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Abstract. A. Aziz and Q. Aliya proved that if P(z) = a0 +>°)_, av2”, 1 < p < nis
a polynomial of degree n not vanishing in the disk |z| < k where k > 1, then for every
R>r>1,0<t<1land|z|=1,

R" —1r" .
(P(R) = P2)| < (1 ) (maxl P ymin (o) )

where
k+ M(R, 7, p k)
R k) :=
¢)1( s Ty [y ) 1+k’)\1(R,T‘,,U/,k)’
and
RH — pH lau|E™
A ,,,k::( )( p )<1
1(Bomy s k) R —rn/ \ao| —mt/ —

with m = min|P(z)|. In this paper, a refinement of above inequality is obtained.

|z|=1

1. INTRODUCTION

Let P(z) be a polynomial of degree n and P’(z) be its derivative. Then
concerning the estimate of the maximum of |P’(z)| on the unit circle |z| = 1,
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we have
max | P'(z)| < nmax|P(2)]. (1.1)
|z|=1 |z]=1
The above result is due to S. Bernstien [4] known as Bernstein’s inequality.
The result is best possible and equality in (1.1) holds for P(z) = \z", X # 0.
Concerning the estimate for the maximum modulus on a larger circle |z| =
R, where R > 1, it is well known and is a simple consequence of the Maxi-
mum Modulus Principle(for reference see [13, Vol. 1, p.137]) that if P(z) is a
polynomial of degree n, then
max |P(z)] < R"max|P(z)]. (1.2)
|z|=R>1 |z|=1
The result is sharp and the extremal polynomial is P(z) = Az™; A # 0.
If we restrict ourselves to the class of polynomials having no zero in |z| <
1, then both the inequalities (1.1) and (1.2) can sharpened. In fact it was
conjectured by P. Erdos and later verified by P.D. Lax [9] that if P(z) is a
polynomial of degree n which does not vanish in |z| < 1, then

n
P < = P(2)|. 1.3
max |P'(2)| < 3 max|P(z)| (1.3)

The result is best possible and equality in (1.3) holds for P(z) = a+ 82", |a| =

18-
As an extension of (1.3), Malik [11] proved that if P(z) is a polynomial of

degree n such that P(z) # 0 in |2| < k, k > 1, then
n
P < — P . 1.4
max | P'(2)| < g max| P(2)] (1.4)
Ankeny and Rivilin [1] used inequality (1.3) and proved that if P(z) is a
polynomial of degree n and P(z) does not vanish in |z| < 1, then

P < P . 1.5

VQ%J (2)] < ﬁgi(d! (1.5)

The result is sharp and equality in (1.5) holds for P(z) = a+ 2", |a| = |B].
As a compact generalization of the inequalities (1.3) and (1.5), A. Aziz and
Rather [3] have proved that if P(z) is a polynomial of degree n which does
not vanish in |z| < 1, then for R > 1,
R —1

<

|P(Rz) — P(2)| max |P(z)| for |z|=1. (1.6)

|2|=1
The result is sharp and equality in (1.6) holds for the polynomial P(z) =
A"+ ‘)" = |M| =1
As a generalization of (1.4), it was shown by Chan and Malik [5] that if
P(z) = ap + ZZ:M a,z”, 1 < p < n is a polynomial of degree n which does
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not vanish in the disk |z| < k, £ > 1 then

max |P'(z)| <

|2|=1 N TR P (1.7)

Inequality (1.7) was independently proved by Qazi [14, Lemma 1], who under
the same hypothesis has shown that if P(2) =ao+ ) ,_,a2", 1<p<nisa
polynomial of degree n which does not vanish in the disk |z| < k, £ > 1 then

n
max |P'(z)] < —————— max|P(2)], 1.8
|z|=1‘ ()] < T+ kot b ) 49
where
k2|2 kH
n | ag
o(p, k) = (1.9)
I
and
Floulgn <1, 1<p<n. (1.10)
n |ag

Clearly ¢(p,k) > 1 for k > 1 and 1 < p < n. Hence, (1.8) is refinement of
inequality (1.7). For p = 1 inequality (1.7) is due to Malik [10] and inequality
(1.8) was proposed by Govil, Rahman and Schmeisser [8].

A. Aziz and Q. Aliya [2] considered for a fixed p, the class of polynomials

n
Prp = <P(z) =ag+ Zayz”, 1<u< n)
v=p

of degree at most n not vanishing in the disk |z| < k where £k > 1 and
investigated the dependence of

‘mla}ldP(Rz)—P(rz)’ on ‘mla>1(|P(z)|, ‘II|11III€|P(Z)’

In this direction, they [2] proved the following more general result which consti-
tute a multi faced generalization of several well known polynomial inequalities.

Theorem 1.1. If P € P, and P(z) does not vanish in the disk |z| < k,
where k > 1, then for every R>r >1,0<t <1 and |z| =1,

‘P(Rz) — P(rz)’

R" — pn .
< (T mam ) (mere! - e (1)

where
k + )\1 (R7 r, L, k)

¢1(R7T;Mak) = 1+ k)\l(R, T, ]{7)’ (112)




100 N. A. Rather, Suhail Gulzar and K. A. Thakur

and

M (R, k) = (R“ _T“)( K ) <1 (1.13)

R™ —r™ ) \ag| — mt
with m = min|P(z)|.

|z|=1
2. LEMMAS

For the proofs of our main results, we need the following Lemmas. The first
Lemma is due to Aziz and Aliya [2].

Lemma 2.1. If P € P, ,, and P(z) does not vanish in the disk |z| < k, where
k>1 and Q(z) = 2"P(1/Z), then for R>r > 1 and |z| =1,

Eto1(R, 7, p, k)’P(Rz) - P(rz)‘ < ’Q(Rz) — Q(rz)| = (R" —r")tm, (2.1)
where ¢1(R, T, 1, k) is given by (1.12) and m = |min\P(z)|.

We also need the following lemma which is a special case of a result due to
Govil and Rahman [7, Lemma 10].

Lemma 2.2. If P(2) is a polynomial of degree n, then for |z| =1,
[P'(2)] +1Q'(2)] < nH1|§>1<\P(Z)!,

|z

where Q(z) = z"P(1/Z).
Next Lemma is due to Frappier et al. [6].

Lemma 2.3. Let P(z) be a polynomial of degree n, where n > 2. Then for
all R > 1,

max|P(z)| < R"max|P(z)| — (R" — R"3)|P(0)| for n>2, (2.2)

|z|=R |z]=1

and

max|P(2)| < Rmax|P() - (R-DIPO)] for n=1 (23

We use Lemma 2.3 to prove the following result which is also of independent
interest.

Lemma 2.4. Let P(z) be a polynomial of degree n > 3 and Q(z) = 2" P(1/%Z).
Then for every R >r >1 and |z| =1,
|P(Rz) — P(rz)| + |Q(Rz) — Q(rz)|
R™ —pn B Rn72_rnf2
n n—2

< (R"=1r") |m|a>1<IP(Z)I—

) PO 1QO)]. (2.4)
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Proof. By Lemma 2.2, we have
|P'(2) + aQ'(2)| < nmﬁ}lc\P(zﬂ (2.5)

|z

for |z| = 1 and for every a € C with |o| = 1. Applying Lemma 2.3 to the
polynomial P’'(2) + aQ'(z) and using (2.5), we obtain for ¢t > 1, o € C with
la| =1 and |z| =1,

|P'(tz) + aQ'(tz)| <t max |P'(2) + Q' (z)|

_ (tn—l . tn—S) ‘PI(O) + OZQ/(O)‘
< nt"fllr?‘ng(z)]— (1 —¢"3) |P'(0)+aQ'(0)] . (2.6)

Choosing the argument of « in (2.6) such that
|P'(tz) + aQ'(tz)| = |P'(t2)| + |Q'(tz)]
for |z] =1 and from (2.6) by using traingle inequality, we obtain

P (1) e (1)

< nt"_lglli>1<|P(z)| = (=) [IP0) — Q' (0)]] (2.7)

where 0 < 0 < 27. Hence for R >r > 1 and 0 < 0 < 27, we get with the help
of (2.7).

(1) £ () fo () 0 )

= /ewP’(tew)dt + /er'(tew)dt

x .
g/‘P/(tew)‘dt—k/‘Q’(tew)‘dt

R

- / (|Prce)| + @t ) an

T

A R
n—1 / ’ ne1 3
Slr?g!P(z)\/nt dt —||P'(0)] - |Q (O)H/(t ) ar
RY — ™ Rn—2_ n—2 / /
- (Rn_r”)gli}f’P(Z)\—< . o n_g > ||P(0)|—1Q(0)]] -

This completes the proof of Lemma 2.4. O
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Next Lemma is also obtained by using Lemma 2.3.

Lemma 2.5. If P(z) is a polynomial of degree n where n > 3, with |[P(0)| # 0
and Q(z) = 2" P(1/Zz), then for every R >r > 1 and |z| =1,

|P(Rz) — P(rz)| + |Q(Rz) — Q(rz)|

no__ pn n—2 _ ,ran
(R L )uﬁmn+@mm,

<(R"™ — r")max|P(z)| — - p—

- j2=1

provided |P'(z)| and |Q'(2)| become mazimum at the same point on |z| = 1.

Proof. Since P(z) is a polynomial of degree n and P(0) # 0, then P’(z) and
Q' (z) are polynomials of degree n — 1 therefore by Lemma 2.3, we have

Pte)] < 0 maxiP' ()] - (¢ - PO 23 (28

and

Q)] < " ImaxlQ ()] — ("7 QO n=3 (29)

for allt > 1,0 < 6 < 27. Adding (2.8) and (2.9), we get

IP(te)] + Q46
n—1 / / n—1 n—3 / /
<! ()] + ()] ) - (71 - ) (P01 + 1P O))

If |P'(2)| and |Q’(2)| have maximum at zy = €0, therefore by Lemma 2.2

IP(6)] + 1@ (te)
< (IPE)] 4 1Q)]) — (7 =) (PO)]+ PO))  (210)

< nt”‘lfzﬂ‘i)flP(Z)! = (" =) (1P (0)] + [P'(0)1)
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forallt > 1,0 <0 < 27. Hence for every R > 7 > 1 and 0 < 0 < 27, we have
by using (2.10),

[P(Re™) — P(re”)| + |Q(Re”) — Q(re”))|

‘/‘ ZGPI tez@ dt’ ‘/ ZHQ tez& dt’
R
g/)P’ tew dt+/‘Q te’e
R
/(‘P’ tele +‘Q (tei) D dt

R
" ldt}fna"W ()| = (IP'(0)] + Q" (0)]) / ("t — ")t

r

n—2 T,n72
) (P ol+ o)

n —

" — r")max _ (R
— (7 - PG| - (1

which is equivalent to the desired result. O

3. MAIN RESULTS

In this paper, we first present the following result.

Theorem 3.1. If P € P,,, n > 2 and P(z) does not vanish in the disk
|z| < k, where k > 1, then for every R>r>1,0<t<1 and |z| =1,

P(R:) = Plr)| < (T ) {ma P2 - eminl P2

R 2 on ‘|P’(0)|—|Q’(O)\)
_< n n-2 > 1+ ke ’

where m = min|, 1 |P(z)| and Q(z) = 2" P(1/%).

Instead of proving Theorem 3.1, we obtain a more improved result which
among other things provide a refinement of Theorem 1.1. More precisely, we
prove:
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Theorem 3.2. If P € P,,, n > 2 and P(z) does not vanish in the disk
|z| < k, where k > 1, then for every R >r >1,0<t<1 and |z| =1,

}P(Rz) — P(rz)’

< (Tmamrms) (e ey e

(e -2 _) 1P'(0)] - 1Q'(0)]

n n—2 1+ ktor(R,ryp k) |

where ¢1(R,r, k) is given by (1.12), A\ (R,r,u, k) by (1.13) with m =
min|,—|P(2)| and Q(z) = 2" P(1/Z).
Proof. By hypothesis P € P, , and P(z) # 0 for |z| < k, where k > 1,
therefore by Lemma 2.1, for every R > r > 1,0 <t <1 and |z| = 1, we have
k‘ud)l(R) Ty W, k)‘P(RZ) - P(T‘Z)}
< Q) = QUra)| — (1" = r")taain | P(o). (32)

where ¢1(R, 7, u, k) is defined by (1.12). Also by Lemma 2.4, we get
[P(Rz) — P(rz)| + |Q(Rz) — Q(rz)|

R —pn Rn—2_,r.n—2
n n—2

< (R”—T")ﬁaﬁflP(Z)l—

)Iro-ol). @)

for |z] = 1 and for every R > r > 1. Inequality (3.2) with the help of inequality
(3.3) yields

{1 + kFo1(R, 7y e, kz)}‘P(Rz) — P(rz)‘

IN

(1 ) {2 - tmin (o) |

B Rn_,ranfQ_
n n —

)

=) [Po1- 1o

forevery R > r > 1,0 <t <1 and |z| = 1, which is equivalent to the inequality
(3.1). The proof of Theorem 3.2 is complete. O

Remark 3.3. For R>r>1andn > 2
R™ — pn Rn72 _ T.n72

n n—2

is always non-negative, therefore (3.1) provides a refinement of Theorem 1.1
provided [P(0)] # |Q'(0)].
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Theorems 3.8, as stated above, has various interesting consequences. Here
we mention few of these. Dividing the two sides of the inequality (3.1) by
R — r and making R — r, so that

ot aylkH

)‘(Tal‘bvk) : < ]-7

e |ag| — mt ~
we immediately obtain the following interesting result which is a refinement
as well as a generalization of inequality (1.8).

Corollary 3.4. If P € P,,, n > 2 and P(z) does not vanish in the disk
|z| <k, where k> 1, then 0 <t <1 and |z| =1,

nrn—2

PO < (T ) (P - i)
1P/ - Q)

B (rn—Q B rn—4) 1+ kkp(r, pu, k) (34)
where
L ol
b, ) o= — 1 0] =t (3.5)

LT# ‘au‘kuﬂ 7
nre lag| — mt

m = F\IL%W(Z)‘ and Q(z) ==z2"P(1/z).
Remark 3.5. For r =1 and t = 0, Corollary 3.4 reduces to (1.8).
Taking t = r = 1 and using the obvious inequality
|P(Rz)| < |P(Rz) — P(2)| + |P(2)],
in Theorem 3.8, we get the following interesting result.

Corollary 3.6. If P € P,,, n > 2 and P(z) does not vanish in the disk
|z| <k, where k > 1, then for every R > 1,

(R™ + k"¢ (R, 1, k))glli)lc}P(zﬂ — (R™— 1)‘Izr|1ir]1€‘P(z)|

P <
max|P()] < L+ ki1 (R, 1, 1, k)

(et R2 - ) 1P - Q)|

L R (R, L, k) (36)

n n—2

where ¢1(R, T, 1, k) is defined by (1.12) and Q(z) = 2" P(1/%).
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Theorem 3.1 can be improved, if |P'(z)| and |Q’'(z)| become maximum at
the same point on |z| = 1. More precisely, we prove:

Theorem 3.7. Let P € P, ,, n > 2 and P(z) does not vanish in the disk
|z| < k, where k > 1. If |P'(z)| and |Q'(z)| become mazimum at the same
point on |z| = 1, where Q(z) = z"P(1/Z), then for every R >r >1,0<t<1
and |z| =1,

P(Re) = P < (T ) {mad (o) - eminl P2

(mor ey (rulow)

where m = min, | |P(z)].

Instead of proving Theorem 3.7, we obtain a more improved result which
among other things provide a refinement of Theorem 3.7. We prove:

Theorem 3.8. Let P € P, ,, n > 2 and P(z) does not vanish in the disk
|z| < k, where k > 1. If |P'(2)| and |Q'(z)| become mazimum at the same
point on |z| = 1, where Q(z) = z"P(1/Z), then for every R >r >1,0<t<1
and |z| =1,

}P(Rz) — P(rz)‘
R
= <1+k“¢1 Rk ) { x| P(2)] = ¢ min | P(2 N} (3.7)
(Rn_r R 7“” >< [P'(0)[+]Q'(0)] )
n 1+kror(Rymypu, k) )7
where ¢1(R,r,pu, k) is given by (1.12), A\ (R,r,pu, k) by (1.13) with m =

min,;—;|P(2)| and Q(z) = 2" P(1/z).

Proof. By hypothesis P € P, , and P(z) # 0 for |z| < k, where k > 1,
therefore by Lemma 2.1, for every R >r > 1,0 <t <1 and |z| = 1, we have

Eré1 (R, py k ‘P (Rz) —P(rz)}
< [QURE) — Qra)| - (" — e P(:)], (35)

where ¢1(R, 7, u, k) is defined by (1.12). Also by Lemma 2.5, we get

|P(Rz) — P(rz)| + |Q(Rz) — Q(rz)|
<Rn_rn B Rnf2_rn72
n n—2

< (B 1" )max| P(2) -

) (PO +QO)]). (3.9)
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for |z] = 1 and for every R > r > 1. Inequality (3.8) with the help of inequality
(3.9) yields

{1+ k'¢1(R,r, 1, k) }|P(Rz) — P(rz)|

< (" =) P2~ tminl ()]

|z|=1
R™ — pn Rn—2 _ 7,n—2
— P'(0 (0
(oS (ron+ o),
for every R > r > 1,0 <t < 1 and |z|] = 1, which is equivalent to the
inequality (3.1). The proof of Theorem 3.8 is complete. O
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