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Abstract. In this paper, we consider a nonlinear functional integral equation with variable

delays. Using tools of functional analysis and Banach’s fixed point theorem in a Fréchet

space, the existence of a unique solution for the above equation is proved. Nontrivial exam-

ples are also given to illustrate our result.

1. Introduction

In this paper, we consider the following nonlinear functional integral equa-
tion with variable delays

x(t) = V
(
t, x(t),

∫ µ1(t)
0 V1

(
t, s, x(θ1(s)), ..., x(θp(s)), V̄2[x](s)

)
ds
)
,

V̄2[x](s) =
∫ µ2(s)

0 V2

(
s, r, x(θ̃1(r)), ..., x(θ̃q(r))

)
dr,

(1.1)
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t ∈ R+, where E is a Banach space, V : R+ ×E2 → E; V1 : ∆µ1 ×Ep+1 → E;
V2 : ∆µ2 × Eq → E are supposed to be continuous and ∆µi = {(t, s) ∈ R2

+ :

s ≤ µi(t)}, the functions µ1, µ2, θi, θ̃j ∈ C(R+;R+) are continuous, µ1(t),

µ2(t), θi(t), θ̃j(t) ∈ [0, t], i = 1, ..., p; j = 1, ..., q.
It is well known that integral equations have wide applications in engineer-

ing, mechanics, physics, economics, optimization, vehicular traffic, biology,
queuing theory and so on. The theory of integral equations is rapidly devel-
oping with the help of tools in functional analysis, topology and fixed-point
theory (see [1] - [11] and the references given therein).

Applying a fixed point theorems and giving the suitable assumptions, Dhage
and Ntouyas [3], Purnaras [11] also obtained some results on the existence of
solutions to the following nonlinear functional integral equation

x(t) = Q(t) +

∫ µ(t)

0
k(t, s)f(s, x(θ(s)))ds+

∫ σ(t)

0
v(t, s)g(s, x(η(s)))ds, (1.2)

t ∈ [0, 1], where E = R, 0 ≤ µ(t) ≤ t; 0 ≤ σ(t) ≤ t; 0 ≤ θ(t) ≤ t; 0 ≤ η(t) ≤
t, for all t ∈ [0, 1]. Some more general equations than (1.2) were also studied
in [11].

Using the technique of the measure of noncompactness and the Darbo fixed
point theorem, Z. Liu et al. [6] have proved the existence and asymptotic
stability of solutions for the equation

x(t) = f

(
t, x(t),

∫ t

0
u(t, s, x(a(s)), x(b(s))) ds

)
, t ∈ R+.

In [2], using a fixed point theorem of Krasnosel’skii, Avramescu and Vladimi-
rescu have proved the existence of asymptotically stable solutions to the equa-
tion

u(t) = q(t) +

∫ t

0
K(t, s, u(s))ds+

∫ ∞
0

G(t, s, u(s))ds, t ∈ R+,

where functions given with real values satisfying suitable conditions. In case
the Banach space E is arbitrary, the existence of asymptotically stable solu-
tions of equation

x(t) = q(t) + f(t, x(t)) +

∫ t

0
V

(
t, s, x(s),

∫ s

0
V1 (t, s, r, x(r)) dr

)
ds

+

∫ ∞
0

G

(
t, s, x(s),

∫ s

0
G1 (t, s, r, x(r)) dr

)
ds,

t ∈ R+, have been proved in [8], by using the fixed point theorem of Kras-
nosel’skii type.
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Recently, in [10], the existence and uniqueness of a solution of the following
system is proved

fi(x) =
m∑
k=1

n∑
j=1

[
aijkΨ

(
x, fj(Rijk(x)),

∫ Xijk(x)

0
fj(t)dt

)
+ bijkfj(Sijk(x))

]
+ gi(x),

i = 1, ..., n, x ∈ Ω = [−b, b], where aijk, bijk are the given real constants; Rijk,
Sijk, Xijk : Ω → Ω, gi : Ω → R, Ψ : Ω × R2 → R are the given continuous
functions and fi : Ω→ R are unknown functions. The main tool used here is
Banach’s fixed point theorem, it is applied in a suitable space, that is Banach
space X = C(Ω;Rn) of continuous functions f : Ω→ Rn, with respect to the
norm ‖f‖X = sup

x∈Ω

∑n
i=1 |fi(x)| , f = (f1, ..., fn) ∈ X.

Motivated by the problems in the above mentioned works, we study the
existence and uniqueness of a solution for (1.1). This paper consists of three
sections. In section 2, we present the main result. Finally, the illustrated
examples are given in section 3. The main tool employed here is Banach’s
fixed point theorem in Fréchet space, with a suitable choice of a numerable
family of seminorms.

2. Existence of solutions

LetX = C(R+;E) be the space of all continuous functions on R+ to E which
equipped with the numerable family of seminorms |x|n = sup

t∈[0,n]
|x(t)| , n ≥ 1.

Then (X, |·|n) is complete in the metric

d(x, y) =
∑∞

n=1
2−n

|x− y|n
1 + |x− y|n

,

and X is the Fréchet space. In X we also consider the family of seminorms
defined by

‖x‖n = sup
0≤t≤n

e−hnt |x(t)| , n ≥ 1,

where hn > 0 is arbitrary number, which is equivalent to |·|n , since

e−nhn |x|n ≤ ‖x‖n ≤ |x|n , ∀x ∈ X, ∀n ≥ 1.

Based on the construct of such (X, |·|n), the following lemma is valid, it is
useful to prove existence of a unique solution for (1.1).

Lemma 2.1. ([1]) Let (X, |·|n) be a Fréchet space and let Φ : X → X be an
Ln−contraction on X with respect to a family of seminorms ‖·‖n equivalent
with |·|n . Then Φ has a unique fixed point in X.
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The details of the proof can be found in Appendix of [9].
In order to establish the existence result for (1.1), we need the following

assumptions.

(A1) The functions µ1, µ2, θi, θ̃j ∈ C(R+;R+) are continuous such that

µ1(t), µ2(t), θi(t), θ̃j(t) ∈ [0, t], for all t ∈ R+, i = 1, ..., p, j = 1, ....q.
(A2) There exist a constant L ∈ [0, 1) and a continuous function ω0 : R+ →

R+ such that

|V (t;x, y)− V (t; x̄, ȳ)| ≤ L |x− x̄|+ ω0(t) |y − ȳ| ,

for all (t;x, y) , (t; x̄, ȳ) ∈ R+ × E2.
(A3) There exists a continuous function ω1 : ∆µ1 → R+ such that

|V1(t, s, x1, ..., xp, y)− V1(t, s, x̄1, ..., x̄p, ȳ)|

≤ ω1(t, s)
(∑p

i=1
|xi − x̄i|+ |y − ȳ|

)
,

for all (t, s, x1, ..., xp, y), (t, s, x̄1, ..., x̄p, ȳ) ∈ ∆µ1 × Ep+1.
(A4) There exists a continuous function ω2 : ∆µ1 → R+ such that

|V2(s, r, x1, ..., xq)− V2(s, r, x̄1, ..., x̄q)| ≤ ω2(s, r)
∑q

j=1
|xj − x̄j | ,

for all (s, r, x1, ..., xq), (s, r, x̄1, ..., x̄q) ∈ ∆µ2 × Eq.

Then we have the following theorem.

Theorem 2.2. Let (A1)-(A4) hold. Then (1.1) has a unique solution x∗ on
R+. Moreover, given x0 ∈ X = C(R+;E), consider the sequence {xk} be
defined by

xk(t)

= V
(
t, xk−1(t),

∫ µ1(t)
0 V1

(
t, s, xk−1(θ1(s)), ..., xk−1(θp(s)), V̄2[xk−1](s)

)
ds
)
,

V̄2[xk−1](s)

=
∫ µ2(s)

0 V2

(
s, r, xk−1(θ̃1(r)), ..., xk−1(θ̃q(r))

)
dr, t ∈ R+, k = 1, 2, ...

(2.1)
Then sequence {xk} converges in X to the solution x∗ with error estimation

‖xk − x∗‖n ≤
‖x1 − x0‖n

1− Ln
Lkn, ∀k, n ∈ N, (2.2)

where Ln, 0 < Ln < 1 is a constanst depending only on n.

Proof. First, we rewrite the equation (1.1) as follows

x(t) = Φx(t), t ∈ R+, (2.3)
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where

Φx(t) = V
(
t, x(t),

∫ µ1(t)
0 V1

(
t, s, x(θ1(s)), ..., x(θp(s)), V̄2[x](s)

)
ds
)
,

V̄2[x](s) =
∫ µ2(s)

0 V2

(
s, r, x(θ̃1(r)), ..., x(θ̃q(r))

)
dr, (t, x) ∈ R+ ×X.

(2.4)

By the assumptions (A2)-(A4), for all x, x̄ ∈ X, for all t ∈ R+, put y = x− x̄,
we have

|Φx(t)− Φx̄(t)|
≤ L |y(t)|+ ω0(t)

∑p
i=1

∫ µ1(t)
0 ω1(t, s) |y(θi(s))| ds

+ω0(t)
∑q

j=1

∫ µ1(t)
0 ω1(t, s)ds

∫ µ2(s)
0 ω2(s, r)

∣∣∣y(θ̃j(r))
∣∣∣ dr. (2.5)

Let n ∈ N be fixed. For all t ∈ [0, n], with hn > 0 to be chosen later, Φ has
the following property

|Φx(t)− Φx̄(t)| e−hnt
≤ L |y(t)| e−hnt + ω̃0nω̃1n

∑p
i=1 e

−hnt
∫ t

0 |y(θi(s))| ds
+ω̃0nω̃1nω̃2n

∑q
j=1 e

−hnt
∫ t

0 ds
∫ s

0

∣∣∣y(θ̃j(r))
∣∣∣ dr

≤ L ‖y‖n + ω̃0nω̃1n
∑p

i=1 I
(1)
i + ω̃0nω̃1nω̃2n

∑q
j=1 I

(2)
j ,

(2.6)

where 

ω̃0n = sup {ω0(t) : 0 ≤ t ≤ n},
ω̃1n = sup {ω1(t, s) : (t, s) ∈ ∆1n},
ω̃2n = sup {ω2(s, r) : (s, r) ∈ ∆2n},
∆1n = {(t, s) : 0 ≤ s ≤ µ1(t), 0 ≤ t ≤ n},
∆2n = {(s, r) : 0 ≤ r ≤ µ2(s), 0 ≤ s ≤ n},

and  I
(1)
i = e−hnt

∫ t
0 |y(θi(s))| ds, i = 1, ..., p,

I
(2)
j = e−hnt

∫ t
0 ds

∫ s
0

∣∣∣y(θ̃j(r))
∣∣∣ dr, j = 1, ..., q.

(2.7)

Estimating I
(1)
i = e−hnt

∫ t
0 |y(θi(s))| ds.

I
(1)
i = e−hnt

∫ t
0 |y(θi(s))| ds = e−hnt

∫ t
0 e

hnθi(s)e−hnθi(s) |y(θi(s))| ds

≤ e−hnt
∫ t

0 e
hnθi(s) ‖y‖n ds ≤ e−hnt

∫ t
0 e

hns ‖y‖n ds
= e−hnt 1

hn

(
ehnt − 1

)
‖y‖n = 1

hn

(
1− e−hnt

)
‖y‖n ≤

1
hn
‖y‖n .

(2.8)

Estimating I
(2)
j = e−hnt

∫ t
0 ds

∫ s
0

∣∣∣y(θ̃j(r))
∣∣∣ dr. We have

I
(2)
j = e−hnt

∫ t
0 ds

∫ s
0

∣∣∣y(θ̃j(r))
∣∣∣ dr

≤ e−hnt
∫ t

0 ds
∫ t

0

∣∣∣y(θ̃j(r))
∣∣∣ dr ≤ ne−hnt ∫ t0 ∣∣∣y(θ̃j(r))

∣∣∣ dr. (2.9)
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Similarly

e−hnt
∫ t

0

∣∣∣y(θ̃j(r))
∣∣∣ dr ≤ 1

hn
‖y‖n . (2.10)

Thus
I

(2)
j ≤ n

hn
‖y‖n .

Consequently

|Φx(t)− Φx̄(t)| e−hnt ≤
[
L+

1

hn
ω̃0nω̃1n (p+ nqω̃2n)

]
‖y‖n .

This implies that

‖Φx− Φx̄‖n ≤
[
L+

1

hn
ω̃0nω̃1n (p+ nqω̃2n)

]
‖y‖n = Ln ‖x− x̄‖n , (2.11)

where Ln = L+ 1
hn
ω̃0nω̃1n (p+ nqω̃2n) . Choosing hn such that

Ln = L+
1

hn
ω̃0nω̃1n (p+ nqω̃2n) < 1, (2.12)

then we have 0 < Ln < 1, so Φ is a Ln− contraction operator on the Fréchet
space (X, ‖·‖n), applying Lemma 2.1, (2.3) has a unique solution x = x∗.

On the other hand, by the operator Φ is a Ln−contraction, we obtain

‖xk+p − xk‖n ≤
‖x1 − x0‖n

1− Ln
Lkn, ∀ k, p, n ∈ N. (2.13)

This implies that for all p, n ∈ N, we have

lim
k→+∞

‖xk+p − xk‖n = 0,

which means that {xk} is a Cauchy sequence, by the fact that ‖·‖n is equivalent
with |·|n. The space (X, |·|n) is complete, so {xk} converges to a point x∗ of
X. It is obviously that x∗ is a unique fixed point of Φ. Passing to the limit in
(2.13) as p→ +∞ for fixed k, (2.2) follows. Theorem 2.2 is proved. �

3. The examples

Let us illustrate the results obtained by means of the examples.

Example 3.1. Let E = C([0, 1];R) be the Banach space of all continuous
functions u : [0, 1]→ R with the norm

|u|E = ‖u‖ = sup
0≤η≤1

|u(η)| , u ∈ E.

Then, for all x ∈ X = C(R+;E), for any t ∈ R+, x(t) is an element of E and
we denote

x(t)(η) = x(t, η), 0 ≤ η ≤ 1.
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Consider (1.1) in form x(t) = V
(
t, x(t),

∫ µ1(t)
0 V1

(
t, s, x(θ1(s)), ..., x(θp(s)), V̄2[x](s)

)
ds
)
,

V̄2[x](s) =
∫ µ2(s)

0 V2

(
s, r, x(θ̃1(r)), ..., x(θ̃q(r))

)
dr, t ∈ R+,

(3.1)

where 
µi(t) = µ̄it, 0 < µ̄i ≤ 1, i = 1, 2;

θi(t) = θ̄it, 0 < θ̄i ≤ 1, i = 1, ..., p;

θ̃j(t) = θ̂jt, 0 < θ̂i ≤ 1, j = 1, ..., q.

Giving the continuous functions V, V1, V2 as follows.

(i) Function V : R+ × E2 → E,

V (t, x, y)(η) = (1− k1)Z∗(t, η) + k1 |x(η)|+ e−t |y(η)| ,

for all 0 ≤ η ≤ 1, (t, x, y) ∈ R+ × E2 with Z∗(t, η) = 1
η+et and k1 is

given constant such that 0 < k1 < 1.
(ii) Function V1 : ∆1 × Ep+1 → E, ∆1 = {(t, s) ∈ R2

+ : s ≤ µ̄1t},

V1(t, s, x1, ..., xp, y)(η)

= e−2sZ∗(t, η)

[∑p

i=1
sin

(
π

Z∗(θi(s), η)
xi(η)

)
+ e−t |y(η)|

]
,

for all 0 ≤ η ≤ 1, (t, s, x1, ..., xp, y) ∈ ∆1 × Ep+1.
(iii) Function V2 : ∆2 × Eq → E, ∆2 = {(s, r) ∈ R2

+ : r ≤ µ̄2s},

V2(s, r, x1, ..., xq)(η) = e−2rZ∗(s, η)
∑q

j=1
sin

(
2π

Z∗(θ̃j(r), η)
xj(η)

)
,

for all 0 ≤ η ≤ 1, (s, r, x1, ..., xq) ∈ ∆2 × Eq.

We can prove that (A1)-(A4) hold. It is easy to see that (A1) holds.

Assumption (A2) holds, for all (t;x, y) , (t; x̄, ȳ) ∈ R+ × E2,

‖V (t;x, y)− V (t; x̄, ȳ)‖ ≤ k1 ‖x− x̄‖+ ω0(t) ‖y − ȳ‖ ,

with ω0(t) = e−t, L = k1.
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Assumption (A3) holds, for all (t, s, x1, ..., xp, y), (t, s, x̄1, ..., x̄p, ȳ) ∈ ∆1 ×
Ep+1, ∆1 = {(t, s) ∈ R2

+ : s ≤ µ̄1t}, ∀η ∈ [0, 1],

|V1(t, s, x1, ..., xp, y)(η)− V1(t, s, x̄1, ..., x̄p, ȳ)(η)|

≤ e−2s 1

η + et

[∑p

i=1
π(eθ̄is + η) |xi(η)− x̄i(η)|+ e−t |y(η)− ȳ(η)|

]
≤ 2πe−t−s

[∑p

i=1
‖xi − x̄i‖+ ‖y − ȳ‖

]
= ω1(t, s)

[∑p

i=1
‖xi − x̄i‖+ ‖y − ȳ‖

]
,

in which

ω1(t, s) = 2πe−t−s.

Assumption (A4) holds, for all (s, r, x1, ..., xq), (s, r, x̄1, ..., x̄q) ∈ ∆2 × Eq,
∆2 = {(s, r) ∈ R2

+ : r ≤ µ̄2s}, ∀η ∈ [0, 1],

|V2(s, r, x1, ..., xq)(η)− V2(s, r, x̄1, ..., x̄q)(η)|

≤ e−2r 1

es + η

∑q

j=1
2π(η + eθ̂jr) |xj(η)− x̄j(η)|

≤ 4πe−s−r
∑q

j=1
‖xj − x̄j‖

= ω2(s, r)
∑q

j=1
‖xj − x̄j‖ ,

with ω2(s, r) = 4πe−s−r. Then, Theorems 2.2 holds for (3.1). For more details,
it is not difficult to show that (3.1) has a unique solution x∗ = Z∗.

Example 3.2. Let E = RN , consider the following system of equations

xi(t) = Ui

(
t, x1(t), ..., xN (t),

∫ µ1(t)
0 W1 (t, s, x1(θ1(s)), ..., xN (θ1(s))) ds,

...,
∫ µ1(t)

0 WN (t, s, x1(θ1(s)), ..., xN (θ1(s)) ) ds
)
,

(3.2)
i = 1, ..., N, t ∈ R+, where the continuous functions Ui, Wi are defined by

Ui : R+ × RN+1 → R, i = 1, ..., N ;

Wi : ∆1 × RN → R, i = 1, ..., N ;

∆1 = {(t, s) ∈ R2
+ : s ≤ µ1(t)}.

Suppose that
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(Ã1) The functions µ1, θ1 ∈ C(R+;R+) are continuous such that µ1(t) ≤ t,
θ1(t) ≤ t, for all t ∈ R+, we rewrite (3.2) as follows

xi(t)

= Ui

(
t, x(t),

∫ µ1(t)
0 W1 (t, s, x(θ1(s))) ds, ...,

∫ µ1(t)
0 WN (t, s, x(θ1(s))) ds

)
,

(3.3)
i = 1, ..., N, t ∈ R+, where x = (x1, ..., xN ) ∈ X = C(R+;RN ).

We define two vector functions V : R+ × R2N → RN , V1 : ∆1 × RN → RN
as follows:

V (t, x, y) = (U1(t, x, y), ..., UN (t, x, y)) , (t, x, y) ∈ R+ × R2N ,

V1(t, s, x) = (W1(t, s, x), ...,WN (t, s, x)) , (t, s, x) ∈ ∆1 × RN .
Then, system (3.3) becomes

x(t) = V

(
t, x(t),

∫ µ1(t)

0
V1 (t, s, x(θ1(s)) ) ds

)
≡ Φx(t), t ≥ 0. (3.4)

Suppose that

(Ã2) There exist a constant L ∈ [0, 1) and a continuous function ω0 : R+ →
R+ such that

|Ui (t;x, y)− Ui (t; x̄, ȳ)| ≤ L |x− x̄|∞ + ω0(t) |y − ȳ|∞ ,

for all (t;x, y) , (t; x̄, ȳ) ∈ R+×R2N , for all i = 1, ..., N ; and |·|∞ is a norm in
RN defined by

|x|∞ = max
1≤i≤N

|xi| , x = (x1, ..., xN ) ∈ RN .

(Ã3) There exists a continuous function ω1 : ∆µ1 → R+ such that

|Wi(t, s, x)−Wi(t, s, x̄)| ≤ ω1(t, s) |x− x̄|∞ ,

for all (t, s, x), (t, s, x̄) ∈ ∆1 × RN .

Note that C(R+;RN ) is the Fréchet space which equipped with the numer-
able family of seminorms

|x|n = sup
t∈[0,n]

|x(t)|∞ , n ≥ 1.

In C(R+;RN ) we also consider the family of seminorms defined by

‖x‖n = sup
0≤t≤n

e−hnt |x(t)|∞ , n ≥ 1,

and hn > 0 is arbitrary number, which is equivalent to |·|n , since

e−nhn |x|n ≤ ‖x‖n ≤ |x|n , ∀x ∈ C(R+;RN ), ∀n ≥ 1.
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With the choose of the suitable parameter hn > 0 (hn > 0 sufficiently large),
we will get Ln ∈ [0, 1) such that, the operator Φ is a Ln−contraction on
C(R+;RN ).

Similarly, then we have the following result.

Proposition 3.3. Let (Ã1)-(Ã3) hold. Then (3.2) has a unique solution y∗ ∈
C(R+;RN ).

Furthermore, given y(0) ∈ C(R+;RN ), consider the sequence {y(k)} be de-
fined by

y(k)(t) = V
(
t, y(k−1)(t),

∫ µ1(t)
0 V1

(
t, s, y(k−1)(θ1(s))

)
ds
)

≡ Φy(k−1)(t),
(3.5)

t ∈ R+, k = 1, 2, · · · . Then sequence {y(k)} converges to y∗ in C(R+;RN ) with
error estimation∥∥∥y(k) − y∗

∥∥∥
n
≤
∥∥y(1) − y(0)

∥∥
n

1− Ln
Lkn, ∀ k, n ∈ N, (3.6)

where Ln, 0 < Ln < 1 is a constanst depending only on n.
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