)^{n / 2}} . \tag{3.3}
\end{equation*}
$$

If $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, then the equation

$$
\begin{equation*}
q(x):=\left\|x_{1} a_{1}+\cdots+x_{n} a_{n}\right\|_{2}^{2}=\sum_{i, j=1}^{n}\left\langle a_{i}, a_{j}\right\rangle x_{i} x_{j} \tag{3.4}
\end{equation*}
$$

is a symmetric and positive quadratic form. We have that $q\left(\xi_{1}, \ldots, \xi_{n}\right)=1$, so in order to find a lower bound for the inequality (3.3), we must find the extremals points of the function $f(x):=x_{1}^{2}+\cdots+x_{n}^{2}$ which satisfy the equation $q(x)=1$. That is, we will find the extremals points of f under the assumption that $g(x)=0$, where $g(x):=q(x)-1$. Using the Lagrange multipliers method we assume the vector equation

$$
\begin{equation*}
\nabla f(x)+k \nabla q(x)=0 . \tag{3.5}
\end{equation*}
$$

Since f and q are homogenous polynomials of 2-degree, applying Euler's Theorem we obtain

$$
\langle x, \nabla(f(x)+k q(x))\rangle=2(f(x)+k q(x)) .
$$

Also, since $\nabla(f(x)+k q(x))=\nabla f(x)+k \nabla q(x)=0$, we have $f(x)+k q(x)=0$. We already have that $q(x)=1$, hence $k=-f(x)$. So, relation (3.5) becomes

$$
\begin{equation*}
t \nabla f(x)-\nabla q(x)=0, \quad \text { where } t=1 / f(x) \tag{3.6}
\end{equation*}
$$

The vector equation (3.6) leads to the following n equations with n solutions system

$$
\begin{gathered}
{\left[\left\langle a_{1}, a_{1}\right\rangle-t\right] x_{1}+\left\langle a_{1}, a_{2}\right\rangle x_{2}+\cdots+\left\langle a_{1}, a_{n}\right\rangle x_{n}=0} \\
\left\langle a_{2}, a_{1}\right\rangle x_{1}+\left[\left\langle a_{2}, a_{2}\right\rangle-t\right] x_{2}+\cdots+\left\langle a_{2}, a_{n}\right\rangle x_{n}=0 \\
\vdots \\
\left\langle a_{n}, a_{1}\right\rangle x_{1}+\left\langle a_{n}, a_{2}\right\rangle x_{2}+\cdots+\left[\left\langle a_{n}, a_{n}\right\rangle-t\right] x_{n}=0 .
\end{gathered}
$$

Since we have that $\left(x_{1}, \ldots, x_{n}\right)=(0, \ldots, 0)$ is not a solution for our problem, the determinant of the system must be equal to zero, that is

$$
\left|\begin{array}{cccc}
\left\langle a_{1}, a_{1}\right\rangle-t & \left\langle a_{1}, a_{2}\right\rangle & \ldots & \left\langle a_{1}, a_{n}\right\rangle \tag{3.7}\\
\left\langle a_{2}, a_{1}\right\rangle & \left\langle a_{2}, a_{2}\right\rangle-t & \ldots & \left\langle a_{2}, a_{n}\right\rangle \\
\vdots & \vdots & & \vdots \\
\left\langle a_{n}, a_{1}\right\rangle & \left\langle a_{n}, a_{2}\right\rangle & \ldots & \left\langle a_{n}, a_{n}\right\rangle-t
\end{array}\right|=0 .
$$

This is the characteristic equation of $q(x)$. Since $q(x)$ is symmetric and positive, if $t_{1}, t_{2}, \ldots, t_{n}$ are the solutions of (3.7) (with other words the eigenvalues of the matrix $\left.A=\left[\left\langle a_{i}, a_{j}\right\rangle\right], i, j=1,2, \ldots, n\right)$, then all the solutions are real and positive. Let t_{1} the smallest solution. Thus for the vector $\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}$ we have:

$$
f\left(\xi_{1}, \ldots, \xi_{n}\right) \leq \frac{1}{t_{1}} \Leftrightarrow\left(\xi_{1}^{2}+\cdots+\xi_{n}^{2}\right)^{1 / 2} \leq \frac{1}{t_{1}^{1 / 2}}
$$

Equivalently, we have the following relation

$$
\begin{equation*}
\frac{1}{\left(\xi_{1}^{2}+\cdots+\xi_{n}^{2}\right)^{n / 2}} \geq t_{1}^{n / 2} \tag{3.8}
\end{equation*}
$$

The last inequality combined with relation (3.3) prove our Theorem.
4. The n-TH (LINEAR) POLARIZATION CONSTANT OF A NORMED SPACE
4.1. The n-th (linear) polarization constant of a Banach space. If $f_{1}, f_{2}, \ldots, f_{n}$ are bounded linear functionals on a Banach space X, then the product $\left(f_{1} f_{2} \cdots f_{n}\right)(x):=f_{1}(x) f_{2}(x) \cdots f_{n}(x)$ is a continuous n-homogeneous polynomial on X. Ryan and Turett have shown (see Theorem 9 in [7]), in their study of the strongly exposed points of the predial of the space of continuous 2-homogeneous polynomials, threat there exists $C_{n}>0$ such that:

$$
\left\|f_{1}\right\|\left\|f_{2}\right\| \cdots\left\|f_{n}\right\| \leq C_{n}\left\|f_{1} f_{2} \cdots f_{n}\right\|
$$

where

$$
\left\|f_{1} f_{2} \cdots f_{n}\right\|=\sup _{\|x\|=1}\left|f_{1}(x) f_{2}(x) \cdots f_{n}(x)\right|
$$

Definition 4.1. ([3]) The n-th (linear) polarization constant of a normed Banach space X is defined by

$$
\begin{align*}
c_{n}(X): & =\inf \left\{M>0:\left\|f_{1}\right\| \cdots\left\|f_{n}\right\| \leq M \cdot\left\|f_{1} \cdots f_{n}\right\|, \quad \forall f_{1}, \ldots, f_{n} \in X^{*}\right\} \\
& =1 / \inf _{f_{1}, \ldots, f_{n} \in S_{X^{*}}} \sup _{\|x\|=1}\left|f_{1}(x) \cdots f_{n}(x)\right| . \tag{4.1}
\end{align*}
$$

On the other hand, the general n-th polarization constant $\mathbb{K}(n, X)$ of a Banach space X on a space $\mathbb{K}(\mathbb{K}=\mathbb{R}$ or $\mathbb{C})$ is defined by:

$$
\mathbb{K}(n, X):=\inf \left\{M:\|L\| \leq M\|P\|, \quad \forall P \in \mathcal{P}\left({ }^{n} X\right)\right\}
$$

where L is the symmetric continuous n-linear mapping $P=\widehat{L}$ (in the above definition we have to do with all the continuous n-homogeneous polynomials, not only with the products of linear mappings). In the case of complex $L_{p}(\mu)$ spaces the constant n^{n} can be improved.

Proposition 4.2. If $X=L_{p}(\mu)$, then

$$
c_{n}\left(L_{p}(\mu)\right) \leq \begin{cases}n^{\frac{n}{p}}, & \text { if } 1 \leq p \leq 2, \tag{4.2}\\ n^{\frac{n}{p^{\prime}}}, & \text { if } 2 \leq p \leq \infty,\end{cases}
$$

where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. For $1 \leq p \leq 2$ the constant is the best possible.
Remark 4.3. Let us remark here that for the proof of relation (4.2) we assumed that the dimension of the $L_{p}(\mu)$ spaces is at least n. In the case where $2 \leq p \leq \infty$ we have that

$$
c_{n}\left(L_{p}(\mu)\right) \leq n^{n / p^{\prime}} .
$$

The constant $n^{n / p^{\prime}}$, in that case is not the best possible. Using the result from Kroó and Pritsker [4], we see that

$$
\left\|L_{1}\right\| \cdots\left\|L_{n}\right\| \leq 2^{n-1}\left\|L_{1} \cdots L_{n}\right\|
$$

and the constant 2^{n-1} is the best possible. So, for $n=2$ we have $c_{2}\left(\ell_{\infty}^{2}\right)=2$ although relation (4.2) gives us the following result

$$
c_{2}\left(\ell_{\infty}^{2}\right) \leq 2^{2}
$$

Proposition 4.4. Let X be a Banach space, then:

$$
c_{n}(X) \leq n^{n} .
$$

4.2. The n-th (linear) polarization constant of a Hilbert space. In the special case of a Hilbert space H, using the Riesz Representation Theorem, Definition 4.1 turns to be:

$$
c_{n}(H):=1 / \inf _{x_{1}, \ldots, x_{n} \in S_{H}} \sup _{\|x\|=1}\left|\left\langle x, x_{1}\right\rangle\left\langle x, x_{2}\right\rangle \cdots\left\langle x, x_{n}\right\rangle\right| .
$$

Theorem 4.5. ([1]) We have that the following result holds:

$$
c_{n}\left(\mathbb{C}^{n}\right)=n^{\frac{n}{2}} .
$$

The optimal lower bound for a normed polynomial which is a product of continuous and linear functionals in a Banach space was studied in the case of a complex Hilbert space H with dimension $\geq n$, from Ball [2]. He managed to calculate the optimal lower bound

$$
c_{n}(H)=n^{-n / 2} .
$$

The above result is a corollary of Ball's Theorem, which (theorem) doesn't holds for real Hilbert spaces. We study the following crucial question:

If the above result holds for real Hilbert spaces. For this, we assume that

$$
\begin{equation*}
c_{n}\left(\mathbb{R}^{n}\right)=n^{\frac{n}{2}} . \tag{4.3}
\end{equation*}
$$

For the previous result we refer to Pappas and Revez [6].
Theorem 4.6. We have that $c_{n}\left(\mathbb{R}^{n}\right)=n^{n / 2}$ for $n=2,3,4$ and 5 . Thus, for $n \leq \min \{d, 5\}$, we also obtain that $c_{n}\left(\mathbb{R}^{d}\right)=n^{n / 2}$.

Lemma 4.7. Let H be a real Hilbert space and let $a_{k} \in S_{H}, k=1, \ldots, n$ be arbitrary unit vectors. Suppose that for some unit vector $\xi \in S_{H}$ and with some $\delta>0$ we have

$$
\begin{equation*}
\max _{\|x\|=1,|x-\xi| \leq \delta}\left|\left\langle a_{1}, x\right\rangle\right| \cdots\left|\left\langle a_{n}, x\right\rangle\right|=\left|\left\langle a_{1}, \xi\right\rangle \cdots\left\langle a_{n}, \xi\right\rangle\right|, \tag{4.4}
\end{equation*}
$$

that is, ξ is a local (conditional) maximum of polynomial P on S_{H}. Then we have

$$
\begin{equation*}
n \xi=\frac{a_{1}}{\left\langle a_{1}, \xi\right\rangle}+\cdots+\frac{a_{n}}{\left\langle a_{n}, \xi\right\rangle} . \tag{4.5}
\end{equation*}
$$

Proof of Theorem 4.6. Let $n=2,3,4$ or 5 and let the linear functionals be fixed as $a_{1}, \ldots, a_{n} \in S_{\mathbb{R}^{n}}$. Consider the Gram matrix:

$$
\begin{equation*}
A:=\left(\left\langle a_{i}, a_{j}\right\rangle\right)_{i, j=1, \ldots, n} \in \mathbb{R}^{n \times n} \tag{4.6}
\end{equation*}
$$

By an appropriate change of signs $\varepsilon_{i}= \pm 1$ of the vectors a_{i}, which does not change norm of P, we want to achieve that the row (and thus the collum) sums of the entries of A are all add up at least 1 . To get this, select signs ε_{i} to maximize $\left\|\sum_{i=1}^{n} \varepsilon_{i} a_{i}\right\|_{2}$. Write $a:=\sum_{i=1}^{n} \varepsilon_{i} a_{i}$ for this (or, any) maximal vector. If $1 \leq j \leq n$ is an arbitrary index, put

$$
b:=-2 \varepsilon_{j} a_{j}+a .
$$

Then $\|b\|_{2} \leq\|a\|_{2}$, by assumption. On the other hand, by the parallelogram law

$$
\begin{aligned}
\left\|-\varepsilon_{j} a_{j}+a\right\|_{2}^{2}+\left\|\varepsilon_{j} a_{j}\right\|_{2}^{2} & =1 / 2\left(\|a\|_{2}^{2}+\|b\|_{2}^{2}\right) \leq\|a\|_{2}^{2} \\
& \Leftrightarrow 2\left\langle\varepsilon_{j} a_{j}, \varepsilon_{j} a_{j}-a\right\rangle \leq 0,
\end{aligned}
$$

that is $\left\langle\varepsilon_{j} a_{j}, \varepsilon_{j} a_{j}-a\right\rangle \leq 0$. Obviously this implies $\left\langle a, \varepsilon_{j} a_{j}\right\rangle \geq 1, j=1, \ldots, n$ as needed. So, without loss of generality we can assume

$$
\begin{gather*}
y_{1}:=\left\langle a_{1}, a_{1}\right\rangle+\left\langle a_{1}, a_{2}\right\rangle+\cdots+\left\langle a_{1}, a_{n}\right\rangle \geq 1, \\
y_{2}:=\left\langle a_{2}, a_{1}\right\rangle+\left\langle a_{2}, a_{2}\right\rangle+\cdots+\left\langle a_{2}, a_{n}\right\rangle \geq 1, \\
\quad \vdots \tag{4.7}\\
y_{n}:=\left\langle a_{n}, a_{1}\right\rangle+\left\langle a_{n}, a_{2}\right\rangle+\cdots+\left\langle a_{n}, a_{n}\right\rangle \geq 1 .
\end{gather*}
$$

Now let us consider the mean vector

$$
\begin{equation*}
x:=\frac{a}{\|a\|_{2}}=\frac{a_{1}+\cdots+a_{n}}{\left\|a_{1}+\cdots+a_{n}\right\|_{2}} . \tag{4.8}
\end{equation*}
$$

The theorem will be proved once we show the following lemma.
Lemma 4.8. Let $n \leq 5$. Suppose that the signs of the unit vectors $a_{i}(i=$ $1, \ldots, n)$ are chosen so that (4.7) holds. Then the mean vector (4.8) satisfies $|P(x)| \geq n^{-n / 2}$.
Proof. By definition and (4.7), we have $1 \leq y_{i} \leq n(i=1, \ldots, n)$. The assertion is equivalent to state that the inequality

$$
\begin{equation*}
y_{1}^{2} y_{2}^{2} \cdots y_{n}^{2} \geq\left(\frac{y_{1}+y_{2}+\cdots+y_{n}}{n}\right)^{n} \tag{4.9}
\end{equation*}
$$

holds true for all the possible vectors $y:=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ which arise from Gram matrices (4.6) of unit vectors systems satisfying (4.7). However, it is rather difficult to describe the exact set of the arising vectors y, so we settle with the following.

Lemma 4.9. Let $n \leq 5$. Then (4.9) holds true for all $y \in[1, n]^{n}$.
Proof. First we remark that $n^{2} \geq\left(2-\frac{1}{n}\right)^{n}$ for $n=2,3,4$ and 5 , while it is false for $n>5$. However, inequality $n^{2} \geq\left(2-\frac{1}{n}\right)^{n}$ is just the special case of (4.9) when $y=(1, \ldots, 1, n)$, whence in general (4.9) fails at $y=(1, \ldots, 1, n)$ for $n>5$. So let $n \leq 5$ and let us exploit the fact that (4.9) holds when $y=(1, \ldots, 1, n)$. First let us consider the variable values $y(t):=(1, \ldots, 1, t)$ in the interval $1 \leq t \leq n$. For these special values the left-hand side of (4.9) is t^{2} and the right-hand side is $\left(\frac{n-1+t}{n}\right)^{n}$, hence (4.9) is equivalent to $q(t) \geq 0$, with $q(t):=2 \log t-n \log \left(\frac{n-1+t}{n}\right)^{n}$. By the above we have $q(n) \geq 0$, while $q(1)=0$, hence it suffices to show that $q(t)$ is, in fact, a concave function on $[1, n]$. This follows from computing

$$
q^{\prime \prime}(t)=\frac{-2}{t^{2}}+\frac{n}{(n-1+t)^{2}}=\frac{(n-2) t^{2}-4(n-1) t-2(n-1)^{2}}{t^{2}(n-1+t)^{2}}<0
$$

the last inequality being valid between the two roots $t_{1}^{(n)}$ and $t_{2}^{(n)}$ of the quadratic polynomial in the numerator. (Here, again, one has to use the restricted range of n when calculating $\left.[1, n] \subset\left[t_{1}^{(n)}, t_{2}^{(n)}\right]\right)$. Let now m be the number of indices of coordinates y_{j} with $1<y_{j} \leq n$. When $m=0$, (4.9) degenerates to $1=1$, and when $m=1$, we obtain (4.9) from the above consideration for $y(t)$. So we argue by induction. Let now $1 \leq m<n$, suppose that (4.9) holds for the values when at most m of the variables differ from 1 , and let us prove (4.9) for the vector $y=\left(1, \ldots, 1, y_{k}, y_{k+1}, \ldots, y_{n}\right)$, where $k:=n-m$. First let us apply the inductive hypothesis for $y=\left(1, \ldots, 1, y_{k+1}, \ldots, y_{n}\right)$ to get

$$
\begin{equation*}
y_{k+1}^{2} \cdots y_{n}^{2} \geq\left(\frac{k+y_{k+1}+\cdots+y_{n}}{n}\right)^{n} \tag{4.10}
\end{equation*}
$$

Now, put $t:=1+\frac{n\left(y_{k}-1\right)}{k+y_{k+1}+\cdots+y_{n}}$. Then obviously $1 \leq t \leq y_{k}$, hence by the $m=1$ case of $y(t)$ we get

$$
\begin{equation*}
y_{k}^{2} \geq t^{2} \geq\left(1+\frac{t-1}{n}\right)^{n}=\left(1+\frac{y_{k}-1}{k+y_{k+1}+\cdots+y_{n}}\right)^{n} . \tag{4.11}
\end{equation*}
$$

Multiplying together equations (4.10) and (4.11) gives (4.9).
We also give another proof for $n=2,3,4$. We must prove that:

$$
\sup _{\|\xi\|_{2}=1}\left|\left\langle x_{1}, \xi\right\rangle\left\langle x_{2}, \xi\right\rangle \cdots\left\langle x_{n}, \xi\right\rangle\right| \geq \frac{1}{n^{n / 2}},
$$

where $x_{1}, x_{2}, \ldots, x_{n}$ are unit vectors in a real Hilbert space. We must show that this holds for

$$
\xi:=\frac{x_{1}+\cdots+x_{n}}{\left\|x_{1}+\cdots+x_{n}\right\|_{2}} .
$$

So, without loss of generality we can assume:

$$
\begin{gathered}
\left\langle x_{1}, x_{2}\right\rangle+\left\langle x_{1}, x_{3}\right\rangle+\cdots+\left\langle x_{1}, x_{n}\right\rangle \geq 0 \\
\left\langle x_{2}, x_{1}\right\rangle+\left\langle x_{2}, x_{3}\right\rangle+\cdots+\left\langle x_{2}, x_{n}\right\rangle \geq 0 \\
\vdots \\
\left\langle x_{n}, x_{1}\right\rangle+\left\langle x_{n}, x_{2}\right\rangle+\cdots+\left\langle x_{n}, x_{n-1}\right\rangle \geq 0
\end{gathered}
$$

The case $\mathbf{n}=\mathbf{2}$: We must show that:

$$
\sup _{\|\xi\|_{2}=1}\left|\left\langle x_{1}, \xi\right\rangle\left\langle x_{2}, \xi\right\rangle\right| \geq \frac{1}{2},
$$

where $\xi:=\frac{x_{1}+x_{2}}{\left\|x_{1}+x_{2}\right\|_{2}}$. We obtain that:

$$
\begin{aligned}
\left\langle x_{1}, \xi\right\rangle\left\langle x_{2}, \xi\right\rangle & =\frac{\left\langle x_{1}, x_{1}+x_{2}\right\rangle\left\langle x_{2}, x_{1}+x_{2}\right\rangle}{\left\|x_{1}+x_{2}\right\|_{2}^{2}}=\frac{\left[1+\left\langle x_{1}, x_{2}\right\rangle\right]^{2}}{2+2\left\langle x_{1}, x_{2}\right\rangle} \\
& =\frac{1+\left\langle x_{1}, x_{2}\right\rangle}{2} \geq \frac{1}{2}
\end{aligned}
$$

as we have that $\left\langle x_{1}, x_{2}\right\rangle \geq 0$. The equality holds if and only if $\left\langle x_{1}, x_{2}\right\rangle=0$.
The case $\mathbf{n}=3$: We must show that:

$$
\sup _{\|\xi\|_{2}=1}\left|\left\langle x_{1}, \xi\right\rangle\left\langle x_{2}, \xi\right\rangle\left\langle x_{3}, \xi\right\rangle\right| \geq \frac{1}{3^{\frac{3}{2}}},
$$

where $\xi:=\frac{x_{1}+x_{2}+x_{3}}{\left\|x_{1}+x_{2}+x_{3}\right\|_{2}}$. We also obtain the following relation

$$
\begin{aligned}
& \left\langle x_{1}, \xi\right\rangle\left\langle x_{2}, \xi\right\rangle\left\langle x_{3}, \xi\right\rangle \\
= & \frac{\left\langle x_{1}, x_{1}+x_{2}+x_{3}\right\rangle\left\langle x_{2}, x_{1}+x_{2}+x_{3}\right\rangle\left\langle x_{3}, x_{1}+x_{2}+x_{3}\right\rangle}{\left\|x_{1}+x_{2}+x_{3}\right\|_{2}^{3}} \\
= & \frac{\left[1+\left\langle x_{1}, x_{2}\right\rangle+\left\langle x_{1}, x_{3}\right\rangle\right] \cdot\left[1+\left\langle x_{1}, x_{2}\right\rangle+\left\langle x_{2}, x_{3}\right\rangle\right] \cdot\left[1+\left\langle x_{1}, x_{3}\right\rangle+\left\langle x_{2}, x_{3}\right\rangle\right]}{\left\{3+2\left[\left\langle x_{1}, x_{2}\right\rangle+\left\langle x_{1}, x_{3}\right\rangle+\left\langle x_{2}, x_{3}\right\rangle\right]\right\}^{\frac{3}{2}}} .
\end{aligned}
$$

If we take that

$$
\begin{aligned}
& a=1+\left\langle x_{1}, x_{2}\right\rangle+\left\langle x_{1}, x_{3}\right\rangle \geq 1, \\
& b=1+\left\langle x_{1}, x_{2}\right\rangle+\left\langle x_{2}, x_{3}\right\rangle \geq 1, \\
& c=1+\left\langle x_{1}, x_{3}\right\rangle+\left\langle x_{2}, x_{3}\right\rangle \geq 1,
\end{aligned}
$$

then we must prove the following estimate:

$$
\begin{aligned}
\left\langle x_{1}, \xi\right\rangle\left\langle x_{2}, \xi\right\rangle\left\langle x_{3}, \xi\right\rangle & =\frac{a \cdot b \cdot c}{(a+b+c)^{\frac{3}{2}}} \geq \frac{1}{3^{\frac{3}{2}}} \\
& \Leftrightarrow \frac{(a \cdot b \cdot c)^{2}}{(a+b+c)^{3}} \geq \frac{1}{3^{3}} \\
& \Leftrightarrow(a \cdot b \cdot c)^{2} \geq\left(\frac{a+b+c}{3}\right)^{3} .
\end{aligned}
$$

We assume that

$$
f(a, b, c)=(a \cdot b \cdot c)^{2}-\left(\frac{a+b+c}{3}\right)^{3}
$$

then we must prove that $f(a, b, c) \geq 0$ for $1 \leq a, b, c \leq 3$. We are looking for local extremals

$$
\left\{\begin{array}{c}
f_{a}=2 a b^{2} c^{2}-\left(\frac{a+b+c}{3}\right)^{2}=0 \\
f_{b}=2 a^{2} b c^{2}-\left(\frac{a+b+c}{3}\right)^{2}=0 \\
f_{c}=2 a^{2} b^{2} c-\left(\frac{a+b+c}{3}\right)^{2}=0
\end{array}\right.
$$

So, inside the interval we must have $a=b=c$. Then equality $f_{a}=0$ becomes:

$$
\begin{aligned}
2 a^{5}-a^{2}=0 & \Rightarrow \quad a^{2}\left(2 a^{3}-1\right)=0 \\
& \Rightarrow a=0 \text { or } a^{3}=\frac{1}{2} \\
& \Rightarrow a=\frac{1}{\sqrt[3]{2}}<1
\end{aligned}
$$

outside the interval. Similarly we must examine the smallest value:

$$
1 \leq a, b, c \leq 3
$$

- $a=1$ or $a=3$. We have that the following relations hold true

$$
f(1, b, c)=b^{2} c^{2}-\left(\frac{1+b+c}{3}\right)^{3} \quad \text { and } \quad f(3, b, c)=9 b^{2} c^{2}-\left(\frac{3+b+c}{3}\right)^{3} .
$$

Now, since $\frac{1+b+c}{3} \geq 1$, we obtain

$$
\begin{aligned}
f(3, b, c) & =9 b^{2} c^{2}-\left[\frac{2}{3}+\left(\frac{1+b+c}{3}\right)\right]^{3} \\
& \geq 9 b^{2} c^{2}-\left(\frac{1+b+c}{3}\right)^{3} \cdot\left(\frac{2}{3}+1\right)^{3} \\
& =9 b^{2} c^{2}-\frac{125}{27}\left(\frac{1+b+c}{3}\right)^{3} \\
& \geq \frac{125}{27} f(1, b, c)
\end{aligned}
$$

The above result shows that we have equality only for $a=b=c=1$. Thus, we must show that $f(1, b, c) \geq 0$ for $1 \leq b, c \leq 3$. We define:

$$
g(b, c) \equiv f(1, b, c) \quad \Leftrightarrow \quad g(b, c)=b^{2} c^{2}-\left(\frac{1+b+c}{3}\right)^{3}
$$

We are looking for local extremals:

$$
\left\{\begin{array}{l}
g_{b}=2 b c^{2}-\left(\frac{1+b+c}{3}\right)^{2}=0 \\
g_{c}=2 b^{2} c-\left(\frac{1+b+c}{3}\right)^{2}=0
\end{array}\right.
$$

Inside the interval we get $b=c$, since $b=\frac{b+2 b}{3} \geq \frac{1+2 b}{3}$ and $b \geq 1$, hence we have:

$$
g(b, b)=b^{4}-\left(\frac{1+2 b}{3}\right)^{3} \geq b^{4}-b^{3} \geq 0
$$

Thus, we must check the results for the boundary values $b=1$ or $b=3$. We have the following relations

$$
g(1, c)=c^{2}-\left(\frac{2+c}{3}\right)^{3} \quad \text { and } \quad g(3, c)=9 c^{2}-\left(\frac{4+c}{3}\right)^{3} .
$$

Now, since $\frac{2+c}{3} \geq 1$, we have

$$
\begin{aligned}
g(3, c) & =9 c^{2}-\left[\frac{2}{3}+\left(\frac{2+c}{3}\right)\right]^{3} \\
& \geq 9 c^{2}-\left(\frac{2+c}{3}\right)^{3} \cdot\left(\frac{2}{3}+1\right)^{3} \\
& =9 c^{2}-\frac{125}{27}\left(\frac{2+c}{3}\right)^{3} \geq \frac{125}{27} g(1, c)
\end{aligned}
$$

Thus, it is enough for us to prove that: $g(1, c) \geq 0$ for $1 \leq c \leq 3$. Indeed, for

$$
\begin{aligned}
& g(1, c)=c^{2}-\left(\frac{2+c}{3}\right)^{3} \\
& \Rightarrow \quad g^{\prime}(1, c)=2 c-\left(\frac{2+c}{3}\right)^{2}=-\frac{1}{9}\left(c^{2}-14 c+4\right) .
\end{aligned}
$$

So, we have that $g^{\prime}(1, c)=0$ for $c=\frac{14 \pm \sqrt{14^{2}-16}}{2}=7 \pm \sqrt{7^{2}-4}$. We also get that $g^{\prime}(1, c) \stackrel{\mathrm{c} \equiv 1}{=} 1>0$ and $g^{\prime}(1, c) \stackrel{\mathrm{c} \equiv 3}{=} 6-\left(\frac{5}{3}\right)^{2}>1>0$. The biggest number is >3, and the smallest is <1, since it holds that

$$
7-\sqrt{7^{2}-4}<1 \quad \Leftrightarrow \quad c \leq \sqrt{45} .
$$

Finally we have the next relations $g^{\prime}(1,0)>0$ and $g(1,1)=0$.
The case $\mathbf{n}=4$: We must show that:

$$
\sup _{\|\xi\|_{2}=1}\left|\left\langle x_{1}, \xi\right\rangle\left\langle x_{2}, \xi\right\rangle\left\langle x_{3}, \xi\right\rangle\left\langle x_{4}, \xi\right\rangle\right| \geq \frac{1}{4^{\frac{4}{2}}}=\frac{1}{4^{2}},
$$

where $\xi:=\frac{x_{1}+x_{2}+x_{3}+x_{4}}{\left\|x_{1}+x_{2}+x_{3}+x_{4}\right\|_{2}}$. We have the following relation

$$
\begin{aligned}
& \left\langle x_{1}, \xi\right\rangle\left\langle x_{2}, \xi\right\rangle\left\langle x_{3}, \xi\right\rangle\left\langle x_{4}, \xi\right\rangle \\
= & \frac{\left\langle x_{1}, x_{1}+x_{2}+x_{3}+x_{4}\right\rangle\left\langle x_{2}, x_{1}+x_{2}+x_{3}+x_{4}\right\rangle\left\langle x_{3}, x_{1}+x_{2}+x_{3}+x_{4}\right\rangle}{\left\|x_{1}+x_{2}+x_{3}+x_{4}\right\|_{2}^{4}} \\
& \times\left\langle x_{4}, x_{1}+x_{2}+x_{3}+x_{4}\right\rangle \\
= & \frac{\left[1+\left\langle x_{1}, x_{2}\right\rangle+\left\langle x_{1}, x_{3}\right\rangle+\left\langle x_{1}, x_{4}\right\rangle\right] \cdot\left[1+\left\langle x_{1}, x_{2}\right\rangle+\left\langle x_{2}, x_{3}\right\rangle+\left\langle x_{2}, x_{4}\right\rangle\right]}{\left\{4+2\left[\left\langle x_{1}, x_{2}\right\rangle+\left\langle x_{1}, x_{3}\right\rangle+\left\langle x_{1}, x_{4}\right\rangle+\left\langle x_{2}, x_{3}\right\rangle+\left\langle x_{2}, x_{4}\right\rangle+\left\langle x_{3}, x_{4}\right\rangle\right]\right\}^{\frac{4}{2}}} \\
& \times\left[1+\left\langle x_{1}, x_{3}\right\rangle+\left\langle x_{2}, x_{3}\right\rangle+\left\langle x_{3}, x_{4}\right\rangle\right]\left[1+\left\langle x_{1}, x_{4}\right\rangle+\left\langle x_{2}, x_{4}\right\rangle+\left\langle x_{3}, x_{4}\right\rangle\right] .
\end{aligned}
$$

If

$$
\begin{aligned}
& a=1+\left\langle x_{1}, x_{2}\right\rangle+\left\langle x_{1}, x_{3}\right\rangle+\left\langle x_{1}, x_{4}\right\rangle \geq 1, \\
& b=1+\left\langle x_{1}, x_{2}\right\rangle+\left\langle x_{2}, x_{3}\right\rangle+\left\langle x_{2}, x_{4}\right\rangle \geq 1, \\
& c=1+\left\langle x_{1}, x_{3}\right\rangle+\left\langle x_{2}, x_{3}\right\rangle+\left\langle x_{3}, x_{4}\right\rangle \geq 1, \\
& d=1+\left\langle x_{1}, x_{4}\right\rangle+\left\langle x_{2}, x_{4}\right\rangle+\left\langle x_{3}, x_{4}\right\rangle \geq 1,
\end{aligned}
$$

then we must show that:

$$
\begin{aligned}
\left\langle x_{1}, \xi\right\rangle\left\langle x_{2}, \xi\right\rangle\left\langle x_{3}, \xi\right\rangle\left\langle x_{4}, \xi\right\rangle & =\frac{a \cdot b \cdot c \cdot d}{(a+b+c+d)^{\frac{4}{2}}} \geq \frac{1}{4^{\frac{4}{2}}} \\
& \Leftrightarrow \frac{(a \cdot b \cdot c \cdot d)^{2}}{(a+b+c+d)^{4}} \geq \frac{1}{4^{4}} \\
& \Leftrightarrow(a \cdot b \cdot c \cdot d)^{2} \geq\left(\frac{a+b+c+d}{4}\right)^{4} .
\end{aligned}
$$

Suppose we have

$$
f(a, b, c, d)=(a \cdot b \cdot c \cdot d)^{2}-\left(\frac{a+b+c+d}{4}\right)^{4}
$$

then we prove that $f(a, b, c, d) \geq 0$ for $1 \leq a, b, c, d \leq 4$. We are looking for local extremals:

$$
\left\{\begin{array}{c}
f_{a}=2 a b^{2} c^{2} d^{2}-\left(\frac{a+b+c+d}{4}\right)^{3}=0 \\
f_{b}=2 a^{2} b c^{2} d^{2}-\left(\frac{a+b+c+d}{4}\right)^{3}=0 \\
f_{c}=2 a^{2} b^{2} c d^{2}-\left(\frac{a+b+c+d}{4}\right)^{3}=0 \\
f_{d}=2 a^{2} b^{2} c^{2} d-\left(\frac{a+b+c+d}{4}\right)^{3}=0
\end{array}\right.
$$

So, inside the interval we must have: $a=b=c=d$. Then, equality $f_{a}=0$ becomes:

$$
\begin{aligned}
2 a^{7}-a^{3}=0 & \Rightarrow \quad a^{3}\left(2 a^{4}-1\right)=0 \\
& \Rightarrow a=0 \quad \text { or } a^{4}=\frac{1}{2} \\
& \Rightarrow a=\frac{1}{\sqrt[4]{2}}<1,
\end{aligned}
$$

outside the interval. Similarly we must examine the smallest value:

$$
1 \leq a, b, c, d \leq 4
$$

- $a=1$ or $a=4$. We have the following results

$$
f(1, b, c, d)=b^{2} c^{2} d^{2}-\left(\frac{1+b+c+d}{4}\right)^{4}
$$

and

$$
f(4, b, c, d)=16 b^{2} c^{2} d^{2}-\left(\frac{4+b+c+d}{4}\right)^{4} .
$$

Since $\frac{1+b+c+d}{4} \geq 1$, thus

$$
\begin{aligned}
f(4, b, c, d) & =16 b^{2} c^{2} d^{2}-\left[\frac{3}{4}+\left(\frac{1+b+c+d}{4}\right)\right]^{4} \\
& \geq 16 b^{2} c^{2} d^{2}-\left(\frac{1+b+c+d}{4}\right)^{4} \cdot\left(\frac{3}{4}+1\right)^{4} \\
& \geq 16 b^{2} c^{2} d^{2}-\left(\frac{3}{4}+1\right)^{4}\left(\frac{1+b+c+d}{4}\right)^{4} \\
& \geq\left(\frac{3}{4}+1\right)^{4} f(1, b, c, d)
\end{aligned}
$$

The above result shows that we have equality only for $a=b=c=d=1$. Thus, we must show that $f(1, b, c, d) \geq 0$ for $1 \leq b, c, d \leq 4$. We define

$$
\begin{aligned}
& g(b, c, d) \equiv f(1, b, c, d) \\
& \Leftrightarrow g(b, c, d)=b^{2} c^{2} d^{2}-\left(\frac{1+b+c+d}{4}\right)^{4}
\end{aligned}
$$

for $1 \leq b, c, d \leq 4$. Also we have

$$
\begin{aligned}
& g(b, b, b)=b^{6}-\left(\frac{1+3 b}{4}\right)^{4} \quad \text { and } \quad b=\frac{b+3 b}{4} \geq \frac{1+3 b}{4} \\
& \Rightarrow g(b, b, b) \geq b^{6}-b^{4} \quad \text { and } \quad b \geq 1 \Rightarrow g(b, b, b) \geq 0
\end{aligned}
$$

Hence, we must check the results for the boundary values $b=1$ or $b=4$. We have the following relations

$$
g(1, c, d)=c^{2} d^{2}-\left(\frac{2+c+d}{4}\right)^{4} \quad \text { and } g(4, c, d)=16 c^{2} d^{2}-\left(\frac{5+c+d}{4}\right)^{4}
$$

Hence, since $\frac{2+c+d}{4} \geq 1$, we obtain

$$
\begin{aligned}
g(4, c, d) & =16 c^{2} d^{2}-\left[\frac{3}{4}+\left(\frac{2+c+d}{4}\right)\right]^{4} \\
& \geq 16 c^{2} d^{2}-\left(\frac{2+c+d}{4}\right)^{4} \cdot\left(\frac{3}{4}+1\right)^{4} \\
& \geq\left(\frac{3}{4}+1\right)^{4} g(1, c, d)
\end{aligned}
$$

We define the next relation:

$$
\begin{aligned}
& h(c, d) \equiv g(1, c, d) \text { for } 1 \leq c, d \leq 4 \\
& \Rightarrow \quad h(c, d)=c^{2} d^{2}-\left(\frac{2+2 c}{4}\right)^{4} \text { and } c \geq 1 \\
& \Rightarrow \quad h(c, c) \geq c^{4}-\left(\frac{1+c}{2}\right)^{4} \\
& \Rightarrow \quad h(c, c) \geq 0
\end{aligned}
$$

Hence, we must check the results for the boundary values $c=1$ or $c=4$. We have that

$$
h(1, d)=d^{2}-\left(\frac{3+d}{4}\right)^{4}
$$

and

$$
h(4, d)=16 d^{2}-\left(\frac{2+4+d}{4}\right)^{4}=16 d^{2}-\left(\frac{6+d}{4}\right)^{4}
$$

Now, since $\frac{3+d}{4} \geq 1$, we get that

$$
\begin{aligned}
h(4, d) & =16 d^{2}-\left(\frac{6+d}{4}\right)^{4}=16 d^{2}-\left[\frac{3}{4}+\left(\frac{3+d}{4}\right)\right]^{4} \\
& \geq 16 d^{2}-\left(\frac{3+d}{4}\right)^{4} \cdot\left(\frac{3}{4}+1\right)^{4} \geq\left(\frac{3}{4}+1\right)^{4} h(1, d)
\end{aligned}
$$

Thus, we must prove that

$$
\begin{aligned}
& h(1, d) \geq 0 \text { for } 1 \leq d \leq 4 \quad \Rightarrow \quad h(1, d)=d^{2}-\left(\frac{3+d}{4}\right)^{4} \\
& \Rightarrow \quad h(1, d)=0 \Rightarrow \quad\left(\frac{3+d}{4}\right)^{4}=d^{2} \quad \Rightarrow \quad\left(\frac{3+d}{4}\right)^{2}= \pm d \\
& \Rightarrow \quad(3+d)^{2}= \pm 16 d \quad \Rightarrow \quad 9+6 d+d^{2}= \pm 16 d \\
& \Rightarrow \quad d^{2}+22 d+9=0 \text { and } d^{2}-10 d+9=0 .
\end{aligned}
$$

- $d^{2}+22 d+9=0 \Rightarrow d=-11 \pm \sqrt{112}<1$, outside the interval.
- $d^{2}-10 d+9=0 \quad \Rightarrow \quad d=1$ and $d=9$.

The $h(1, d)$ is positive for our interval $(1 \leq d \leq 4)$.
The case n: We must prove the following result:

$$
\sup _{\|\xi\|_{2}=1}\left|\left\langle x_{1}, \xi\right\rangle\left\langle x_{2}, \xi\right\rangle \cdots\left\langle x_{n}, \xi\right\rangle\right| \geq \frac{1}{n^{n / 2}} .
$$

We have that

$$
f\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n}\right)^{2}-\left(\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}\right)^{n} \geq 0
$$

where $1 \leq a_{1}, a_{2}, \ldots, a_{n} \leq n$.
We proved the cases $n=2,3,4$ in a different way. Those proofs can be generalized for n. We hope that in the future, we will be able to get results for this special generalized case.

References

[1] J. Arias-de-Reyna, Gaussian Variables, Polynomials and Permanents, Linear Algebra and Appl., 285 (1998), 395-408.
[2] K.M. Ball, The Complex Plank Problem, Bull. London Math. Soc., 33 (2001), 433-442.
[3] C. Benítez, Y. Sarantopoulos and A. Tonge, Lower Bounds for Norms of Products of Polynomials, Math. Proc. Camb. Phil. Soc., 124 (1998), 395-408.
[4] A. Kroó and I. Pritsker, A Sharp Version of Mahler's Inequality for Products of Polynomials, Bull. London Math. Soc., 31 (1999), 269-278.
[5] K. Mahler, An Application of Jensen's Formula to Polynomials, Mathematika, 7 (1960), 98-100.
[6] A. Pappas and S.G. Revez, Linear Polarization Constants of Hilbert Spaces, J. Math. Anal. Appl., 300 (2004), 129-146.
[7] R.A. Ryan and B. Turett, Geometry of Spaces of Polynomials, J. Math. Anal. Appl., 221(2) (1998), 698-711.

[^0]: ${ }^{0}$ Received July 10, 2014. Revised November 11, 2014.
 ${ }^{0} 2010$ Mathematics Subject Classification: 46H70, 47A07, 32C15, 47A56, 46G25, 11H55.
 ${ }^{0}$ Keywords: Banach space, homogeneous polynomial, complex normed space, Gramm matrix, n-th linear polarization constant, quadratic polynomial.

