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Abstract. In this paper, the restriction on the coefficients of a polynomial with complex
coeflicients is weakened in order to obtain an extension of Enestrom-Kakeya’s Theorem. Our
method of proofs is of independent interest. Moreover, remark at the end simplifies several

known results in this area of research.

1. INTRODUCTION

Let P(2) =377 _qa; 27 be a polynomial of degree n. One of the fundamental
problem of finding out the region which contains all or a prescribed number
of zeros of a polynomial was first studied by Gauss [9]. He proved:

Theorem 1.1. If P(z) = 2" + 21]1:—11 ajz!, where a; are all real, then P(z)
has all its zeros in |z| < R, where
(i) R =max(1, 2%3), s being the sum of positive a;
(i) R = max(n2z|a;|)’.
In 1829, Cauchy [4] gave more exact bounds for the moduli of zeros of a
polynomial than those given by Gauss [9]. He proved the following result.
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Theorem 1.2. All the zeros of the polynomial P(z) = Z?:o a;z) of degree n
lie in the circle |z| < R, where R is the root of the equation
lao| + |a1]z + |ag|2® + ... + |an—1]2" " + |an|z" = 0.

Several generalisations and improvements of this result are available in the
literature (see [1-6, 11-12]). The following elegant results on the location of
zeros of a polynomial with restricted coefficients is known as the Enestrom-
Kakeya theorem [13-14].

Theorem 1.3. (Enestrom-Kakeya) Let P(2) =37, a;jz) be a polynomial of
degree n whose coefficients a; satisfy

Ap > Ap_1 > ... > a1 > ag > 0.
Then all the zeros of P(z) lie in the closed unit disk |z| < 1.

Joyal, Labella and Rahman[11] extended Theorem 1.3 to polynomials whose
coefficients are monotonic but need not be non-negative as follows:
Theorem 1.4. Let P(z) = Z?:o a;jz) be a polynomial of degree n such that

Ay = Ap—1 = ... 2> Q1 = a4Q.
Then all the zeros of P(z) lie in
an, + |ag| — ao
|an| '

Aziz and Zargar [2] relaxed the conditions of Theorem 1.3 and proved the
following generalisation of Theorem 1.4.

2] <

Theorem 1.5. Let P(z) = Z?:o a;jz? be a polynomial of degree n such that
for some k> 1,
kay, > apn—1 > ... > a1 > ap.
Then all the zeros of P(z) lie in
kayn, + |ag| — ap
|an| '

Aziz and Zargar[3] obtained some extensions of Theorem 1.3 by relaxing

the hypothesis as follows:

|24+ k-1 <

Theorem 1.6. Let P(z) = E?:o a;jz? be a polynomial of degree n. If for some
positive numbers k and p with k> 1 and 0 < p < 1,

kan, > an—1 > ... 2 a1 = pag > 0,
then all the zeros of P(z) lie in the closed unit disk

24k —1] <k+222(1—p).
n
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Theorem 1.7. Let P(z) = Z?:o a;jz) be a polynomial of degree n. If for some
positive number p, 0 < p < 1, and some non-negative integer A, 0 < A <n—1,

n < ap-1 < ... <axy1 < ay 2 ax—1 = ... =2 pag,
then all the zeros of P(z) lie in

an—1

2a\ — an—1+ (2 — p)lag| — pag

2+ = — 1| <

n an

In this paper, we further weaken the hypothesis of Theorems 1.6 and 1.7 to
prove following result for polynomials with complex coefficients. Our result is
an extension of Theorem 1.3 (Enestrom-Kakeya) among others.

2. MAIN RESULTS

Theorem 2.1. Let P(z) = Z?:o ajzj be a polynomial of degree n with complex
coefficients such that for some realt >0, £t >0,0<A<n—1and0<p <1,

tan <t"la, 1 <. <tMlayy < tay + > lay > > pag.

Then all the zeros of P(z) lie in

1% 1 ag
— < — t —
|Z an’ o |an| { ot T+ tn—t P

ap + |a 2a a
RTINS
AL n 1 tnl

Proof. Consider the polynomial

F(z)=(t—z)P(z)

n
= qot + E (ajt —aj—1)z’ — a2t
j=1

n
= —an2" T ) (ajt —aj1)2’ +agt

=1
n—1

= _anzn+1 + (ant — ap-1)2" + Z(a]‘t — aj_l)zj + apt
=1

= —apz + (= apt)z" + antz" + (apt — p — ap—1)2"
n—1
+ (a1t —ap)z + Z(ajt —aj—1)z + apt.
=2
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This gives
|F(2)| = | — anz"™ 4 (4 — ant) 2™ + antz™ + (ant — pp — ap_1)2"
n—1
+ (alt — a())Z + Z(ajt — aj_l)zj + aot‘.
j=2
=|- anz"t + (b — ant)z" + aptz" + (apt — p — ap—1)2"
A
+ (a1t —ap)z + Z(ajt —aj 1)
j=2
n—1 A
+ Z (ajt — aj_l)z] + aot’
F=1+A
> |2["anz — pl
a1t — ag
— ‘Z|n |:‘ant — U — Om—l’ + |’Z‘n_]|
-1
L laolt \% —aj-l o lagt —ajo]
e Z IR N
Jj=1+
> |2"anz — #l
lait — pao| | |ao — pao|
—|z|" |:|ant — = ap—1| + |t|n71 + |t‘n71
L laolt S lait —ajal |ajt —aj|
MFE Z ) Z Fr=a s
J=14A
Now, let |z| > t, so that =T |n = < It\” = for 0 < j < n. Then, we have
FEI el lanz
— L ant — p — ’+|a1t—pa0] |ao — pag
ant = ft = Gn-1 T T
A n—1
|aolt |ajt — aj | |ajt — a1
+ |t|n + Z |t|nfj + Z ‘t’nfj
j=2 Jj=14A

= ’Z‘n |:an2 - N| - { —apt + p+ ap—1

a Q, Q, Q,
1 |0|+ 0_p|0|

+ |t|n—2 o p|t‘n—1 |t|n—1 ‘t‘n—l
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n—1

ajt —aj_1 aj_1t —a; |aglt
+Z |t|" J Z |t|nfj + |t|”

=1+
|aol
ek [| - { s =
-1 A—1 144
ag lag|  axt'™* a; tlﬂ a;ttts
+ tn—l _ptn—l + tn Z 1 B Z tn
=2 =2

—2 ; n—2
a,\tH)‘ & ajtlﬂ (Ijt I+ ’ao‘t
+ tn + Z n Gn-17 Z tn + |t‘"

=1+ =14

a (ao + \a0|) 2a)
= ‘Z’n |:|(ln2 - /J,‘ - { —anl + pt n—2 tn—1 + n—A—1
|ao|
+ tn—l
n ao (ao + ao)
> |Z| |CLnZ—,U,|— _ant+M+ gn—1 - gn—1

2a) lao|
+ tn—)\—l + 7fn—l '

If

ag
|anz — p] > {—ant+u+tn .=

(ap + |ao)) 2a lag|
n—1 + tn—)\—l =1

ie.,
=y

- L
n

1 2
s 2 ottt a01 (ao + |aol) ax lao|
|an| tn

n—1 + tn—A—l + n—1

then all the zeros of F'(z) whose modulus is greater than or equal to ¢ lie in

z——| <

2= £ o]
But those zeros of F'(z) whose modulus is less than ¢ already satisfy the above
inequality and all the zeros of P(z) are also the zeros of F'(z). Hence it follows
that all the zeros of F(z) and hence of P(z) lie in

a ap + |a 2a a
ST RINCEI N T

n—1 + tn—A—l + n—1

+ +

|Z - 7‘ < n—1 tnf)\fl n—1

(279 | n|

This completes the proof. O

2
{—ant+u+ t:ol ~ (ap +aol) ax |ao| }
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Remark 2.2. (1) Fort=1and A=n, u =0, p=1, a > 0, we recapture
the Enestrom-Kakeya Theorem 1.3 (see [13,14]).

(2) Fort =1and A =n, p =0, p =1, a is non-negative, we recapture the
results of Joyal, Labella and Rahman [11].

(3) Fort=1and A =n, u=k—1, p=1, a is non-negative, we recapture
the results of Aziz and Zargar [2].

(4) Fort =1and A =n, u = k—1, a > 0, we recapture the results of Aziz
and Zargar [3].

Remark 2.3. Finding the zeros of a polynomial is a long standing classical
problem which has emerged as an interesting and fascinating area of research
for Mathematicians and Engineers (see [7, 10]). Enestrom-Kakeya result serves
as a very strong tool for obtaining the region in the complex plane having all
the zeros of a class of polynomial. The result has been employed to: an-
alyze overflow oscillation of discrete-time dynamical system [15], investigate
the properties of orthogonal wavelets [12], determine the asymptotic behavior
of zeros of the Daubechies filter [10, 12].
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