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Abstract. The purpose of this paper is to present a fixed point theorem using a contractive

condition of rational type in the context of ordered partial metric spaces. We illustrate our

results with the help of an example.

1. Introduction

One of the most important problems in mathematical analysis is to establish
existence and uniqueness theorems for some integral and differential equations.
Fixed point theory, in ordered metric spaces, plays a major role in solving such
kind of problems. The first result in this direction was obtained by Ran and
Reurings [17]. This one was extended for nondecreasing mappings by Nieto
and Lopez [10, 11]. Meanwhile, Agarwal et al. [16] and O’Regan and Petrusel
[4] studied some results for generalized contractions in ordered metric spaces.
Then, many authors obtained fixed point results in ordered metric spaces. For
some works in ordered metric spaces, we refer the reader to [1, 29]. Berinde
[26, 27] initiated the concept of almost contraction and studied existence fixed
point results for almost contraction in complete metric spaces. Later, many
authors studied different types of almost contractions and studied fixed point
results; for example, see [6, 28].
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In 1994, Matthews [19] introduced the concept of partial metric spaces and
proved the Banach contraction principle in these spaces. Then, many authors
obtained interesting results in partial metric spaces [14, 18, 30]. Very recently,
Haghi et al. [18] proved that some fixed point theorems in partial metric
spaces can be obtained from metric spaces.

Now we give preliminaries and basic definitions which are used throughout
the paper.

2. Preliminaries

First, we start with some preliminaries on partial metric spaces. For more
details, we refer the reader to [8, 9, 13, 15], [19]-[25].

Definition 2.1. Let X be a nonempty set. A partial metric on X is a function
p : X ×X → R+ such that for all x, y, z ∈ X:

(P1) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y),
(P2) p(x, x) ≤ p(x, y),
(P3) p(x, y) = p(y, x),
(P4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is
a partial metric on X. Each partial metric p on X generates a T0 topology τp
on X which has as a base the family of open p-balls {Bp(x, ε), x ∈ X, ε > 0},
where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}for all x ∈ X and ε > 0.

Remark 2.2. It is clear that, if p(x, y) = 0, then from (P1), (P2) and (P3),
x = y. But if x = y; p(x, y) may not be 0.
If p is a partial metric on X, then the function ps : X ×X → R+ given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y), (2.1)

is a metric on X.

Now, we give an example of partial metric spaces as follows. Consider
X = R+ with p(x, y) = max{x, y}. Then (R+, p) is a partial metric space. It
is clear that p is not a (usual) metric. Note that in this case ps(x, y) = |x−y|.

Definition 2.3. Let (X, p) be a partial metric space. Then

(i) a sequence (xn) in a partial metric space (X, p) converges to a point
x ∈ X if and only if p(x, x) = lim

n→+∞
p(x, xn);

(ii) a sequence (xn) in a partial metric space (X, p) converges properly to a
point x ∈ X if and only if p(x, x) = lim

n→+∞
p(xn, xn) = lim

n→+∞
p(x, xn),

if and only if lim
n→+∞

ps(x, xn) = 0;
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(iii) A sequence (xn) in a partial metric space (X, p) is called a Cauchy
sequence if there exists (and is finite) lim

n→+∞
p(xn, xm);

(iv) A partial metric space (X, p) is said to be complete if every Cauchy
sequence (xn) in X converges to a point x ∈ X, that is p(x, x) =

lim
n,m→+∞

p(xn, xm).

Lemma 2.4. Let (X, p) be a partial metric space.

(a) (xn) is a Cauchy sequence in (X, p) if and only if it is a Cauchy se-
quence in the metric space (X, ps);

(b) a partial metric space (X, p) is complete if and only if the metric space
(X, ps) is complete. Furthermore, lim

n→+∞
ps(xn, x) = 0 if and only if

p(x, x) = lim
n→+∞

p(xn, x) = lim
n,m→+∞

p(xn, xm).

Definition 2.5. Suppose that (X1, p1) and (X2, p2) are partial metrics. De-
note τ(p1) and τ(p2) their respective topologies. We say T : (X1, p1) →
(X2, p2) is continuous if both

T : (X1, τ(p1))→ (X2, τ(p2)) and T : (X1, τ(ps1))→ (X2, τ(ps2))

are continuous.

Proposition 2.6. Let (X, p) be a partial metric space, partially ordered and
T : X → X be a given mapping. We say that T is continuous in x0 ∈ X if for
every sequence (xn) in X, we have

(a) xn converges to x0 in (X, p) implies Txn converges to Tx0 in (X, p).
(b) xn converges properly to x0 in (X, p) implies Txn converges properly

to Tx0 in (X, p).

If T is continuous on each point x0 ∈ X, then we say that T is continuous on
X.

Example 2.7. ([3]) Consider X = [0,∞) endowed with the partial metric
p : X × X → [0,∞) defined by p(x, y) = max{x, y} for all x, y ≥ 0. Let
T : X → X be a non-decreasing function. If T is continuous with respect to
the standard metric d(x, y) = |x − y| for all x, y ≥ 0, then T is continuous
with respect to the partial metric p.

Definition 2.8. ([12]) If (X,�) is a partially ordered set and f, T : X → X,
we say that f is T-monotone nondecreasing if x, y ∈ X,Tx � Ty implies
fx � fy.
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Definition 2.9. ([5], Weakly Compatible Mappings) Two mappings f, T :
X → X are weakly compatible if they commute at their coincidence points,
that is, if fx = Tx for some x ∈ X implies that fTx = Tfx.

Definition 2.10. ([3], Compatible Mappings) Let (X, p) be a partial metric
space and f, T : X → X are mappings of X into itself. We say that the pair
(f, T ) is partial compatible if the following conditions hold:

(b1) p(x, x) = 0 =⇒ p(Tx, Tx) = 0,
(b2) lim

n→+∞
p(fTxn, Tfxn) = 0, whenever (xn) is a sequence in X such that

fxn → t and Txn → t for some t ∈ X.

Lemma 2.11. ([3]) Let (X, p) be a partial metric space. The function T :
X → X is continuous if given a sequence (xn) and x ∈ X such that p(x, x) =

lim
n→+∞

p(x, xn), then p(Tx, Tx) = lim
n→+∞

p(Tx, Txn).

Definition 2.12. ([2], f -Non Decreasing Mapping) Suppose (X,�) is a par-
tially ordered set and f, T : X → X are mappings of X to itself. T is said to
be f-non-decreasing if for x, y ∈ X, fx � fy implies Tx � Ty.

3. Main Results

Theorem 3.1. Let (X,�) be a partially ordered set and p be a partial metric
on X such that (X, p) is a complete partial metric space. Suppose that T
and f are continuous self mappings on X, T (X) ⊆ f(X), T is a f-monotone
non-decreasing mapping and

p(Tx, Ty)

≤ α
(p(fx, Tx)p(fy, Ty)

p(fx, fy)

)
+ βp(fx, fy)

+ γ
[
p(fx, Tx) + p(fy, Ty)

]
+ δ
[
p(fx, Ty) + p(fy, Tx)

] (3.1)

for all x, y ∈ X with fx � fy, fx 6= fy and for some α, β, γ, δ ∈ [0, 1) with
α+ β+ 2γ+ 2δ < 1. If there exists x0 ∈ X such that fx0 � Tx0, T and f are
compatible, then T and f have a coincidence point.

Proof. Since T (X) ⊆ f(X), we can choose x1 ∈ X so that fx1 = Tx0. Since
Tx1 ∈ f(X), there exists x2 ∈ X such that fx2 = Tx1. By induction,
we can construct a sequence (xn) in X such that fxn+1 = Txn for every
n ≥ 0. Since fx0 � Tx0, Tx0 = fx1, fx0 � fx1, T is a f -monotone non-
decreasing mapping, Tx0 � Tx1. Similarly fx1 � fx2, Tx1 � Tx2, fx2 �
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fx3. Continuing this process, we obtain

Tx0 � Tx1 � Tx2 � · · · � Txn � Txn+1 � · · · .

We suppose that Txn 6= Txn+1 for all n. If not, then Txn+1 = Txn for some
n, Txn+1 = fxn+1, i.e., T and f have a coincidence point xn+1, and so we
have the result. Consider

p(Txn+1, Txn)

≤ α
(
p(fxn+1, Txn+1)p(fxn, Txn)

p(fxn+1, fxn)

)
+ βp(fxn+1, fxn)

+ γ
[
p(fxn+1, Txn+1) + p(fxn, Txn)

]
+ δ
[
p(fxn+1, Txn) + p(fxn, Txn+1)

]
= α

(
p(fxn+1, fxn+2)p(fxn, fxn+1)

p(fxn+1, fxn)

)
+ βp(fxn+1, fxn)

+ γ
[
p(fxn+1, fxn+2) + p(fxn, fxn+1)

]
+ δ
[
p(fxn+1, fxn+1) + p(fxn, fxn+2)

]
≤ αp(fxn+1, fxn+2) + βp(fxn+1, fxn)

+ γ
[
p(fxn+1, fxn+2) + p(fxn, fxn+1)

]
+ δ
[
p(fxn+1, fxn+1) + p(fxn, fxn+1)

+ p(fxn+1, fxn+2)− p(fxn+1, fxn+1)
]

= αp(fxn+1, fxn+2) + βp(fxn+1, fxn)

+ γ
[
p(fxn+1, fxn+2) + p(fxn, fxn+1)

]
+ δ
[
p(fxn, fxn+1) + p(fxn+1, fxn+2)

]
= (α+ γ + δ)p(fxn+1, fxn+2) + (β + γ + δ)p(fxn, fxn+1)

= (α+ γ + δ)p(Txn, Txn+1) + (β + γ + δ)p(Txn−1, Txn)

(3.2)

which implies that

p(Txn+1, Txn) ≤ (β + γ + δ)

1− (α+ γ + δ)
p(Txn, Txn−1).

Using mathematical induction we have

p(Txn+1, Txn) ≤
( (β + γ + δ)

1− (α+ γ + δ)

)n
p(Tx1, Tx0).
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Put k = (β+γ+δ)
1−(α+γ+δ) < 1. Moreover, by (P4), we have, for m ≥ n,

p(Txm, Txn) ≤ p(Txm, Txm−1) + p(Txm−1, Txn)− p(Txm−1, Txm−1)
≤ p(Txm, Txm−1) + p(Txm−1, Txn)
≤ p(Txm, Txm−1) + p(Txm−1, Txm−2) + p(Txm−2, Txn)
−p(Txm−2, Txm−2)

≤ p(Txm, Txm−1) + p(Txm−1, Txm−2) + p(Txm−2, Txn)
...
≤ p(Txm, Txm−1) + p(Txm−1, Txm−2) + · · ·

+p(Txn+2, Txn+1) + p(Txn+1, Txn)

≤
(
k

m−1
+ km−2 + · · ·+ kn+1 + kn

)
· p(Tx1, Tx0)

≤
(
kn

1−k
)
· p(Tx1, Tx0).

(3.3)
Letting m,n→ +∞ in (3.3), we get

lim
m,n→+∞

p(Txm, Txn) = 0. (3.4)

By (2.1), we have

ps(Txm, Txn) ≤ 2p(Txm, Txn). (3.5)

Taking m,n→ +∞ in (3.5) and using (3.4), we get that

lim
m,n→+∞

ps(Txm, Txn) = 0. (3.6)

Then (Txn) is a Cauchy sequence in the metric space (X, ps). Since (X, p) is
complete, from Lemma 2.4, (X, ps) is a complete metric space. Then, there
exists u ∈ X such that

lim
n→+∞

ps(Txn, u) = lim
n→+∞

ps(fxn+1, u) = 0. (3.7)

On the other hand, we have

ps(Txn, u) = 2p(Txn, u)− p(Txn, Txn)− p(u, u).

Letting n→ +∞ in the above equation, using (3.4) and (3.7), we get

lim
n→+∞

p(Txn, u) =
1

2
p(u, u). (3.8)

Furthermore, by (p2) ; we have p(u, u) ≤ p(u, Txn) for all n ∈ N. On letting
n→ +∞, we get that

p(u, u) ≤ lim
n→+∞

p(u, Txn). (3.9)

Using (3.8), (3.9) and from Lemma 2.4 we have

lim
n→+∞

p(u, Txn) = lim
n,m→+∞

p(Txn, Txm) = p(u, u) = 0. (3.10)
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Now, since T is continuous, from (3.10) and using Lemma 3.1, we get

lim
n→+∞

p(T (Txn), Tu) = p(Tu, Tu). (3.11)

Using the triangular inequality, we obtain

p(Tu, fu) ≤ p
(
Tu, T (fxn)

)
+ p
(
T (fxn), f(Txn)

)
+ p
(
f(Txn), fu

)
. (3.12)

Letting n→ +∞ in the above inequality, we get that p(fu, Tu) = 0. By (P1)
and (P2), we have fu = Tu. This completes the proof. �

In what follows, we prove that Theorem 3.1 is still valid for T not necessarily
continuous, assuming the following hypothesis in X :

if (xn) is a nondecreasing sequence in Xsuch that
xn → x, then x = sup{xn} for alln ∈ N. (3.13)

Theorem 3.2. Let (X,�) be a partially ordered set and p be a partial metric
on X such that (X, p) is a complete partial metric space. Assume that X
satisfies (3.13). Let T : X → X be a nondecreasing mapping such that

p(Tx, Ty)

≤ α
(
p(fx, Tx)p(fy, Ty)

p(fx, fy)

)
+ βp(fx, fy)

+ γ
[
p(fx, Tx) + p(fy, Ty)

]
+ δ
[
p(fx, Ty) + p(fy, Tx)

] (3.14)

for all x, y ∈ X with x � y, x 6= y and for some α, β, γ, δ ∈ [0, 1) with
α+ β + 2γ + 2δ < 1. If there exists x0 ∈ X such that x0 � Tx0, then T has a
fixed point.

Proof. Following the proof of Theorem 3.1 we have (Txn) is a Cauchy se-
quence and so is (fxn). Since f(X) is closed and X is complete, lim

n→+∞
Txn =

lim
n→+∞

fxn = fu for some u ∈ X. Notice that the sequences (Txn) and

(fxn) are non-decreasing. Then from our assumptions we have Txn � fu and
fxn � fu for all n. Keeping in mind that T is f - monotone non-decreasing
we get Txn � Tu for all n. Letting n to +∞ we obtain fu � Tu. Suppose
fu ≺ Tu (otherwise we are done). Construct a sequence (un) as u0 = u and
fun+1 = Tun for all n. A similar argument as in the proof of Theorem 3.1
yields (fun) is a non-decreasing sequence and lim

n→+∞
fun = lim

n→+∞
Tun = fv

for some v ∈ X. From our assumptions it follows that supn fun � fv and
supn Tun � fv. Notice that

fxn � fu ≺ fu1 � . . . � fun � . . . � fv.
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We distinguish two cases:
Case 1. Suppose there is n0 ≥ 1 with fxn0 = fun0 . Then

fxn0 = fu = fun0 = fu1 = Tu.

We are done.
Case 2. Suppose fun 6= fxn for all n ≥ 1. Then from the contraction
assumption we obtain

p(fxn+1, fun+1) = p(Txn, Tun)

≤ α
(
p(fxn, Txn)p(fun, Tun)

p(fxn, fun)

)
+ βp(fxn, fun)

+ γ
[
p(fxn, Txn) + p(fun, Tun)

]
+ δ
(
p(fxn, Tun) + p(fun, Txn)

)
.

Letting n to +∞ we get p(fu, fv) ≤ (β + 2δ)p(fu, fv), which implies that
fu = fv since β + 2δ < 1. Hence fu = fv = fu1 = Tu, the proof is
complete. �

If β = γ = δ = 0, in Theorem 3.1 (or Theorem 3.2), we obtain the following
fixed point theorem in ordered partial complete metric spaces.

Corollary 3.3. ([7]) Let (X,�) be a partially ordered set and p be a partial
metric on X such that (X, p) is a complete partial metric space. Let T : X −→
X be a nondecreasing mapping such that

p(Tx, Ty) ≤ α
(p(x,x)p(y,y)

p(x,y)

for all x, y ∈ X with x � y, x 6= y and for some α ∈ [0, 1) with α < 1. Suppose
also that either T is continuous or X satisfies condition (3.11). If there exists
x0 ∈ X such that x0 � Tx0, then T has a fixed point.

If γ = 0 = δ, in Theorem 3.1 (or Theorem 3.2), we obtain the following
fixed point theorem in ordered partial complete metric spaces.

Corollary 3.4. ([7]) Let (X,�) be a partially ordered set and p be a partial
metric on X such that (X, p) is a complete partial metric space. Let T : X →
X be a nondecreasing mapping such that

p(Tx, Ty) ≤ α
(p(x,x)p(y,y)

p(x,y)

)
+ βp(x, y)

for all x, y ∈ X with x � y, x 6= y and for some α, β ∈ [0, 1) with α + β < 1.
Suppose also that either T is continuous or X satisfies condition (3.11). If
there exists x0 ∈ X such that x0 � Tx0, then T has a fixed point.
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If β = 0 in Theorem 3.1 (or Theorem 3.2), we obtain the following fixed
point theorem in ordered partial complete metric spaces.

Corollary 3.5. Let (X,�) be a partially ordered set and p be a partial metric
on X such that (X, p) is a complete partial metric space. Let T : X → X be
a nondecreasing mapping such that

p(Tx, Ty) ≤ α
(
p(x, x)p(y, y)

p(x, y)

)
+ γ
[
p(x, Tx) + p(y, Ty)

]
+ δ
[
p(x, Ty) + p(y, Tx)

]
for all x, y ∈ X with x � y, x 6= y and for some α, γ, δ ∈ [0, 1) with α +
2γ+ 2δ < 1. Suppose also that either T is continuous or X satisfies condition
(3.11). If there exists x0 ∈ X such that x0 � Tx0, then T has a fixed point.

Example 3.6. Let X = [0,+∞[ endowed with the usual partial metric p
defined by p : X×X → [0,+∞[ with p(x, y) = max{x, y}. We give the partial
order on X by

x � y ⇐⇒ p(x, x) = p(x, y)⇐⇒ x = max{x, y} ⇐= y ≤ x.
It is clear that (X,�) is ordered. The partial metric space (X, p) is complete
because (X, ps) is complete. Indeed, for any x, y ∈ X,
ps(x, y) = 2p(x, y)− p(x, x)− p(y, y) = 2 max{x, y} − (x+ y) = |x− y|,

Thus, (X, ps) = ([0,+∞[, |.|) is the usual metric space, which is complete.
Again, we define T (x) = 0 for all x ∈ X. Then p(Tx, Ty) = 0 Any x, y ∈ X
are comparable, so for example we take y � x, then p(x, x) = x, p(x, y) = y,
so 0 ≤ x < y.

α
(p(x,Tx).p(y,Ty)

p(x,y)

)
+ βp(x, y) + γ

[
p(x, Tx) + p(y, Ty)

]
+ δ
[
p(x, Ty) + p(y, Tx)

]
= α(x) + β(y) + γ[x+ y] + δ[x+ y] = (α+ γ + δ)x+ (β + γ + δ)y
> 0.

Hence the inequality holds if β + γ + δ 6= 0. On the other hand, it is obvious
that T is a non-decreasing mapping with respect to � and there exists x0 = 0
such that x0 � Tx0 and 0 is a fixed point of T .

Example 3.7. Let X = {0, 1, 2} endowed with the partial metric p given by
p(x, y) = max{x, y} for all x, y ∈ X. It is clear that (X, p) is a complete
partial metric space. We give the partial order on X by

x � y ⇐⇒ p(x, x) = p(x, y)⇐⇒ x = max{x, y} ⇐= y ≤ x.
It is clear that (X,�) is ordered. Define T0 = T1 = 0, T2 = 1, α = 1

8 , β = 1
4

and γ = δ = 1
7 we have: α+ β + 2γ + 2δ = 53

56 < 1.
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Any x, y ∈ X are comparable, so for example we take y � x, then p(x, x) = x,
p(x, y) = y, so 0 ≤ x < y. We have

p(T0, T1) = 0 ≤ 1
8

(p(0,T0).p(1,T1)
p(0,1)

)
+ 1

4p(0, 1)

+1
7

[
p(0, T0) + p(1, T1)

]
+ 1

7

[
p(0, T1) + p(1, T0)

]
= 1

4 + 1
7 + 1

7
= 15

28 ,

p(T0, T2) = 1 ≤ 1
8

(p(0,T0).p(2,T2)
p(0,2)

)
+ 1

4p(0, 2)

+1
7

[
p(0, T0) + p(2, T2)

]
+ 1

7

[
p(0, T2) + p(2, T0)

]
= 2

4 + 2
7 + 3

7
= 17

14 ,

p(T1, T2) = 1 ≤ 1
8

(p(1,T1).p(2,T2)
p(1,2)

)
+ 1

4p(1, 2)

+1
7

[
p(1, T1) + p(2, T2)

]
+ 1

7

[
p(1, T2) + p(2, T1)

]
= 1

8 + 2
4 + 3

7 + 3
7

= 83
56 .

Hence the inequality holds. On the other hand, it is obvious that T is a
trivially continuous and nondecreasing mapping with respect to � and there
exists x0 = 0 such that x0 � Tx0 and 0 is a fixed point of T .

4. Application

The aim of this section is to apply our new results to mappings involving
contractions of integral type. For this purpose, denote by Λ the set of function
γ : [0,+∞) −→ [0,+∞) satisfying the following hypotheses:

(h1) γ is a Lebesgue-integrable mapping on each compact of [0,+∞).
(h2) For every ε > 0, we have∫ ε

0
γ(s)ds > 0.

We have the following result.

Corollary 4.1. Let (X,�) be a partially ordered set and let p be a partial
metric on X such that (X, p) is complete. Let T : X −→ X be a continuous
and nondecreasing mapping such that∫ p(Tx,Ty)

0
ψ(s) ds ≤ α

∫ p(x,Tx)p(y,Ty)
p(x,y)

0
ψ(s) ds+ β

∫ p(x,y)

0
ψ(s) ds

+ γ

∫ p(x,Tx)+p(y,Ty)

0
ψ(s) ds+ δ

∫ p(x,Ty)+p(y,Tx)

0
ψ(s) ds
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for all x, y ∈ X with x � y, x 6= y, ψ ∈ Λ and for some α, β, γ, δ ∈ [0, 1) with
α+ β + 2γ + 2δ < 1. If there exists x0 ∈ X such that x0 � Tx0, then T has a
fixed point.
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