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Abstract. In this paper, a high order iterative scheme is established in order to get a
convergent sequence, at a rate of order N, to a local unique weak solution of a nonlinear
wave equation associated with homogeneous Dirichlet boundary conditions. This scheme
shows that the convergence can be obtained with a high rate if the nonlinear term in the

original equation is smooth enough.

1. INTRODUCTION

In this paper, we shall establish a high order iterative scheme in order to get
a convergent sequence, at a rate of order IV, to a unique local weak solution
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of the following Dirichlet problem for a nonlinear wave equation

Uy — % (w(z, t)ug) + Aug = fx, t,u),0 <z <1,0<t<T, (1.1)
u(0,t) = u(1,t) =0, (1.2)
u(z,0) = up(x), u(z,0) = a1 (z), (1.3)

where u, f, @, 41 are given functions and A # 0 is a given constant.

It is well known that Newton’s method and its variants are used to solve
nonlinear operator equations F'(z) = 0. Newton’s method arises naturally
when replace F'(z) by the linear term in the Taylor series, so that with z( as
a first approximation, by constructing an approximating sequence {z,} and
showing its convergence, a zero of F' will be obtained. The sequence {z,}
can be very rapidly convergent to the zero x, if it is given a sufficiently close
first approximation xg to x and provided derivatives of the function F' behave
nicely in a neighbourhood of x. In this case, one speaks of convergence of order
N if |1 — u| < C |up — u|Y | for some C > 0 and all large n. For the details,
it can be found in, for example, [1], [9], [10] and references therein.

Based on the ideas about a high order method for solving the equation
F(z) =0 as above and based on Faedo - Galerkin method, recently, in [6], [8]
and in some other works, the authors have constructed a high order iterative
scheme in order to obtain existence results where recurrent sequences converge
at a rate of order N.

In this paper, we consider Prob.(1.1)-(1.3) and associate with Eq.(1.1) a
recurrent sequence {u,,} defined by

82 m 0 0 m o) m
o — g (@ )G ) + A%

_ ZN—l 10kf

. (1.4)
k=0 i guk (Toty Um—1) (Um — Um—1)",

0<x<1,0<t<T, with u,, satisfying (1.2), (1.3). The first term uq is
chosen as ug = 0. If u € C1([0,1] x R}), and f € CN([0,1] x Ry x R), we
prove that the sequence {u,,} converges at a rate of order N to a unique weak
solution of Prob.(1.1)-(1.3). The main result is given in Theorems 2.1 and
2.3. In our proofs, the fixed point method and Faedo-Galerkin method are
employed. This result is a relative generalization of [4]-[8].

2. A HIGH ORDER ITERATIVE SCHEME

First, we put Q = (0,1) and denote the usual function spaces used in this
paper by the notations LP = LP(Q), H™ = H™ (2). Let (-,-) be either the
scalar product in L? or the dual pairing of a continuous linear functional and
an element of a function space. The notation ||-|| stands for the norm in L2,
|-l x is the norm in the Banach space X, and X’ is the dual space of X.
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We denote by LP(0,T; X),1 < p < oo for the Banach space of real functions
u: (0,T) — X measurable, such that

1/p
lilrorny = (Jy @l dt) ™ < 0o for 1< p< oo,

and
HUHLOO(QT;X) = esssup |lu(t)||y for p=oc.
0<t<T

Let u(t), u'(t) = Ut(t) u(t), U"(t) = Utt(t) ii(t) o(t) = Vu(t), uea(t) =
Au(t), denote u(z,t), & 5z, t), 2 5 (x, t), 2 I (z, t), 2 5.2 (T,1), respectively
With f € C*([0,1] x Ry x R), f = f(z,t,u), we put Dif = 9L Dof = 9L
D3f = % and Df = D" D5?D5® f; oo = (o, a2, a3) € 73, o] = a1 + ag +
=k, D000 f = DO f— ¢
Slmﬂarly, with p = p(z,t), we also put Dy = aw Doy = %’;.
We shall use the following norm on H'

1/2
ol s = (ol + lloa]1?)
It is well known that the imbedding H' < C°(Q) is compact and for all
ve HY,
oll o < V2Ivllg -

Furthermore, on Hf = {v € H' : v(0) = v(1) = 0}, two norms v — ||v| ;1
and v — ||v,|| are equivalent and

||'UHCO@) < ||vg|| for all v € Hy. (2.1)
We make the following assumptions:
(Hi) (o,) € (Hy NH?) x Hg;
(Ho) f e ON([0,1] x Ry x R) satisfying £(0,¢,0) = f(1,£,0) =0, V¢ > 0;
(H3) p€ C?([0,1] x Ry) and there exists constant pg > 0 such that
p(x,t) > po for all (z,t) € [0,1] x Ry,

Fix T > 0. For each M > 0 given, we set the constants Ko(M, f), Kn(f),
Ko(p), K(p) as follows

Ko(M, f) = sup{|f(z,t,u)|: 0 <2 <1,0<t < T, Ju| < M},
KM(f) = Z|o¢\§N KO(M7 Daf)7

Ko() = lullooo,yxqor = sup lp(z, t)]
(,£)€[0,1]x[0,7*]

R(u) = Willezoapugoirmy = 52 Ko (PiDhu).
\ i+5<2
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For every T € (0,7%] and M > 0, we put
W(M,T) = {ve L>(0,T; Hy N H?) : v; € L*(0,T; Hy), vy € L*(Qr),
with [[0]| oo 0,753 nm2) » 10l Loo (0,7 112) » 102t L2 () < MY,

Wi(M,T) ={veW(M,T) : vy € L>®(0,T; L?)},
in which Q7 = Q x (0,7).

Now, we establish the recurrent sequence {u,,}. The first term is chosen as
ug = 0, suppose that

Um—1 € Wi (M, T), (2.2)

we associate problem (1.1) - (1 3) with the following problem.
Find u,, € W1 (M,T') (m > 1) satisfying the linear variational problem

(U (8), w) + (()uma (), wa) + Aup, (1), w)
= <(I>m( )7 >avw€H07 (2.3)
um (0) = 1o, ul,,(0) = ay,

where

Op(@,t) = S0 ot 10 (2t ) (U, — 1) (2.4)

Then we have the following theorem.

Theorem 2.1. Let (H;y)-(Hs) hold. Then there exist a constant M > 0
depending on g, u1,p and T > 0 depending on g, @1, p, f such that, for
ug = 0, there exists a recurrent sequence {upy} C Wi(M,T) defined by (2.3)
and (2.4).

Proof. (i) Approximating solutions.
Let {w;} be a basis of Hj, formed by eigenfunction w; of the operator

—A = —86—;2 :
—Awj = Ajwj,
w; € HY N H?,
w;(r) = V2sin(jrx),\; = (j7)2, 7 =1,2,3,- -
Put

u (1) = Sk Wty (2.5)
where the coefficients cgjj) satisfy the system of nonlinear differential equations
k k . (k k
(i) (0,05 )+ (Ol (0, wga ) + A (0),005) = (1), )

(2.6)
u(0) = i, WP (0) =ty j=1,2,....k,
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in which
Uok = Z§:1 a§~k)wj — 1o strongly H& NH?, 27
Uy = Z?Zl 5](~k)wj — @y strongly H}, .
and ‘
B (2, 6) = SN L 8L (2t 1) (ulh) — 1) 8
= 350" Ayt ) (s,
with -
The system (2.6), (2.8) can be written in the form
k k k
&0 + T () wia, wye) B(1) + 2 (1) = 2 (1), 29
) =l &) =g 1< <k,
where
() = <‘1’7(v]~f)(t)7w3‘>a Njo=p2=(jm)? 1<) <k (2.10)

It can see that, system (2.9) is equivalent to system of intergal equations

—I-ZZ 1f0 dr |, T e~ AMT=s) (1(8) Wiz, wjg) € (k )( )ds

:ozj +Xﬁj ( _’\t)+f deT —AMT=5) P gn;-(s)ds, 1<j<k.
(2.11)
Omitting the indexs m, k, it is written as follows
¢ = Fld], (2.12)
where Flc] = (Fl[c] Fk[c]) c¢=(c1,..,ck), and
File](t) = q;(t) — >y fo dr fo M) (S)Wiwijx> ci(s)ds
+ZZ 1 0 7-6_/\7- 8) <A Sy Um— 1)( wj>d8
¢;(t) = aj+58; (1- 6_”)+f dr [q e 8)<Ao(s,um71),wj> ds, (213)
1<y <k,
u(t) = Zf:l ci(t)w;.

Applying the contraction principle, system (2.11) has a unique solution 07(7];) (t)

in [0, T,Ef)], with certain T € (0, T7]. Indeed, for every ¥ € (0,7] and p > 0
chosen later, we set

X =" ([O,T,E{“)];Rk) , S={ceX:|clx <p},
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where

lelx = sup e(®)ly, le(®)], = 35 lej(t)]-

o<t<T®

Clearly, S is a nonempty closed subset of X and F': X — X. We will choose

p >0 and Tr(f )~ 0 such that F : S — S is contractive as follows.
First we note that, for all ¢ = (¢, ..,¢x) € S,

lu@] < le(®)]; < llellx < p,

lu(®)ll oy < V2le(®)]; < V2p.

Now, by
\Aj(x,t, um-1)| < Knm(f) ZzN]l G- ]),M% = Dj(M)a j:m7
we have
‘<A Sy Upm—1) w]>’

Al Oy sl < DUON(VRY, § =0 F=T
It follows that
B[] < |50 + MK (el T [ dr [ le(s)], ds
43 (1) T S D) (V20

< las(t)] + €M7 (AJ{( o+ 2 S i ><ﬂp>i) ()",

So
FIA@ < lally + D, (1), ve e 0,7
in which
lallz = sup la®ls, Dy = ke (MK + § T DON(V20)').
tel0,
Consequently

— 2
1Plellx < llaly +D, (707) " (2.14)

Next, with ¢ = (e1,...,cx) € S,d = (d,...,dy) € S and t € [0,TF], by

considering

u(t) =30 ei(tywy, v(t) = 5 d;(t)w;,
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| Fjle](t) — Fjld](t)]
< T Zk 1 f(f dr ) (u(s)wie, wje) [ci(s) — di(s)| ds
LTSNt g g \<A 8, um-1) [ul(s) = v'(s)] , wy)| ds
< 2NK ()T [Ldr [T |e(s) - d(s)], ds
+eAT SN o dr f7 HA s, wm—1) || [Ju'(s
On the other hand

S)HCO(§) ds.

[u*(s) = v*() | oy

Z o llu(s )Hjo(*) [[v(s )HZ J( 1)”“( ) — (3)”00(5)
i (V20)’ (V2p) T V2le(s) — d(s))y
(V2

<
<i(v20)" V2~ dlx -
Therefore
[F[c](t) — Fld)(t)l,
< 26N K ()T [Ydr [T [e(s) — d(s)], ds

i—1 T
kePT SN B )z(\fp) V2lle—d|ly fydr [] ds

k: 2 . o= ) :
< S (T) P 2K () + X5 Di(M)p V] e — il
k

<6 (1) e = dllx
where
Cp= SG'A'T [QWE' (1) + S0 Di(M)pi 2’} ,
it leads to
Il ~ Fldlx < G (T) e —dllx . (2.15)

(k)

By choosing p > ||¢||; and Ty, € (0,T] with the properties

0<D, (1) < p— lally and ¢, (1) < 1. (2.16)

thanks to (2.14), (2.15) and (2.16), it is easy to see that F' : S — S is
contractive. Then, system (2.11) has a unique solution c(k)( t) in [0, T, (k )] We

mj

deduce that system (2.6) has a unique solution u,gf)( t) in [0, T(k)}
The following estimates allow one to take T,Sf )
k.

(ii) Estimates.

= T independent of m and
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Multiply (2.6)1 by &) (t) and sum for j = 1,..., k, and then integrating with
respect to the time variable from 0 to ¢ yields

2 2

pgr’i)(t):p%)(O)—Q)\ fg Hu%)(s)H ds—%—f(f ds 01 Wz, s) ‘ugsg)c(m,s)‘ dx

(2.17)
+2 [L@l) (s), alk) (s))ds,

where
] ol
By replacing wj; in (2.6); by —wjzz, we obtain that
(i (8), wge ) + (Vb ) wyes)+ A (a0 (0), wye)
= (o) wia), 1<k,
similar to (2.6)1, it gives
aw (1)
=g ()2 Jj [[ath(s) H2d3+fg ds [} ' (x, 5) ]uS,’iiz(:c,s)fdx (2.18)
—o [t <Mx(s)u£5;(s) W) (s )> ds+2 [ <q>£’;;(s), W) (s )> ds,
where
)= i + | vamiko]
q- (2.6) can be rewritten as follows

< > _ <(% (,u(t)uggc(t)) 7wj> +A <u7(7]§) ®), Wj> 2.19
_<¢W@)%> lsjsk -

Hence, it follows after replacing w; with u&’i)(t) and integrating that
fo ||u s)|[*ds
<35 ( 2 (m(s)ulih(s )H ds + 32 [1[[alh) (s)|2ds (2.20)

k
+3 Jo |18 (s)]*ds.
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Combining (2.17), (2.18) and (2.20) lead to
S (1)
= P () + g (1) + [T 1S (s)]2ds

— Syj)(O) —l—f(;5 ds 01 w(z,s) (‘umx T,s ‘ ‘umm z,8 ‘2) x
+372 ! Hug’i)(s)Hst —on ! (Huﬁi)(s)H + ‘ uﬁlf;(s)HQ) ds

—9 fg <uz( ugfg)c(s) ufﬁ%x( )>ds + Bfg) 8% (um(s)ugﬁ(sw H2ds
+3 [ |B%R) (s)][2ds+2 [ (@) (s), ul¥ (5))ds
+2 [y (@52 (5), i (s))ds

= SW0) + 8, I

129

(2.21)

We shall estimate, respectively, the following integrals and Sq(q]»f)(O) on the

right-hand side of (2.21).
First integral I :

$806) 2 o [tk + Juato)).
By (2.22), we have
L= fyds [y #/(z,9) <\u£,’f;<x, s)\z + \uﬁ,’i;x(x,s)f) dax
AR g (HFumx o + Vit ) as
R (1) Jy S’

Second integral I :

IA
N

IN
5l

L=3)\2f! Hu;’?(s)Hst < 32 18 (s)ds.

Third integral I3 :

_ o (Hu&’?(s)(f n Huﬁﬁ:i@)\f) ds < 2| Jy S (s)ds.

(2.22)

(2.23)

(2.24)

(2.25)
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Fourth integral Iy :
k
I = =2 Jy { (sl (s), ilike () ) ds

=2 (12 (0)ui3(0), uﬂi%xm)} = 2 (e (una(6), g (1))

(2.26)
+2 fo <8@ ( umx )) ugﬁ%x(s)> ds
2 (2 (0)loks s Uokaa) + 1(1)+I()
Estimate 14(1) :
1) = 2 (o (0)ulia (6), uinka(6)) < 2K (1) i ()| i)
< Iulfl. () g 2K2 (1) Huﬁfj;(t)’f
< 3 bkt + 25200 [lionell + Ji [[a652()]| ] .
< 3ok + 2820 |2 0ol + 21 adthco) | ]
<3S (0) + 2R2() |2 [opa” + 2¢ f3 I (s)ds]
< AR (p) ||iors|® + LS5 (1) + AT K2(u) [} S (s)ds.
Estimate If) :
If) = 2fg <% ux(s)uglf;(s)) ,u,(ﬁg)[;x(s)> ds
=2 [y (jto(s)uinh(s) + o)l (s), uihra (s) ) ds
<280 fy ([funa )|+ [amao)]) [ as - (o)

Hence, we deduce from (2.26)-(2.28) that

Iy =2 <Mw(0)a0k1‘> aOkazx> + Iéil) + I

< 2 (11 (0)ighas fiokaa) + AK (1) HUkaH + 15““( t) (2.29)
+2 (27K () + 202 R(w) [y St

(2)
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Fifth integral I :

15_315 2 (um( Yulk) (s )H ds
gl e o
< SR2(u) fy St

The following properties of q>£,’f) (1), <I>,(7]§2,; (t) are useful to continue estimates

+( SL’?(t))N_l] |
)]

(14 M+ (4 N) S E2 M) K (f), =0,
& = (2.32)

) e < e |2

(2.31)

(i)

st <

where ¢y = Zi\;_ol ¢;, with

(M+N)Ky(f )l'\/’a i=1,2,...,N—1.
Indeed, use inequalities (a + b)P < 2P~1(aP + bP), for all a,b > 0,p > 1, and
s8<14s9 Vs>0, Vi,g, 0<i<gq, (2.33)
we have
0@ < X |35 @ o)l = )

< () [1+ 225" (Juf)] +

)]
)]
< Kulf) |1+ 20 (F +M>Z]

< Ku(f) |1+ 222 (( S%?”) +Mi)]

_ N1211 i N-1 1 2i-1 (k) i
= Ku(f) 1+z Aar it 2 (s <>)]

<t o 225 (oo
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< S (t))]H]

<xlia (Vo) st s

1+ < S,S’?(t))N_l] .

Hence, (2.31(1)) follows. We also have
@0 (2, )|

< |9 (2, t, um—1) + %(x,t,um—1)Vum_1’

(2.34)

_ i+1 i+1 .
+3N! ngtaf; (7,8, Upm—1) + %SJT{(%t,Um—l)Vumfl} (Ugi) - umfl)l‘
+ 2N A5 @t )i(uld) = 1) (Vull) = V)|

Ho

< e anmutr) a0 S5 (580400

+KM(f)Z§V;11;;< S"”<>+M>i_l<‘w )*M)

(2.35)
Hence
H(I%(ff%(t) H
< (1+M)Ky(f) + 1+ MEy(f) SN 4 ( S%if” + M)

<A+ M)Kp(f) + (1+M+N—1)KM(f)Zf\L_11},< SL?’(t)+M)

< (1L4+ M)Eu(f) + (M + N)Ep () S5 12! {( Sﬁf)(“) +M"]

< (1+M+(M+N)Zf\’11 1oi= 1M") Kn(f)

+H(M + N)Ky(f) N llf/%( S’gf)(t)y

1y
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( s (t))Nll

- ﬁialez-( Sﬁf’@)) < SNl 1+

1+ < sﬁ?m)Nl] .
o)

Now, we estimate all intergal Ig, I7, Ig. Using the properties of @g,’f) (t), Pmaz(t)

as in (2.31), we obtain
N-172
1+ ( Sﬁ’?@)) ] ds

(2.36)

I =3 H@%’i)(s)szs <3,

. 2N -2
6e2, Ji 1+< Sﬁ)(g)) ]ds (2.37)
9 t (o), N\
<1263, [T + [q (Sm (s)) ds| .
Similarly,
_ L (s
I; < dew [T+ Jy (% } (2.38)
and
Iy < 4y [T+ JE(sh( } (2.39)

Combining (2.21), (2.23)-(2.25), (2.29), (2.30), (2.37)-(2.39), we obtain that
S (1) < 25%)(0) + 4 (112 (0)iiora, fiokas) + SK2(11) ||ioks]|

+C1(M)T + C1 (M f0< s) ds, (240)

where
Cr(M) =2 (& +477) B2(u) + 2 (3+2y/i0) K()
+6A% + 4|\ + 8 (3¢5, + 2en) -

By means of the convergences (2.7) we can deduce the existence of a constant
M > 0 independent of k and m such that

255 (0)+4 (112 (0)lohs, Tokea) +8K2(1) llfoke|* < 242, V', k €N (242)
Finally, it follows from (2.40), (2.42) that

(2.41)

N
SW (1) < W4 C(MT+Ci (M) [y (S5(5)) " ds,
0<t<T® <.
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Then, by solving a nonlinear Volterra integral inequality (2.43) (based on the
methods in [3]), the following lemma is proved.

Lemma 2.2. There exists a constant T > 0 independent of k and m such that
SW () < M2, Vte[0,T], ¥kmeN. (2.44)

By Lemma 2.2, we can take constant Tr(,f ) — T for all m and k. Therefore,
we have

W e W(M,T), for all m and k € N. (2.45)

(iii) Convergence.
Thanks to (2.45), there exist a subsequence {ugi] )} of {ugf)} such that

ugf) — Um in L*(0,T; H} N H?) weakly*,

LGN ul, in L>(0,T; H}) weakly*, (2.46)
I in L2(0,T;L?) weakly, '
U, € W(M,T).

By the compactness lemma of Lions ([2], p. 57) and applying the theorem’s

Fischer - Riesz, from (2.46), one has a subsequence of {uﬁfi)}, denoted by the
same symbol satisfying

{ u® 5wy stronglyin  L2(0,T; HY) and ae. in Qp, (2.47)

al ul, stronglyin L2(0,7;L?) and a.e. in Q7.

On the other hand, by L>(0,T; HiNH?) — L°°(Q7) and using the inequality

la? = b | < jMI7Ya—b], Yabe[-M,M], VM >0, VjeN, (2.48)
we deduce from (2.45) that

@7 = ()P < M [0l = |, G =N =1, (2.49)
Therefore, (2.47) and (2.49) give
(uﬁ,’f))j — (um)?  stronglyin L*(Qr). (2.50)
We note that
e
L*(Qr)

< S0 1A st )l ey || 80 = ()|

< Kn(H) 5 S8 755 || @l - un)|

2.51
L2(Qr) (2:51)

L2(Qr)’
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so (2.50) leads to
@%ﬂ) — ®,, stronglyin L?(Qr). (2.52)

Passing to limit in (2.6), (2.7), we have u,, satisfying (2.3), (2.4) in L%(0,T).
On the other hand, it follows from (2.3); and (2.46), that

ul =2 (u(w,t)%m) — M, + @, € L%(0,T; L2). (2.53)
Hence u,, € W1(M,T) and Theorem 2.1 is proved. O

Next, in order to obtain the main result in the following theorem, we put
Wh(T) = {v e L>(0,T; H}) : v € L*°(0,T; L?)},
then W7 (T) is a Banach space with respect to the norm

HU||W1(T) = ||U||Loo(o,T;H5) + HU,HLOO(O,T;L?)‘ (2.54)

Theorem 2.3. Let (Hy)-(Hs) hold. Then, there exist constants M > 0 and
T > 0 such that

(i) Problem (1.1)-(1.3) has a unique weak solution uw € Wy(M,T).

(ii) The recurrent sequence {unm}, defined by (2.3) and (2.4), converges at
a rate of order N to the solution u strongly in the space W1 (T) in the
sense

lm = gy 7y < C llttm—1 = ulliyy 7y » (2.55)
for all m > 1, where C is a suitable constant. On the other hand, the
estimate is fulfilled

[tm = ully, (1) < CrBN™, for allm € N, (2.56)
where Cp and 0 < B < 1 are the constants depending only on T.

Proof. Ezistence. We can prove that {u,,} is a Cauchy sequence in W1(T).
Indeed, let wy, = wm11 — Um. Then wy, satisfies the variational problem
(Wi (1), 0) + () wima (), wa) + Awy, (), w)
= (®pi1(t) — Pp(t),w), YVw € H, (2.57)
Wi (0) = w!,(0) = 0.
Taking w = w], in (2.57), after integrating in ¢, we get
Z(®) < 20 Jy Wl (0) 17 [ s 5 1 o o sl
+2 f5 1@ms1(8) = Ban()l| 1] (5)]] s, |

where

Zin(t) = Nty (1 + | /e 1) (2.59)
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It follows from (2.59) that
¢ 1 - t
Jods Joy W' (@, 9)|wh,(x, s)de < K(u fo meac(S)H2 ds
LR
< 7 fo (s)

Using Taylor’s expansion of the function f(ac,t,um) = f(z,t,um-1 + Vm—1)
around the point u,, 1 up to order N, we obtain

flx,t,um) — fz,t, upm—1)
:vallzl,le(a:tum Dwt, 1+N,DNf(xt)\)m1,

where )\, = /\m(:r,t) = Upm—1 + 01 (U, — Um—1), 0 < 01 < 1. Hence, it follows
from (2.4) and (2.61) that

D1z, t) — Oy (z,t)

:vall },D’f(:c ty U )W+ N,DNf(a; A m)wN .
So, we have

[@m41(t) — P (t)]

< Kn(f) ziV 13 lome @O+ K (F) w1 (O (2.63)

<CT V. "‘CT || — 1HW1(T

(2.60)

(2.61)

(2.62)

where
= GRS M G = Ru(f). (26)
Then we deduce from (2.58), (2.60) and (2.63) that
Zm(t)

< 2+ ERW) fy 2
2 [ | @i (s) — <s>u Hw’ (s)l|ds
(2\A| + K )fo
+2 3 [cT V() +<T ||wm_1||%l ]Mds (2.65)
(2w+ LK (u +2< )fo
+2CT fo IIwmle%l(T)\/mds

< T¢ wm I3 oy + (20 + EE () + 260 + ) Jo Zun(s)ds.

By using Gronwall’s lemma, (2.65) leads to

||meW1(T) < 'uTme*lH%l(T)’ (2.66)
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where pp = 2\/C§2)Texp (T (2 Al + if((,u) + 2C:(,,1) + C;Q))). It follows from
(2.66) that, for all m and p,
— ;1 m
[[m — Umapllwy () < (1= B) Y (ur)¥=1 g (2.67)

1

Choosing T' small enough such that § = Muy " < 1. It follows that {u,,} is
a Cauchy sequence in Wi (T"). Then there exists u € Wi (T') such that

U, — u strongly in Wy (T). (2.68)

Note that u,, € W1(M,T), then there exists a subsequence {um,;} of {um}
such that

(e in  L(0,T; H N H?) weakly*,
Uy, —> U in L%(0,T; H}) weakly*, 569
Uy —> " in L*(0,T; L?) weakly, (2.69)
ue W(M,T)
We have
< Hf(7t7 um—l) - f('?ta U(t))”
| E 5 @t ) (= ) (2.70)
< Kn(f) N1 = ullyy oy + Enr (F) iy & et = o s 2 -
Hence, it implies from (2.68) and (2.70) that
®,,(t) — f(-,t,u(t)) strongly in L°°(0,T}; L?). (2.71)

Finally, passing to limit in (2.3), (2.4) as m = m; — oo, there exists
u € W(M,T) satisfying the equation

(W"(1), w) + ((t)ue (8), we) + AW (1), w) = (F(,t,u(t)), w) (2.72)
for all w € H} and the initial conditions
u(O) = ao, UI(O) = ’111. (2.73)

Uniqueness. Applying a similar argument used in the proof of Theorem 2.1,
u € Wi(M,T) is a unique local weak solution of Prob.(1.1)-(1.3).

Passing to the limit in (2.67) as p — +oo for fixed m, we get (2.56). Also
with a similar argument, (2.55) follows. Theorem 2.3 is proved completely. [

Remark 2.4. In order to construct a N —order iterative scheme, we need the
condition f € CNV([0,1] x Ry x R). Then, we get a convergent sequence at a
rate of order NV to a local unique weak solution of problem and the existence
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follows. This condition of f can be relaxed if we only consider the existence
of solutions, see [4], [5], [7].
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