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Abstract. In this paper, a high order iterative scheme is established in order to get a

convergent sequence, at a rate of order N, to a local unique weak solution of a nonlinear

wave equation associated with homogeneous Dirichlet boundary conditions. This scheme

shows that the convergence can be obtained with a high rate if the nonlinear term in the

original equation is smooth enough.

1. Introduction

In this paper, we shall establish a high order iterative scheme in order to get
a convergent sequence, at a rate of order N, to a unique local weak solution
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of the following Dirichlet problem for a nonlinear wave equation

utt − ∂
∂x (µ(x, t)ux) + λut = f(x, t, u), 0 < x < 1, 0 < t < T, (1.1)

u(0, t) = u(1, t) = 0, (1.2)

u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x), (1.3)

where µ, f, ũ0, ũ1 are given functions and λ 6= 0 is a given constant.
It is well known that Newton’s method and its variants are used to solve

nonlinear operator equations F (x) = 0. Newton’s method arises naturally
when replace F (x) by the linear term in the Taylor series, so that with x0 as
a first approximation, by constructing an approximating sequence {xn} and
showing its convergence, a zero of F will be obtained. The sequence {xn}
can be very rapidly convergent to the zero x, if it is given a sufficiently close
first approximation x0 to x and provided derivatives of the function F behave
nicely in a neighbourhood of x. In this case, one speaks of convergence of order
N if |un+1 − u| ≤ C |un − u|N , for some C > 0 and all large n. For the details,
it can be found in, for example, [1], [9], [10] and references therein.

Based on the ideas about a high order method for solving the equation
F (x) = 0 as above and based on Faedo - Galerkin method, recently, in [6], [8]
and in some other works, the authors have constructed a high order iterative
scheme in order to obtain existence results where recurrent sequences converge
at a rate of order N .

In this paper, we consider Prob.(1.1)-(1.3) and associate with Eq.(1.1) a
recurrent sequence {um} defined by

∂2um
∂t2
− ∂

∂x

(
µ(x, t)∂um∂x

)
+ λ∂um∂t

=
∑N−1

k=0
1
k!
∂kf
∂uk

(x, t, um−1) (um − um−1)k ,
(1.4)

0 < x < 1, 0 < t < T, with um satisfying (1.2), (1.3). The first term u0 is
chosen as u0 ≡ 0. If µ ∈ C1([0, 1] × R+), and f ∈ CN ([0, 1] × R+ × R), we
prove that the sequence {um} converges at a rate of order N to a unique weak
solution of Prob.(1.1)-(1.3). The main result is given in Theorems 2.1 and
2.3. In our proofs, the fixed point method and Faedo-Galerkin method are
employed. This result is a relative generalization of [4]-[8].

2. A high order iterative scheme

First, we put Ω = (0, 1) and denote the usual function spaces used in this
paper by the notations Lp = Lp(Ω), Hm = Hm (Ω). Let 〈·, ·〉 be either the
scalar product in L2 or the dual pairing of a continuous linear functional and
an element of a function space. The notation ‖·‖ stands for the norm in L2,
‖·‖X is the norm in the Banach space X, and X ′ is the dual space of X.
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We denote by Lp(0, T ;X), 1 ≤ p ≤ ∞ for the Banach space of real functions
u : (0, T )→ X measurable, such that

‖u‖Lp(0,T ;X) =
(∫ T

0 ‖u(t)‖pX dt
)1/p

<∞ for 1 ≤ p <∞,

and
‖u‖L∞(0,T ;X) = ess sup

0<t<T
‖u(t)‖X for p =∞.

Let u(t), u′(t) = ut(t) = u̇(t), u′′(t) = utt(t) = ü(t), ux(t) = 5u(t), uxx(t) =

∆u(t), denote u(x, t), ∂u∂t (x, t), ∂
2u
∂t2

(x, t), ∂u∂x(x, t), ∂
2u
∂x2

(x, t), respectively.

With f ∈ Ck([0, 1]×R+ ×R), f = f(x, t, u), we put D1f = ∂f
∂x , D2f = ∂f

∂t ,

D3f = ∂f
∂u and Dαf = Dα1

1 Dα2
2 Dα3

3 f ; α = (α1, α2, α3) ∈ Z3, |α| = α1 + α2 +

α3 = k,D(0,0,0)f = D(0)f = f.

Similarly, with µ = µ(x, t), we also put D1µ = ∂µ
∂x , D2µ = ∂µ

∂t .

We shall use the following norm on H1

‖v‖H1 =
(
‖v‖2 + ‖vx‖2

)1/2
.

It is well known that the imbedding H1 ↪→ C0(Ω) is compact and for all
v ∈ H1,

‖v‖C0(Ω) ≤
√

2 ‖v‖H1 .

Furthermore, on H1
0 = {v ∈ H1 : v(0) = v(1) = 0}, two norms v 7−→ ‖v‖H1

and v 7−→ ‖vx‖ are equivalent and

‖v‖C0(Ω) ≤ ‖vx‖ for all v ∈ H1
0 . (2.1)

We make the following assumptions:

(H1) (ũ0, ũ1) ∈
(
H1

0 ∩H2
)
×H1

0 ;

(H2) f ∈ CN ([0, 1]× R+ × R) satisfying f(0, t, 0) = f(1, t, 0) = 0, ∀ t ≥ 0;

(H3) µ ∈ C2([0, 1]× R+) and there exists constant µ0 > 0 such that

µ(x, t) ≥ µ0 for all (x, t) ∈ [0, 1]× R+.

Fix T ∗ > 0. For each M > 0 given, we set the constants K0(M,f), KM (f),

K̃0(µ), K̃(µ) as follows

K0(M,f) = sup{|f(x, t, u)| : 0 ≤ x ≤ 1, 0 ≤ t ≤ T ∗, |u| ≤M},
KM (f) =

∑
|α|≤N K0(M,Dαf),

K̃0(µ) = ‖µ‖C0([0,1]×[0,T ∗]) = sup
(x,t)∈[0,1]×[0,T ∗]

|µ(x, t)| ,

K̃(µ) = ‖µ‖C2([0,1]×[0,T ∗]) =
∑

i+j≤2
K̃0

(
Di

1D
j
2µ
)
.
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For every T ∈ (0, T ∗] and M > 0, we put
W (M,T ) = {v ∈ L∞(0, T ;H1

0 ∩H2) : vt ∈ L∞(0, T ;H1
0 ), vtt ∈ L2(QT ),

with ‖v‖L∞(0,T ;H1
0∩H2) , ‖vt‖L∞(0,T ;H1

0 ) , ‖vtt‖L2(QT ) ≤M},

W1(M,T ) = {v ∈W (M,T ) : vtt ∈ L∞(0, T ;L2)},

in which QT = Ω× (0, T ).
Now, we establish the recurrent sequence {um}. The first term is chosen as

u0 ≡ 0, suppose that

um−1 ∈W1(M,T ), (2.2)

we associate problem (1.1) - (1.3) with the following problem.
Find um ∈W1(M,T ) (m ≥ 1) satisfying the linear variational problem

〈u′′m(t), w〉+ 〈µ(t)umx(t), wx〉+ λ〈u′m(t), w〉
= 〈Φm(t), w〉 , ∀w ∈ H1

0 ,

um(0) = ũ0, u
′
m(0) = ũ1,

(2.3)

where

Φm(x, t) =
∑N−1

i=0
1
i!
∂if
∂ui

(x, t, um−1)(um − um−1)i. (2.4)

Then we have the following theorem.

Theorem 2.1. Let (H1)-(H3) hold. Then there exist a constant M > 0
depending on ũ0, ũ1, µ and T > 0 depending on ũ0, ũ1, µ, f such that, for
u0 ≡ 0, there exists a recurrent sequence {um} ⊂ W1(M,T ) defined by (2.3)
and (2.4).

Proof. (i) Approximating solutions.
Let {wj} be a basis of H1

0 , formed by eigenfunction wj of the operator

−4 = − ∂2

∂x2
:

−4wj = λjwj ,

wj ∈ H1
0 ∩H2,

wj(x) =
√

2 sin(jπx), λj = (jπ)2, j = 1, 2, 3, · · · .

Put

u
(k)
m (t) =

∑k
j=1 c

(k)
mj(t)wj , (2.5)

where the coefficients c
(k)
mj satisfy the system of nonlinear differential equations

〈
ü

(k)
m (t), wj

〉
+
〈
µ(t)u

(k)
mx(t), wjx

〉
+λ〈u̇(k)

m (t), wj〉=
〈

Φ
(k)
m (t), wj

〉
,

u
(k)
m (0) = ũ0k, u̇

(k)
m (0) = ũ1k, j = 1, 2, ..., k,

(2.6)
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in which  ũ0k =
∑k

j=1 α
(k)
j wj −→ ũ0 strongly H1

0 ∩H2,

ũ1k =
∑k

j=1 β
(k)
j wj −→ ũ1 strongly H1

0 ,
(2.7)

and

Φ
(k)
m (x, t) =

∑N−1
i=0

1
i!
∂if
∂ui

(x, t, um−1)(u
(k)
m − um−1)i

=
∑N−1

j=0 Aj(x, t, um−1)(u
(k)
m )j ,

(2.8)

with

Aj(x, t, um−1) =
∑N−1

i=j
(−1)i−j

j!(i−j)!
∂if
∂ui

(x, t, um−1)ui−jm−1.

The system (2.6), (2.8) can be written in the form c̈
(k)
mj(t) +

∑k
i=1 〈µ(t)wix, wjx〉 c(k)

mi (t) + λċ
(k)
mj(t) = Φ

(k)
mj(t),

c
(k)
mj(0) = α

(k)
j , ċ

(k)
mj(0) = β

(k)
j , 1 ≤ j ≤ k,

(2.9)

where

Φ
(k)
mj(t) =

〈
Φ

(k)
m (t), wj

〉
, λj = µ2

j = (jπ)2, 1 ≤ j ≤ k. (2.10)

It can see that, system (2.9) is equivalent to system of intergal equations

c
(k)
mj(t) +

∑k
i=1

∫ t
0 dτ

∫ τ
0 e
−λ(τ−s) 〈µ(s)wix, wjx〉 c(k)

mi (s)ds

= α
(k)
j + 1

λβ
(k)
j

(
1− e−λt

)
+
∫ t

0 dτ
∫ τ

0 e
−λ(τ−s)Φ

(k)
mj(s)ds, 1 ≤ j ≤ k.

(2.11)
Omitting the indexs m, k, it is written as follows

c = F [c], (2.12)

where F [c] = (F1[c], ..., Fk[c]), c = (c1, .., ck), and

Fj [c](t) = qj(t)−
∑k

i=1

∫ t
0 dτ

∫ τ
0 e
−λ(τ−s) 〈µ(s)wix, wjx〉 ci(s)ds

+
∑N−1

i=1

∫ t
0 dτ

∫ τ
0 e
−λ(τ−s) 〈Ai(s, um−1)(u(s))i, wj

〉
ds,

qj(t) = αj+
1
λβj

(
1−e−λt

)
+
∫ t

0 dτ
∫ τ

0 e
−λ(τ−s)〈A0(s, um−1), wj〉 ds,

1 ≤ j ≤ k,

u(t) =
∑k

i=1 ci(t)wi.

(2.13)

Applying the contraction principle, system (2.11) has a unique solution c
(k)
mj(t)

in [0, T
(k)
m ], with certain T

(k)
m ∈ (0, T ]. Indeed, for every T

(k)
m ∈ (0, T ] and ρ > 0

chosen later, we set

X = C0
(

[0, T (k)
m ];Rk

)
, S = {c ∈ X : ‖c‖X ≤ ρ},
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where

‖c‖X = sup
0≤t≤T (k)

m

|c(t)|1 , |c(t)|1 =
∑k

j=1 |cj(t)| .

Clearly, S is a nonempty closed subset of X and F : X → X. We will choose

ρ > 0 and T
(k)
m > 0 such that F : S → S is contractive as follows.

First we note that, for all c = (c1, .., ck) ∈ S,

‖u(t)‖ ≤ |c(t)|1 ≤ ‖c‖X ≤ ρ,
‖u(t)‖C0(Ω) ≤

√
2 |c(t)|1 ≤

√
2ρ.

Now, by

|Aj(x, t, um−1)| ≤ KM (f)
∑N−1

i=j
1

j!(i−j)!M
i−j ≡ D̄j(M), j = 0, N − 1,

we have∣∣〈Ai(s, um−1)(u(s))i, wj
〉∣∣

≤ ‖Ai(s, um−1)‖ ‖u(t)‖iC0(Ω) ‖wj‖ ≤ D̄i(M)(
√

2ρ)i, i = 0, N − 1.

It follows that

|Fj [c](t)| ≤ |qj(t)|+ λkK̃(µ)e|λ|T
∫ t

0 dτ
∫ τ

0 |c(s)|1 ds

+
1

2

(
T

(k)
m

)2
e|λ|T

∑N−1
i=1 D̄i(M)(

√
2ρ)i

≤ |qj(t)|+ e|λ|T
(
λkK̃(µ)ρ+

1

2

∑N−1
i=1 D̄i(M)(

√
2ρ)i

)(
T

(k)
m

)2
.

So

|F [c](t)|1 ≤ ‖q‖T +Dρ

(
T

(k)
m

)2
, ∀t ∈ [0, T

(k)
m ],

in which

‖q‖T = sup
t∈[0,T ]

|q(t)|1, Dρ = ke|λ|T
(
λkK̃(µ)ρ+ 1

2

∑N−1
i=1 D̄i(M)(

√
2ρ)i

)
.

Consequently

‖F [c]‖X ≤ ‖q‖T +Dρ

(
T

(k)
m

)2
. (2.14)

Next, with c = (c1, ..., ck) ∈ S, d = (d1, ..., dk) ∈ S and t ∈ [0, T
(k)
m ], by

considering

u(t) =
∑k

j=1 cj(t)wj , v(t) =
∑k

j=1 dj(t)wj ,
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|Fj [c](t)− Fj [d](t)|

≤ e|λ|T
∑k

i=1

∫ t
0 dτ

∫ τ
0 〈µ(s)wix, wjx〉 |ci(s)− di(s)| ds

+e|λ|T
∑N−1

i=1

∫ t
0 dτ

∫ τ
0

∣∣〈Ai(s, um−1)
[
ui(s)− vi(s)

]
, wj
〉∣∣ ds

≤ 2λkK̃(µ)e|λ|T
∫ t

0 dτ
∫ τ

0 |c(s)− d(s)|1 ds

+e|λ|T
∑N−1

i=1

∫ t
0 dτ

∫ τ
0 ‖Ai(s, um−1)‖

∥∥ui(s)− vi(s)∥∥
C0(Ω)

ds.

On the other hand∥∥ui(s)− vi(s)∥∥
C0(Ω)

≤
∑i−1

j=0 ‖u(s)‖j
C0(Ω)

‖v(s)‖i−j−1

C0(Ω)
‖u(s)− v(s)‖C0(Ω)

≤
∑i−1

j=0

(√
2ρ
)j (√

2ρ
)i−j−1√

2|c(s)− d(s)|1
≤ i
(√

2ρ
)i−1√

2 ‖c− d‖X .

Therefore

|F [c](t)− F [d](t)|1
≤ 2kλkK̃(µ)e|λ|T

∫ t
0 dτ

∫ τ
0 |c(s)− d(s)|1 ds

+ke|λ|T
∑N−1

i=1 D̄i(M)i
(√

2ρ
)i−1√

2 ‖c− d‖X
∫ t

0 dτ
∫ τ

0 ds

≤ k

2

(
T

(k)
m

)2
e|λ|T

[
2λkK̃(µ) +

∑N−1
i=1 D̄i(M)ρi−1

√
2i
]
‖c− d‖X

≤ ζρ
(
T

(k)
m

)2
‖c− d‖X ,

where

ζρ =
k

2
e|λ|T

[
2λkK̃(µ) +

∑N−1
i=1 D̄i(M)ρi−1

√
2i
]
,

it leads to

‖F [c]− F [d]‖X ≤ ζρ
(
T

(k)
m

)2
‖c− d‖X . (2.15)

By choosing ρ > ‖q‖T and T
(k)
m ∈ (0, T ] with the properties

0 < Dρ

(
T

(k)
m

)2
≤ ρ− ‖q‖T and ζρ

(
T

(k)
m

)2
< 1, (2.16)

thanks to (2.14), (2.15) and (2.16), it is easy to see that F : S −→ S is

contractive. Then, system (2.11) has a unique solution c
(k)
mj(t) in [0, T

(k)
m ]. We

deduce that system (2.6) has a unique solution u
(k)
m (t) in [0, T

(k)
m ].

The following estimates allow one to take T
(k)
m = T independent of m and

k.

(ii) Estimates.
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Multiply (2.6)1 by ċ
(k)
m (t) and sum for j = 1, ..., k, and then integrating with

respect to the time variable from 0 to t yields

p
(k)
m (t)=p

(k)
m (0)−2λ

∫ t
0

∥∥∥u̇(k)
m (s)

∥∥∥2
ds+

∫ t
0 ds

∫ 1
0 µ
′(x, s)

∣∣∣u(k)
mx(x, s)

∣∣∣2dx
+2
∫ t

0 〈Φ
(k)
m (s), u̇

(k)
m (s)〉ds,

(2.17)

where

p
(k)
m (t) =

∥∥∥u̇(k)
m (t)

∥∥∥2
+
∥∥∥√µ(t)u

(k)
mx(t)

∥∥∥2
.

By replacing wj in (2.6)1 by −wjxx, we obtain that〈
ü

(k)
mx(t), wjx

〉
+
〈(
µ(t)u

(k)
mx(t)

)
x
, wjxx

〉
+ λ

〈
u̇

(k)
mx(t), wjx

〉
=
〈

Φ
(k)
mx(t), wjx

〉
, 1 ≤ j ≤ k,

similar to (2.6)1, it gives

q
(k)
m (t)

=q
(k)
m (0)−2λ

∫ t
0

∥∥∥u̇(k)
mx(s)

∥∥∥2
ds+

∫ t
0 ds

∫ 1
0 µ
′(x, s)

∣∣∣u(k)
mxx(x, s)

∣∣∣2dx
−2
∫ t

0

〈
µx(s)u

(k)
mx(s), u̇

(k)
mxx(s)

〉
ds+2

∫ t
0

〈
Φ

(k)
mx(s), u̇

(k)
mx(s)

〉
ds,

(2.18)

where

q
(k)
m (t) =

∥∥∥u̇(k)
mx(t)

∥∥∥2
+
∥∥∥√µ(t)u

(k)
mxx(t)

∥∥∥2
.

Eq. (2.6) can be rewritten as follows〈
ü

(k)
m (t), wj

〉
−
〈
∂
∂x

(
µ(t)u

(k)
mx(t)

)
, wj

〉
+ λ

〈
u̇

(k)
m (t), wj

〉
=
〈

Φ
(k)
m (t), wj

〉
, 1 ≤ j ≤ k.

(2.19)

Hence, it follows after replacing wj with ü
(k)
m (t) and integrating that∫ t

0 ||ü
(k)
m (s)||2ds

≤ 3
∫ t

0

∥∥∥ ∂
∂x

(
µm(s)u

(k)
mx(s)

)∥∥∥2
ds+ 3λ2

∫ t
0 ||u̇

(k)
m (s)||2ds

+3
∫ t

0 ||Φ
(k)
m (s)||2ds.

(2.20)
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Combining (2.17), (2.18) and (2.20) lead to

S
(k)
m (t)

= p
(k)
m (t) + q

(k)
m (t) +

∫ t
0 ||ü

(k)
m (s)||2ds

= S
(k)
m (0) +

∫ t
0 ds

∫ 1
0 µ
′(x, s)

(∣∣∣u(k)
mx(x, s)

∣∣∣2 +
∣∣∣u(k)
mxx(x, s)

∣∣∣2) dx
+3λ2

∫ t
0

∥∥∥u̇(k)
m (s)

∥∥∥2
ds− 2λ

∫ t
0

(∥∥∥u̇(k)
m (s)

∥∥∥2
+
∥∥∥u̇(k)

mx(s)
∥∥∥2
)
ds

−2
∫ t

0

〈
µx(s)u

(k)
mx(s), u̇

(k)
mxx(s)

〉
ds+ 3

∫ t
0

∥∥∥ ∂
∂x

(
µm(s)u

(k)
mx(s)

)∥∥∥2
ds

+3
∫ t

0 ||Φ
(k)
m (s)||2ds+2

∫ t
0 〈Φ

(k)
m (s), u̇

(k)
m (s)〉ds

+2
∫ t

0 〈Φ
(k)
mx(s), u̇

(k)
mx(s)〉ds

≡ S(k)
m (0) +

∑8
j=1 Ij .

(2.21)

We shall estimate, respectively, the following integrals and S
(k)
m (0) on the

right-hand side of (2.21).
First integral I1 :

S
(k)
m (t) ≥ µ0

(∥∥∥u(k)
mx(t)

∥∥∥2
+
∥∥∥u(k)

mxx(t)
∥∥∥2
)
. (2.22)

By (2.22), we have

I1 =
∫ t

0 ds
∫ 1

0 µ
′(x, s)

(∣∣∣u(k)
mx(x, s)

∣∣∣2 +
∣∣∣u(k)
mxx(x, s)

∣∣∣2) dx
≤ 1

µ0
K̃(µ)

∫ t
0

(∥∥∥√µ(s)u
(k)
mx(s)

∥∥∥2
+
∥∥∥√µ(s)u

(k)
mxx(s)

∥∥∥2
)
ds

≤ 1
µ0
K̃(µ)

∫ t
0 S

(k)
m (s)ds.

(2.23)

Second integral I2 :

I2 = 3λ2
∫ t

0

∥∥∥u̇(k)
m (s)

∥∥∥2
ds ≤ 3λ2

∫ t
0 S

(k)
m (s)ds. (2.24)

Third integral I3 :

I3 = −2λ
∫ t

0

(∥∥∥u̇(k)
m (s)

∥∥∥2
+
∥∥∥u̇(k)

mx(s)
∥∥∥2
)
ds ≤ 2 |λ|

∫ t
0 S

(k)
m (s)ds. (2.25)
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Fourth integral I4 :

I4 = −2
∫ t

0

〈
µx(s)u

(k)
mx(s), u̇

(k)
mxx(s)

〉
ds

= 2
〈
µx(0)u

(k)
mx(0), u

(k)
mxx(0)

〉
− 2

〈
µx(t)u

(k)
mx(t), u

(k)
mxx(t)

〉
+2
∫ t

0

〈
∂
∂s

(
µx(s)u

(k)
mx(s)

)
, u

(k)
mxx(s)

〉
ds

= 2 〈µx(0)ũ0kx, ũ0kxx〉+ I
(1)
4 + I

(2)
4 .

(2.26)

Estimate I
(1)
4 :

I
(1)
4 = −2

〈
µx(t)u

(k)
mx(t), u

(k)
mxx(t)

〉
≤ 2K̃(µ)

∥∥∥u(k)
mx(t)

∥∥∥∥∥∥u(k)
mxx(t)

∥∥∥
≤ 1

2

∥∥∥u(k)
mxx(t)

∥∥∥2
+ 2K̃2(µ)

∥∥∥u(k)
mx(t)

∥∥∥2

≤ 1
2

∥∥∥u(k)
mxx(t)

∥∥∥2
+ 2K̃2(µ)

[
‖ũ0kx‖+

∫ t
0

∥∥∥u̇(k)
mx(s)

∥∥∥ ds]2

≤ 1
2

∥∥∥u(k)
mxx(t)

∥∥∥2
+ 2K̃2(µ)

[
2 ‖ũ0kx‖2 + 2t

∫ t
0

∥∥∥u̇(k)
mx(s)

∥∥∥2
ds

]
≤ 1

2S
(k)
m (t) + 2K̃2(µ)

[
2 ‖ũ0kx‖2 + 2t

∫ t
0 S

(k)
m (s)ds

]
≤ 4K̃2(µ) ‖ũ0kx‖2 + 1

2S
(k)
m (t) + 4T ∗K̃2(µ)

∫ t
0 S

(k)
m (s)ds.

(2.27)

Estimate I
(2)
4 :

I
(2)
4 = 2

∫ t
0

〈
∂
∂s

(
µx(s)u

(k)
mx(s)

)
, u

(k)
mxx(s)

〉
ds

= 2
∫ t

0

〈
µ̇x(s)u

(k)
mx(s) + µx(s)u̇

(k)
mx(s), u

(k)
mxx(s)

〉
ds

≤ 2K̃(µ)
∫ t

0

(∥∥∥u(k)
mx(s)

∥∥∥+
∥∥∥u̇(k)

mx(s)
∥∥∥)∥∥∥u(k)

mxx(s)
∥∥∥ ds

≤ 2K̃(µ)
∫ t

0

(√
S
(k)
m (s)
µ0

+

√
S

(k)
m (s)

)√
S
(k)
m (s)
µ0

ds

= 2K̃(µ)
1+
√
µ0

µ0

∫ t
0 S

(k)
m (s)ds.

(2.28)

Hence, we deduce from (2.26)-(2.28) that

I4 = 2 〈µx(0)ũ0kx, ũ0kxx〉+ I
(1)
4 + I

(2)
4

≤ 2 〈µx(0)ũ0kx, ũ0kxx〉+ 4K̃2(µ) ‖ũ0kx‖2 + 1
2S

(k)
m (t)

+2
(

2T ∗K̃(µ) +
1+
√
µ0

µ0

)
K̃(µ)

∫ t
0 S

(k)
m (s)ds.

(2.29)
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Fifth integral I5 :

I5 = 3
∫ t

0

∥∥∥ ∂
∂x

(
µm(s)u

(k)
mx(s)

)∥∥∥2
ds

≤ 3K̃2(µ)
∫ t

0

[∥∥∥u(k)
mx(s)

∥∥∥+
∥∥∥u(k)

mxx(s)
∥∥∥]2

ds

≤ 6
µ0
K̃2(µ)

∫ t
0 S

(k)
m (s)ds.

(2.30)

The following properties of Φ
(k)
m (t),Φ

(k)
mx(t) are useful to continue estimates

(i)
∥∥∥Φ

(k)
m (t)

∥∥∥ ≤ c̄M [1 +

(√
S

(k)
m (t)

)N−1
]
,

(ii)
∥∥∥Φ

(k)
mx(t)

∥∥∥ ≤ c̄M [1 +

(√
S

(k)
m (t)

)N−1
]
,

(2.31)

where c̄M =
∑N−1

i=0 c̃i, with

c̃i =


(

1+M+(M+N)
∑N−1

i=1
1
i!2

i−1M i
)
KM (f), i=0,

(M+N)KM (f) 1
i!

2i−1√
µi0
, i=1, 2, ..., N−1.

(2.32)

Indeed, use inequalities (a+ b)p ≤ 2p−1(ap + bp), for all a, b > 0, p ≥ 1, and

si ≤ 1 + sq, ∀ s ≥ 0, ∀ i, q, 0 ≤ i ≤ q, (2.33)

we have∣∣∣Φ(k)
m (x, t)

∣∣∣ ≤∑N−1
i=0

∣∣∣ 1
i!
∂if
∂ui

(x, t, um−1)(u
(k)
m − um−1)i

∣∣∣
≤ KM (f)

[
1 +

∑N−1
i=1

1
i!

(∣∣∣u(k)
m

∣∣∣+ |um−1|
)i]

≤ KM (f)

[
1 +

∑N−1
i=1

1
i!

(∥∥∥u(k)
mx(t)

∥∥∥+M
)i]

≤ KM (f)

1 +
∑N−1

i=1
1
i!

(√
S
(k)
m (t)
µ0

+M

)i
≤ KM (f)

1 +
∑N−1

i=1
2i−1

i!

(√S
(k)
m (t)
µ0

)i
+M i


= KM (f)

[
1 +

∑N−1
i=1

2i−1

i! M
i +
∑N−1

i=1
1
i!

2i−1√
µi0

(√
S

(k)
m (t)

)i]
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≤
∑N−1

i=0 c̃i

(√
S

(k)
m (t)

)i
≤
∑N−1

i=0 c̃i

[
1 +

(√
S

(k)
m (t)

)N−1
]

= c̄M

[
1 +

(√
S

(k)
m (t)

)N−1
]
.

(2.34)

Hence, (2.31(i)) follows. We also have∣∣∣Φ(k)
mx(x, t)

∣∣∣
≤
∣∣∣∂f∂x (x, t, um−1) + ∂f

∂u(x, t, um−1)∇um−1

∣∣∣
+
∑N−1

i=1

∣∣∣[ 1
i!
∂i+1f
∂ui∂x

(x, t, um−1) + 1
i!
∂i+1f
∂ui+1 (x, t, um−1)∇um−1

]
(u

(k)
m − um−1)i

∣∣∣
+
∑N−1

i=1

∣∣∣ 1
i!
∂if
∂ui

(x, t, um−1)i(u
(k)
m − um−1)i−1(∇u(k)

m −∇um−1)
∣∣∣

≤ (1 +M)KM (f) + (1 +M)KM (f)
∑N−1

i=1
1
i!

(√
S
(k)
m (t)
µ0

+M

)i

+KM (f)
∑N−1

i=1
i
i!

(√
S
(k)
m (t)
µ0

+M

)i−1 (∣∣∣∇u(k)
m

∣∣∣+M
)
.

(2.35)
Hence∥∥∥Φ

(k)
mx(t)

∥∥∥
≤ (1 +M)KM (f) + (1 +M)KM (f)

∑N−1
i=1

1
i!

(√
S
(k)
m (t)
µ0

+M

)i

+KM (f)
∑N−1

i=1
i
i!

(√
S
(k)
m (t)
µ0

+M

)i

≤ (1 +M)KM (f) + (1 +M +N − 1)KM (f)
∑N−1

i=1
1
i!

(√
S
(k)
m (t)
µ0

+M

)i

≤ (1 +M)KM (f) + (M +N)KM (f)
∑N−1

i=1
1
i!2

i−1

(√S
(k)
m (t)
µ0

)i
+M i


≤
(

1 +M + (M +N)
∑N−1

i=1
1
i!2

i−1M i
)
KM (f)

+(M +N)KM (f)
∑N−1

i=1
1
i!

2i−1√
µi0

(√
S

(k)
m (t)

)i
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=
∑N−1

i=0 c̃i

(√
S

(k)
m (t)

)i
≤
∑N−1

i=0 c̃i

[
1 +

(√
S

(k)
m (t)

)N−1
]

= c̄M

[
1 +

(√
S

(k)
m (t)

)N−1
]
.

(2.36)

Now, we estimate all intergal I6, I7, I8. Using the properties of Φ
(k)
m (t), Φ

(k)
mx(t)

as in (2.31), we obtain

I6 = 3
∫ t

0

∥∥∥Φ
(k)
m (s)

∥∥∥2
ds ≤ 3

∫ t
0 c̄

2
M

[
1 +

(√
S

(k)
m (s)

)N−1
]2

ds

≤ 6c̄2
M

∫ t
0

[
1 +

(√
S

(k)
m (s)

)2N−2
]
ds

≤ 12c̄2
M

[
T +

∫ t
0

(
S

(k)
m (s)

)N
ds

]
.

(2.37)

Similarly,

I7 ≤ 4c̄M

[
T +

∫ t
0

(
S

(k)
m (s)

)N
ds

]
, (2.38)

and

I8 ≤ 4c̄M

[
T +

∫ t
0

(
S

(k)
m (s)

)N
ds

]
. (2.39)

Combining (2.21), (2.23)-(2.25), (2.29), (2.30), (2.37)-(2.39), we obtain that

S
(k)
m (t) ≤ 2S

(k)
m (0) + 4 〈µx(0)ũ0kx, ũ0kxx〉+ 8K̃2(µ) ‖ũ0kx‖2

+C1(M)T + C1(M)
∫ t

0

(
S

(k)
m (s)

)N
ds,

(2.40)

where

C1(M) = 2
(

6
µ0

+ 4T ∗
)
K̃2(µ) + 2

µ0

(
3 + 2

√
µ0

)
K̃(µ)

+6λ2 + 4 |λ|+ 8
(
3c̄2
M + 2c̄M

)
.

(2.41)

By means of the convergences (2.7) we can deduce the existence of a constant
M > 0 independent of k and m such that

2S
(k)
m (0)+4 〈µx(0)ũ0kx, ũ0kxx〉+8K̃2(µ) ‖ũ0kx‖2 ≤ M2

4 , ∀ m, k ∈ N. (2.42)

Finally, it follows from (2.40), (2.42) that

S
(k)
m (t) ≤ M2

4 +C1(M)T+C1(M)
∫ t

0

(
S

(k)
m (s)

)N
ds,

0 ≤ t ≤ T (k)
m ≤ T.

(2.43)



134 L. T. P. Ngoc, N. T. T. Truc, T. T. H. Nga and N. T. Long

Then, by solving a nonlinear Volterra integral inequality (2.43) (based on the
methods in [3]), the following lemma is proved.

Lemma 2.2. There exists a constant T > 0 independent of k and m such that

S
(k)
m (t) ≤M2, ∀ t ∈ [0, T ], ∀ k,m ∈ N. (2.44)

By Lemma 2.2, we can take constant T
(k)
m = T for all m and k. Therefore,

we have

u
(k)
m ∈W (M,T ), for all m and k ∈ N. (2.45)

(iii) Convergence.

Thanks to (2.45), there exist a subsequence {u(kj)
m } of {u(k)

m } such that
u

(k)
m → um in L∞(0, T ;H1

0 ∩H2) weakly*,

u̇
(k)
m → u′m in L∞(0, T ;H1

0 ) weakly*,

ü
(k)
m → u′′m in L2(0, T ;L2) weakly,
um ∈W (M,T ).

(2.46)

By the compactness lemma of Lions ([2], p. 57) and applying the theorem’s

Fischer - Riesz, from (2.46), one has a subsequence of {u(k)
m }, denoted by the

same symbol satisfying{
u

(k)
m → um strongly in L2(0, T ;H1

0 ) and a.e. in QT ,

u̇
(k)
m → u′m strongly in L2(0, T ;L2) and a.e. in QT .

(2.47)

On the other hand, by L∞(0, T ;H1
0 ∩H2) ↪→ L∞(QT ) and using the inequality∣∣aj − bj∣∣ ≤ jM j−1 |a− b| , ∀ a, b ∈ [−M,M ], ∀M > 0, ∀ j ∈ N, (2.48)

we deduce from (2.45) that∣∣∣(u(k)
m )j − (um)j

∣∣∣ ≤ jM j−1
∣∣∣u(k)
m − um

∣∣∣ , j = 0, N − 1. (2.49)

Therefore, (2.47) and (2.49) give

(u
(k)
m )j → (um)j strongly in L2(QT ). (2.50)

We note that∥∥∥Φ
(k)
m − Φm

∥∥∥
L2(QT )

≤
∑N−1

j=0 ‖Aj(·, ·, um−1)‖L∞(QT )

∥∥∥(u
(k)
m )j − (um)j

∥∥∥
L2(QT )

≤ KM (f)
∑N−1

j=0

∑N−1
i=j

M i−j

j!(i−j)!

∥∥∥(u
(k)
m )j − (um)j

∥∥∥
L2(QT )

,

(2.51)
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so (2.50) leads to

Φ
(k)
m → Φm strongly in L2(QT ). (2.52)

Passing to limit in (2.6), (2.7), we have um satisfying (2.3), (2.4) in L2(0, T ).
On the other hand, it follows from (2.3)1 and (2.46)4 that

u′′m = ∂
∂x

(
µ(x, t)∂um∂x

)
− λu′m + Φm ∈ L∞(0, T ;L2). (2.53)

Hence um ∈W1(M,T ) and Theorem 2.1 is proved. �

Next, in order to obtain the main result in the following theorem, we put

W1(T ) = {v ∈ L∞(0, T ;H1
0 ) : v′ ∈ L∞(0, T ;L2)},

then W1(T ) is a Banach space with respect to the norm

‖v‖W1(T ) = ‖v‖L∞(0,T ;H1
0 ) + ‖v′‖L∞(0,T ;L2) . (2.54)

Theorem 2.3. Let (H1)-(H3) hold. Then, there exist constants M > 0 and
T > 0 such that

(i) Problem (1.1)-(1.3) has a unique weak solution u ∈W1(M,T ).
(ii) The recurrent sequence {um}, defined by (2.3) and (2.4), converges at

a rate of order N to the solution u strongly in the space W1(T ) in the
sense

‖um − u‖W1(T ) ≤ C ‖um−1 − u‖NW1(T ) , (2.55)

for all m ≥ 1, where C is a suitable constant. On the other hand, the
estimate is fulfilled

‖um − u‖W1(T ) ≤ CTβN
m
, for all m ∈ N, (2.56)

where CT and 0 < β < 1 are the constants depending only on T.

Proof. Existence. We can prove that {um} is a Cauchy sequence in W1(T ).
Indeed, let wm = um+1 − um. Then wm satisfies the variational problem

〈w′′m(t), w〉+ 〈µ(t)wmx(t), wx〉+ λ〈w′m(t), w〉
= 〈Φm+1(t)− Φm(t), w〉 , ∀w ∈ H1

0 ,

wm(0) = w′m(0) = 0.

(2.57)

Taking w = w′m in (2.57), after integrating in t, we get

Zm(t) ≤ 2 |λ|
∫ t

0 ‖w
′
m(s)‖2 ds+

∫ t
0 ds

∫ 1
0 |µ

′(x, s)|w2
mx(x, s)dx

+2
∫ t

0 ‖Φm+1(s)− Φm(s)‖ ‖w′m(s)‖ ds,
(2.58)

where

Zm(t) = ‖w′m(t)‖2 +
∥∥∥√µ(t)wmx(t)

∥∥∥2
. (2.59)
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It follows from (2.59) that∫ t
0 ds

∫ 1
0 |µ

′(x, s)|w2
mx(x, s)dx ≤ K̃(µ)

∫ t
0 ‖wmx(s)‖2 ds

≤ 1
µ0
K̃(µ)

∫ t
0 Zm(s)ds.

(2.60)

Using Taylor’s expansion of the function f(x, t, um) = f(x, t, um−1 + vm−1)
around the point um−1 up to order N , we obtain

f(x, t, um)− f(x, t, um−1)

=
∑N−1

i=1
1
i!D

i
3f(x, t, um−1)wim−1 + 1

N !D
N
3 f(x, t, λ̃m)wNm−1,

(2.61)

where λ̃m = λ̃m(x, t) = um−1 + θ1 (um − um−1), 0 < θ1 < 1. Hence, it follows
from (2.4) and (2.61) that

Φm+1(x, t)− Φm(x, t)

=
∑N−1

i=1
1
i!D

i
3f(x, t, um)wim + 1

N !D
N
3 f(x, t, λ̃m)wNm−1.

(2.62)

So, we have

‖Φm+1(t)− Φm(t)‖

≤ KM (f)
∑N

i=1
1
i! ‖wmx(t)‖i + 1

N !KM (f) ‖wm−1 x(t)‖N

≤ ζ(1)
T

√
Zm(t) + ζ

(2)
T ||wm−1||NW1(T ),

(2.63)

where

ζ
(1)
T = 1√

µ0
KM (f)

∑N
i=1

1
i!M

i−1, ζ
(2)
T = 1

N !KM (f). (2.64)

Then we deduce from (2.58), (2.60) and (2.63) that

Zm(t)

≤
(

2 |λ|+ 1
µ0
K̃(µ)

) ∫ t
0 Zm(s)ds

+2
∫ t

0 ‖Φm+1(s)− Φm(s)‖ ||w′m(s)||ds

≤
(

2 |λ|+ 1
µ0
K̃(µ)

) ∫ t
0 Zm(s)ds

+2
∫ t

0

[
ζ

(1)
T

√
Zm(s) + ζ

(2)
T ||wm−1||NW1(T )

]√
Zm(s)ds

≤
(

2 |λ|+ 1
µ0
K̃(µ) + 2ζ

(1)
T

) ∫ t
0 Zm(s)ds

+2ζ
(2)
T

∫ t
0 ||wm−1||NW1(T )

√
Zm(s)ds

≤ Tζ(2)
T ||wm−1||2NW1(T ) +

(
2 |λ|+ 1

µ0
K̃(µ) + 2ζ

(1)
T + ζ

(2)
T

) ∫ t
0 Zm(s)ds.

(2.65)

By using Gronwall’s lemma, (2.65) leads to

||wm||W1(T ) ≤ µT ||wm−1||NW1(T ), (2.66)
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where µT = 2

√
ζ

(2)
T T exp

(
T
(

2 |λ|+ 1
µ0
K̃(µ) + 2ζ

(1)
T + ζ

(2)
T

))
. It follows from

(2.66) that, for all m and p,

||um − um+p||W1(T ) ≤ (1− β)−1 (µT )
−1

N−1 βN
m
. (2.67)

Choosing T small enough such that β = Mµ
1

N−1

T < 1. It follows that {um} is
a Cauchy sequence in W1(T ). Then there exists u ∈W1(T ) such that

um −→ u strongly in W1(T ). (2.68)

Note that um ∈ W1(M,T ), then there exists a subsequence {umj} of {um}
such that 

umj → u in L∞(0, T ;H1
0 ∩H2) weakly*,

u′mj
→ u′ in L∞(0, T ;H1

0 ) weakly*,

u′′mj
→ u′′ in L∞(0, T ;L2) weakly,

u ∈W (M,T ).

(2.69)

We have

‖Φm(·, t)− f(·, t, u(t))‖
≤ ‖f(·, t, um−1)− f(·, t, u(t))‖

+
∥∥∥∑N−1

i=1
1
i!
∂if
∂ui

(x, t, um−1)(um − um−1)i
∥∥∥

≤ KM (f) ‖um−1 − u‖W1(T ) +KM (f)
∑N−1

i=1
1
i! ‖um − um−1‖iW1(T ) .

(2.70)

Hence, it implies from (2.68) and (2.70) that

Φm(t)→ f(·, t, u(t)) strongly in L∞(0, T ;L2). (2.71)

Finally, passing to limit in (2.3), (2.4) as m = mj → ∞, there exists
u ∈W (M,T ) satisfying the equation

〈u′′(t), w〉+ 〈µ(t)ux(t), wx〉+ λ〈u′(t), w〉 = 〈f(·, t, u(t)), w〉 , (2.72)

for all w ∈ H1
0 and the initial conditions

u(0) = ũ0, u
′(0) = ũ1. (2.73)

Uniqueness. Applying a similar argument used in the proof of Theorem 2.1,
u ∈W1(M,T ) is a unique local weak solution of Prob.(1.1)-(1.3).

Passing to the limit in (2.67) as p → +∞ for fixed m, we get (2.56). Also
with a similar argument, (2.55) follows. Theorem 2.3 is proved completely. �

Remark 2.4. In order to construct a N−order iterative scheme, we need the
condition f ∈ CN ([0, 1] × R+ × R). Then, we get a convergent sequence at a
rate of order N to a local unique weak solution of problem and the existence
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follows. This condition of f can be relaxed if we only consider the existence
of solutions, see [4], [5], [7].

Acknowledgments: The authors wish to express their sincere thanks to the
referees and the Editor for their valuable comments.
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