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Abstract. The sign function f(x) = sgn(x) has many applications. It’s approximations by

polynomials and rational functions have been studied by several authors. Truncated Fourier

series and trigonometric interpolants converge slowly for functions with jumps in value, the

nonlinear Fourier approximants with better convergence based on trigonometric generating

functions are developed. The convergence and error terms are obtained.

1. Introduction

The well-known sign function f(x) = sgn(x) has many applications. For
example, Borici et. al. [2] and other references therein discussed the rational
approximation and continued fraction expansion of the sign function to obtain
the overlap lattice Dirac operator. Koyama et. al. [7] used an integral repre-
sentation of the sign function to analyze the recalling processes of associative
memory. Lai [8] used the sign function together with step function to establish
the equation of the middle surface of a simply-supported truncated hip roof.
In this paper, we discuss the Fourier approximants to the sign function, which
we believe, may provide a good tool for the application of the function. Due
to the periodicity, we modify sgn(x) to

s(x) =




−1 −1 < x < 0

1 0 < x < 1
0 x = 0,−1, 1.

(1.1)
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It is an odd function and its Fourier expansion is

s(x) =
2
π

∞∑

k=1

1
k
[1− (−1)k] sin kπx, x ∈ [1, 1]. (1.2)

Although the series converges to s(x) for any x ∈ [−1, 1], the convergence
rate is very slow. For example, at x = 0.5, the series requires over 522,000
terms to yield an approximate value to s(0.5) = 1, such that the error is not
greater than 0.3×10−5. We seek approximants for this function that converge
faster. Due to the popularity of Fourier series, the nonlinear Fourier approx-
imants based on trigonometric generating functions are chosen. Nonlinear
approximation methods by using generating functions have been studied by
many mathematicians and physicists, see for example [1, 3-6, 9, 10, 12]. For a
detailed description of the generating function method, the reader is referred
to [9]. In the most basic form, the approximants to a given function f(x) are
defined by

F (n; x) =
n∑

j=1

ajv(x, tj), n = 1, 2, . . . , (1.3)

where

v(x, t) =
∞∑

k=0

uk(x)tk (1.4)

is a generating function for functions {uk(x)}, {aj} and {tj} are parameters
to be determined by the following agreement conditions

Hk[F (n;x)] = Hk[f(x)], k = 0, 1, . . . , 2n− 1. (1.5)

The operators {Hk[·]} satisfy

Hk[um(x)] = δmk, m, k = 0, 1, 2, . . . ,

where δmk is the Kronecker delta. That is, {uk(x)} and {Hk[·]} are orthonor-
mal. Setting fk = Hk[f(x)] for k = 0, 1, . . ., substituting (1.4) into (1.3) and
exchanging the order of summation, the agreement conditions in (1.5) become

n∑

j=1

ajt
k
j = fk, k = 0, 1, . . . , 2n− 1. (1.6)

In principle, one solves this system to obtain the values of the parameters
for use in (1.3). The Prony’s method described in [6] could be used. First one
solves the system

c0fk + c1fk+1 + · · ·+ cn−1fk+n−1 + fk+n = 0, k = 0, 1, . . . , n− 1, (1.7)

for c0, c1, . . . , cn−1, then from solving all the roots of the polynomial

p(t) = c0 + c1t + · · ·+ cn−1t
n−1 + tn,
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one gets the nonlinear parameters t1, t2, . . . , tn, and finally, the linear param-
eters a1, a2, . . . , an could be solved from (1.6). If {tj} have multiplicities {rj},
[9] modified the approximants {F (n;x)} to take the form

F (n;x) =
s∑

j=1

rj−1∑

i=0

aji

i!
∂i

∂ti
v(x, t)

∣∣∣∣∣∣
t=tj

, n = 1, 2, . . . , (1.8)

where
∑s

j=1 rj = n.
In this paper, we develop the nonlinear approximants based on several

trigonometric generating functions to the (modified) sign function s(x) as de-
fined in (1.1). In general, such approximants may not converge, and when
they do the convergence may be very difficult to prove. But for our cases here,
with the help of Gaussian type quadratures, the convergence and error terms
are obtained.

2. Preliminaries

In this section, we introduce the trigonometric generating functions and the
nonlinear approximants based on them.

Definition 2.1. We define the following generating functions,

vg1(x, s) =
(1− s2)/2

1− 2s cos(πx) + s2
=

1
2

+
∞∑

k=1

cos(kπx)sk, |s| < 1, (2.1)

vg2(x, t) =
t sin(πx)

1− 2t cos(πx) + t2
=

∞∑

k=1

sin(kπx)tk, |t| < 1, (2.2)

ve1(x, s) = es cos(πx) cos(s sin(πx))− 1
2

=
1
2

+
∞∑

k=1

cos(kπx)
sk

k!
, (2.3)

ve2(x, t) = et cos(πx) sin(t sin(πx)) =
∞∑

k=1

sin(kπx)
tk

k!
. (2.4)

We call the first two geometric generating functions and the last two exponen-
tial generating functions.

Remark 2.2. The parameters s and t may be regarded as complex. If s
and x are real, then vg1(x, s) and vg2(x, s) are the real and imaginary part

of
1

1− seiπx
− 1

2
, respectively, and ve1(x, s) and ve2(x, s) are the real and

imaginary part of ese
iπx − 1

2
, respectively.
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The expressions that approximate a function f(x) and use these generating
functions take the form

Fg(n;x) =
n+1∑

j=1

ajvg1(x, sj) +
n∑

j=1

bjvg2(x, tj), n = 1, 2, . . . , (2.5)

and

Fe(n; x) =
n+1∑

j=1

ajve1(x, sj) +
n∑

j=1

bjve2(x, tj), n = 1, 2, . . . , (2.6)

where {aj}, {bj}, {sj} and {tj} are 4n + 2 parameters to be determined by
the following agreement conditions. Let

Hgk(h(x)) =
∫ 1

−1
h(x) cos(kπx)dx, Hek(h(x)) = k!

∫ 1

−1
h(x) cos(kπx)dx,

Jgk(h(x)) =
∫ 1

−1
h(x) sin(kπx)dx, Jek(h(x)) = k!

∫ 1

−1
h(x) sin(kπx)dx,





(2.7)
then the agreement conditions are defined by

Hgk(f) = Hgk(Fg) (or Hek(f) = Hek(Fe)), k = 0, 1, . . . , 2n + 1,

and
Jgk(f) = Jgk(Fg) (or Jek(f) = Jek(Fe)), k = 1, 2, . . . , 2n.

Setting fk = Hgk(f) (or fk = Hek(f)) and pk = Jgk(f) (or pk = Jek(f)), the
above agreement conditions become

n+1∑

j=1

ajs
k
j = fk, k = 0, 1, . . . , 2n + 1,

n∑

j=1

bjt
k
j = pk, k = 1, 2, . . . , 2n.





(2.8)

These two sets of nonlinear algebraic equations are solved for the parameters
by Prony’s method.

The {sj} and {tj} are roots of polynomials. If any has multiplicity greater
than one, the form of {Fg(n; x)} or {Fe(n; x)} must be modified to the form
indicated in (1.8). The approximants {Fg(n;x)} in (2.5) are based on the
geometric generating functions defined in (2.1) and (2.2), and require that
the magnitudes of {sj} and {tj} are less than one. If any of these {sj} and
{tj} have magnitudes that violate this condition, we can use the magnitude
reduction method described in [4] to reduce the magnitudes of these {sj} and
{tj} until they are less than one.
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3. Approximants to the Sign Function

In this section, we discuss the nonlinear Fourier approximants to the (mod-
ified) sign function f(x) = s(x) defined in (1.1) and give the convergence
and error terms. Such approximants are based on the generating functions
introduced in the previous section and their modifications.

First, we consider nonlinear approximants using geometric generating func-
tions. Since s(x) is an odd function, its Fourier expansion contains only sine
terms as shown in (1.2). If it is approximated by {Fg(n; x)} in (2.5), the
approximants take the form

Fg(n; x) =
n∑

j=1

bjvg2(x, tj), n = 1, 2, . . . ,

and the agreement conditions (2.8) become
n∑

j=1

bjt
k
j = pk, k = 1, 2, . . . , 2n.

where
pk = Jgk(f) =

2
kπ

[
1− (−1)k

]
, k = 1, 2, . . . .

The Prony’s method for solving this system encounters

c0pk + c1pk+1 + · · ·+ cn−1pk+n−1 + pk+n = 0, k = 1, 2, . . . , n.

When n ≥ 3, the system is singular since the first and the third rows of the
coefficient matrix are always the same. In order to conquer the problem, we
introduce the following modified generating function for sine terms.

vg(x, t) =
2
π t

vg2(x, t)

=
2
π

sinπx

1− 2t cosπx + t2
(3.1)

=
2
π

∞∑

k=0

sin (k + 1)πx tk, |t| < 1,

or if we regard t as real

vg(x, t) =
2
π

Im
[

1
t(1− teiπx)

]
. (3.2)

Throughout this section, we modify Jgk in (2.7) to have k begin at zero.
We approximate s(x) by the functions

Fg(n; x) =
n∑

j=1

bjvg(x, tj), n = 1, 2, . . . . (3.3)
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The following two lemmas are needed when we prove the convergence of the
approximants.

Lemma 3.1. ([11]) If w(x) ≥ 0 on [a, b] (which may be an infinite interval),
then a Gauss formula

∫ b

a
w(x)f(x)dx '

n∑

j=1

Ajf(tj)

which has degree 2n− 1 is a Riemann-Stieltjes sum.

Lemma 3.2. ([9]) Let t1, t2, . . . , tN be real but not necessarily distinct
values. Let C be a contour in the complex z-plane that encloses the {tj}
in the counterclockwise sense, but does not surround any nonanalytic points
of v(z) and let P (z) =

∏N
j=1(z − tj). There exists a real number τ with

min(t1, . . . , tN ) ≤ τ ≤ max(t1, . . . , tN ) such that

1
2πi

∮

C

v(z)
P (z)

dz =
1

(N − 1)!
dN−1v(t)
dtN−1

∣∣∣∣
t=τ

. (3.4)

The following theorem gives the convergence and error terms of the approx-
imants {Fg(n; x)}.
Theorem 3.3. The nonlinear approximants {Fg(n; x)} to s(x) on [−1, 1] are
the corresponding Gaussian-Legendre quadratures applied to the integral

sg(x) =
∫ 1

−1
vg(x, t)dt. (3.5)

Moreover,

sg(x) = s(x) and lim
n→∞Fg(n;x) = s(x), x ∈ [−1, 1]. (3.6)

Furthermore, for each positive integer n and each x ∈ [−1, 1], there exists a
point ξ ∈ (−1, 1), such that

En(x) = s(x)− Fg(n;x) =
1
n!

∫ 1

−1
Qn(t)

∂n

∂zn
vg(x, z)

∣∣∣∣
z=ξ

dt,

where Qn(t) =
n∏

j=1

(t− tj) and {tj} are the n roots of the Legendre polynomial

of order n.

Proof. The conditions of agreement are
n∑

j=1

bjt
k
j = Jgk(f) = pk, k = 0, 1, . . . , 2n− 1,
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where the operators {Jgk} are defined by

Jgk(h(x)) =
π

2

∫ 1

−1
h(x) sin (k + 1)πxdx, k = 0, 1, 2, . . . ,

and satisfy
Jgk(vg(x, t)) = tk, k = 0, 1, 2, . . . ,

while

pk = Jgk(s(x)) = π

∫ 1

0
sin (k + 1)πxdx

=
1

k + 1
[1− (−1)k+1]

=
∫ 1

−1
tkdt, k = 0, 1, 2, . . . .

This gives the first part of the theorem. As for the second part, since the
series (3.1) is uniformly convergent in t on any interval [a, b] ⊂ (−1, 1), by
the well-known convergence theorem for Fourier series, we have

∫ 1

−1
vg(x, t)dt =

2
π

∞∑

k=0

sin (k + 1)πx

∫ 1

−1
tkdt

=
2
π

∞∑

k=1

1− (−1)k

k
sin kπx

= s(x), x ∈ [−1, 1].

Together with Lemma 3.1, we get (3.6).
We turn to prove the error expression. From the equality s(x) = sg(x), x ∈

[−1, 1] and (21) in [9]], it follows that

En(x) = sg(x)− Fg(n; x) =
1

2πi

∮

C

∫ 1

0

vg(x, z)Qn(t)
(z − t)Qn(z)

dtdz,

where C is a contour in the complex z-plane which encloses, in the counter-

clockwise sense, t, t1, . . . , tn, and Qn(t) =
n∏

j=1

(t− tj). Replacing fk in (1.7) by

pk and substituting pk =
∫ 1
−1 tkdt, k = 0, 1, . . . , n− 1 into (1.7), we obtain

∫ 1

−1
Qn(t)tkdt = 0, k = 0, 1, . . . , n− 1,

which states that {tj} are the n roots of the Legendre polynomial of degree
n. Therefore, all the parameters {tj} are real, distinct from each other and all
lie in [−1, 1]. When accompanied by Lemma 3.2, we get the expression for
En(x). The proof is complete. ¤
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Since the Fourier expansion of s(x) contains only the terms with odd k, it
would then appear that one could be much more efficient if the generating
function contained only terms of the correct parity. For this purpose, we
introduce the following generating function for{

2
π

sinπx,
2
π

sin 3πx, . . . ,
2
π

sin(2k + 1)πx, . . .

}
.

vog(x, t) =
1
2
[vg(x,

√
t) + vg(x,−

√
t)] (3.7)

=
2
π

(1 + t) sin πx

1− 2t cos 2πx + t2

=
2
π

∞∑

k=0

sin (2k + 1)πx tk, |t| < 1,

or if we regard t as real

vog(x, t) =
2
π

Im
(

1
e−iπx − teiπx

)
. (3.8)

We now consider the following approximants to s(x),

Fog(n; x) =
n∑

j=1

bjvog(x, tj), n = 1, 2, . . . . (3.9)

We have

Theorem 3.4. The nonlinear approximants {Fog(n; x)} to s(x) on [−1, 1] are
the corresponding Gaussian-Jacobi quadratures, with the weight w(t) = t−

1
2 ,

applied to the integral

sog(x) =
∫ 1

0
w(t)vog(x, t)dt. (3.10)

Moreover,
sog(x) = s(x), x ∈ [−1, 1], (3.11)

and
Fog(n; x) = Fg(2n; x), x ∈ [−1, 1], n = 1, 2, . . . . (3.12)

Hence
lim

n→∞Fog(n; x) = s(x), x ∈ [−1, 1]. (3.13)

Furthermore, for each positive integer n and each x ∈ [−1, 1], there exists a
point ξ ∈ (−1, 1), such that

En(x) = s(x)− Fog(n;x) =
1
n!

∫ 1

0
Qn(t)

∂n

∂zn
vog(x, z)

∣∣∣∣
z=ξ

dt,
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where Qn(t) =
n∏

j=1

(t− tj) and {tj} are the n roots of the Jacobi polynomial of

order n with weight t−
1
2 .

Proof. The conditions of agreement are
n∑

j=1

bjt
k
j = p2k, k = 0, 1, . . . , 2n− 1,

where the data pk are the same as in the proof of Theorem 3.3. Since

p2k =
2

2k + 1
=

∫ 1

0
w(t)tkdt, k = 0, 1, 2, . . . ,

the first part of the theorem is proved. As to the second part, (3.11) can be
obtained by a similar proof to that of Theorem 3.3. By noticing (3.7), we can
get (3.12) by a similar proof to that described in [12]. Therefore {Fog(n; x)}
is a subsequence of {Fg(n; x)}, (3.13) follows from (3.6). The error expression
can be obtained in a similar fashion as we did in the proof of Theorem 3.3.
This completes the proof. ¤

Remark 3.5. We now compare our nonlinear approximants {Fog(n; x)} with
the linear ones by an example. As we mentioned in the first section, at x=0.5,
we need over 522,000 terms of the series (1.2) to get an approximate value
to s(0.5) = 1, such that the error is not greater than 0.3 × 10−5. While our
nonlinear approximants need only the first 8 nonzero terms of the series to
get a better approximate value, Fog(4, 0.5) = Fg(8, 0.5) ' 0.9999987814. The
error is less than 0.13× 10−5.

Another comparison of the generating function method and linear approxi-
mation using the same data is illustrated in Figure 1.

We turn to study approximants to s(x) based on the exponential generating
functions. Due to the analysis we did for the geometric generating function
cases, we would like to introduce the following modifications of ve2(x, t) in
(2.4):

ve(x, t) =
1
πt

ve2(x, t), (3.14)

and
voe(x, t) =

1
2
[ve(x,

√
t) + ve(x,−

√
t)]. (3.15)

We first discuss the approximants

Foe(n; x) =
n∑

j=1

bjvoe(x, tj), n = 1, 2, . . . . (3.16)
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x

0 10.50-0.5-1
0

1

0.5

0

-0.5

-1

ab

Figure 1. Approximation of the sign function by Fourier series
a: 12 term linear approximant
b: Nonlinear approximant with vog, n=6

Our result is

Theorem 3.6. The nonlinear approximants {Foe(n; x)} to s(x) on [−1, 1]
are the corresponding Gaussian quadratures, with the weight w(t) = 2t−

1
2 e−

√
t,

applied to the integral

soe(x) =
∫ ∞

0
w(t)voe(x, t)dt. (3.17)

Moreover,
lim

n→∞Foe(n;x) = soe(x) = s(x), x ∈ [−1, 1]. (3.18)

Furthermore, for each positive integer n and each x ∈ [−1, 1], there exists a
point ξ ∈ (−1, 1), such that

En(x) = s(x)− Foe(n; x) =
1
n!

∫ ∞

0
Qn(t)

∂n

∂zn
voe(x, z)

∣∣∣∣
z=ξ

dt,

where Qn(t) =
n∏

j=1

(t−tj) and {tj} are the n roots of the orthogonal polynomial

pn(x) of order n with weight t−
1
2 on [0,∞), that is, pn has degree n and

∫ ∞

0
w(x)pm(x)pn(x) = δmn, m, n = 0, 1, 2, . . . ,

where δmn is the Kronecker delta.
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The proofs of the first part and (3.18) are similar to that of Theorem 3.4 after
we notice that the conditions of agreement are

n∑

j=1

bjt
k
j = 4(2k)! =

∫ ∞

0
w(t)tkdt, k = 0, 1, . . . , 2n− 1.

The error expressions can be obtained similarly as we did for Theorem 3.4.
As to the approximants

Fe(n;x) =
n∑

j=1

bjve(x, tj), (3.19)

the first result is

Theorem 3.7.

Fe(2n;x) = Foe(n; x), x ∈ [−1, 1], n = 1, 2, . . . . (3.20)

The proof is similar to that of Theorem 3.4.

And the second result is

Theorem 3.8. Let T1, T2, . . . , Tn be the zeroes of the orthogonal polynomial
of order n, with weight w(t) = t

1
2 e−

√
t on [0,∞). Then the parameters bj and

tj of Fe(2n + 1; x) in (3.19) are

tn+1 = 0, tj = −t2n+2−j =
√

Tj j = 1, 2, . . . , n,

bj = a2n+2−j =
1
Tj

∫ ∞

0
w(t)

P (t)
(t− Tj)P ′(Tj)

dt, j = 1, 2, . . . , n,

an+1 = 4− 2
n∑

j=1

bj ,

where

P (t) =
n∏

j=1

(t− Tj).

Proof. The conditions of agreement are
2n+1∑

j=1

bjt
k
j = Jek(f) = pk, k = 0, 1, . . . , 4n + 1, (3.21)

where the operators {Jek} are defined by

Jek(h(x)) = π(k + 1)!
∫ 1

−1
h(x) sin (k + 1)πxdx, k = 0, 1, 2, . . . ,
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and satisfy
Jek(ve(x, t)) = tk, k = 0, 1, 2, . . . ,

while

pk = Jek(s(x)) = 2π(k + 1)!
∫ 1

0
sin (k + 1)πxdx

= 2k![1− (−1)k+1], k = 0, 1, 2, . . . .

It is clear that the system (3.21) is satisfied for odd k and k = 0. We need
only verify

2n+1∑

j=1

bjt
2k+2
j = p2k+2, k = 0, 1, . . . , 2n− 1.

From the theory of Gaussian quadrature we have
n∑

j=1

(bjTj)T k
j =

∫ ∞

0
w(t)tkdt, k = 0, 1, . . . , 2n− 1.

The right hand side is 2(2k + 2)! for k = 0, 1, . . . , 2n− 1, which is 1
2p2k+2, and

this completes the proof. ¤

The comparison of the generating function method and linear approxima-
tion using the same data is illustrated in Figure 2.

x

0 10.50-0.5-1
0

1

0.5

0

-0.5

-1

ab

Figure 2. Approximation of the sign function by Fourier series
a: 12 term linear approximant
b: Nonlinear approximant with voe, n=6
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