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w-DISTANCES AND τ-DISTANCES
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Abstract. We study the difference between the notions of w-distance and τ -distance. Spe-

cially, we state useful examples of τ -distance which are not w-distances.

1. Introduction

Throughout this paper we denote by N, Q and R by the set of positive
integers, rational numbers and real numbers, respectively.

In 1996, Kada, Suzuki and Takahashi introduced the notion of w-distance.
Using this notion, they improved Caristi’s fixed point theorem [2, 3], Ekeland’s
ε-variational principle [4, 5], and the nonconvex minimization according to
Takahashi [20].

Definition 1. (Kada, Suzuki and Takahashi [6]) Let X be a metric space
with metric d. Then a function p from X×X into [0,∞) is called a w-distance
on X if the following are satisfied:

(w1) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X;
(w2) p is lower semicontinuous in its second variable;
(w3) for any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ

imply d(x, y) ≤ ε.

The metric d is one of w-distances. Using w-distance, Suzuki and Takahashi
in [19] improved the Banach contraction principle [1] and Nadler’s fixed point
theorem [9]. See also [10, 12, 22].
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In 2001, Suzuki introduced the notion of τ -distance, which is a generalized
notion of w-distance. Suzuki also improved the results in Tataru [23], Zhong
[25, 26] and others.

Definition 2. (Suzuki [13]) Let X be a metric space with metric d. Then a
function p from X ×X into [0,∞) is called a τ -distance on X if there exists
a function η from X × [0,∞) into [0,∞) and the following are satisfied:

(τ1) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X;
(τ2) η(x, 0) = 0 and η(x, t) ≥ t for all x ∈ X and t ∈ [0,∞), and η is

concave and continuous in its second variable;
(τ3) limn xn = x and limn sup{η(zn, p(zn, xm)) : m ≥ n} = 0 imply

p(w, x) ≤ lim infn p(w, xn) for all w ∈ X;
(τ4) limn sup{p(xn, ym) : m ≥ n} = 0 and limn η(xn, tn) = 0 imply

limn η(yn, tn) = 0;
(τ5) limn η(zn, p(zn, xn)) = 0 and limn η(zn, p(zn, yn)) = 0 imply limn

d(xn, yn) = 0.

We may replace (τ2) by the following (τ2)’
(τ2)’ inf{η(x, t) : t > 0} = 0 for all x ∈ X, and η is nondecreasing in its

second variable.
See also [14–18] for many useful examples and properties.

The author thinks that it is meaningful to study both w-distances and
τ -distances because we can consider w-distances much more easily than τ -
distances. On the other hand, there are useful examples of τ -distance which
are not w-distances. In this paper, we shall state such examples.

2. Preliminaries

In this section, we state two lemmas and one theorem which are used in
this paper. The following lemmas were proved in [19].

Lemma 1. ([19]) Let X be a metric space, let p be a w-distance on X, and
let q be a function from X×X into [0,∞) satisfying (w1), (w2). Suppose that
q(x, y) ≥ p(x, y) for every x, y ∈ X. Then, q is also a w-distance on X.

Lemma 2. ([13]) Let X be a metric space and let p be a τ -distance on X.
Then p(z, x) = 0 and p(z, y) = 0 imply x = y.

The following is the τ -distance version of Caristi’s fixed point theorem.

Theorem 1. ([13]) Let X be a complete metric space and let p be a τ -
distance on X. Let T be a mapping on X and let f be a function from X
into (−∞,+∞] which is proper lower semicontinuous and bounded from be-
low. Assume f(Tx)+p(x, Tx) ≤ f(x) for all x ∈ X. Then there exists x0 ∈ X
such that Tx0 = x0 and p(x0, x0) = 0.
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3. Tataru’s distance

In this section, we consider Tataru’s distance. Let X be a subset of a
Banach space and let {T (t) : t ≥ 0} be a strongly continuous semigroup of
nonexpansive mappings on X, i.e.,

(sg1) For each t ≥ 0, T (t) is a nonexpansive mapping on X;
(sg2) T (0)x = x for all x ∈ X;
(sg3) T (s + t) = T (s) ◦ T (t) for all s, t ≥ 0;
(sg4) for each x ∈ X, the mapping T (·)x from [0,∞) into X is continuous.

In [23], Tataru introduced the distance:

p(x, y) = inf{t + ‖T (t)x− y‖ : t ≥ 0}
for all x, y ∈ X, and studied Hamilton-Jacobi equations. See also [8]. We
know Tataru’s distances are also τ -distances.

Proposition 1. ([13]) Let {T (t) : t ≥ 0} be a strongly continuous semigroup
of nonexpansive mappings on a subset X of a Banach space. Then Tataru’s
distance p on X is also a τ -distance on X.

We also know that Tataru’s distances are also w-distances when X is com-
pact.

Proposition 2. ([13]) Let X be a compact subset of a Banach space. Let
{T (t) : t ≥ 0} be a strongly continuous semigroup of nonexpansive mappings
on X. Then Tataru’s distance p on X is also a w-distance on X.

As motivated by above, we shall characterize as follows.

Proposition 3. Let {T (t) : t ≥ 0} be a strongly continuous semigroup of
nonexpansive mappings on a subset X of a Banach space. Then the following
are equivalent:

(i) Tataru’s distance p on X is a w-distance on X;
(ii) for each ε > 0, there exists δ > 0 such that ‖T (t)x − x‖ ≤ ε for all

t ∈ [0, δ] and x ∈ X.

Proof. We first show that (i) implies (ii). Fix ε > 0. Then since p is a w-
distance on X, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply
‖x− y‖ ≤ ε. For t ∈ [0, δ] and x ∈ X, we have p(x, x) = 0 and

p
(
x, T (t)x

)
= inf{s + ‖T (s)x− T (t)x‖ : s ≥ 0} ≤ t ≤ δ.

Hence ‖T (t)x− x‖ ≤ ε. This implies (ii). Conversely, we shall show that (ii)
implies (i). We proved that p satisfies (w1) and (w2) in [13]. Thus, let us
prove (w3). Fix ε > 0. Then from (ii), there exists δ′ ∈ (0, ε/4) such that
‖T (t)x − x‖ ≤ ε/4 for t ∈ [0, δ′] and x ∈ X. We put δ = δ′/2 > 0 and fix
x, y, z ∈ X with p(z, x) ≤ δ and p(z, y) ≤ δ. From p(z, x) ≤ δ < δ′, there exists
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t ≥ 0 such that t + ‖T (t)z− x‖ < δ′. Since t < δ′, we have ‖T (t)z− z‖ ≤ ε/4.
Hence,

‖x− z‖ ≤ ‖T (t)z − x‖+ ‖T (t)z − z‖ < δ′ + ε/4 ≤ ε/2.

Similarly we can prove ‖y − z‖ < ε/2. So we obtain

‖x− y‖ ≤ ‖x− z‖+ ‖y − z‖ < ε/2 + ε/2 = ε.

This implies (w3). That is, p is a w-distance on X. This completes the
proof. ¤

Example 1. Let X be the 2-dimensional real Hilbert space. Define a strongly
continuous semigroup {T (t) : t ≥ 0} of nonexpansive mappings on X by

T (t)
[

x1

x2

]
=

[
x1 cos(t)− x2 sin(t)
x1 sin(t) + x2 cos(t)

]

for t ≥ 0 and (x1, x2) ∈ X. Then Tataru’s distance p is a τ -distance, which is
not a w-distance.

Proof. From Proposition 1, p is a τ -distance. We note that

‖T (t)x− x‖ = 2 ‖x‖ | sin(t/2)|
for all t ≥ 0 and x ∈ X. Hence,

sup
x∈X

‖T (t)x− x‖ = ∞

for t ∈ (0, 2π). So, by Proposition 3, p is not a w-distance. ¤

Example 2. Let E be the real Hilbert space consisting of all the real se-
quences {x(n)} satisfying

∑∞
n=1 |x(n)|2 < ∞ with inner product 〈x, y〉 =∑∞

n=1 x(n) y(n) for all x, y ∈ X. Put X = {x ∈ E : ‖x‖ ≤ 1}. Define a
strongly continuous semigroup {T (t) : t ≥ 0} of nonexpansive mappings on X
by (

T (t)x
)
(n) = exp(−nt) x(n)

for all t ≥ 0, x ∈ E and n ∈ N. Then Tataru’s distance p is a τ -distance,
which is not a w-distance.

Proof. (sg1), (sg2) and (sg3) clearly hold. Let x ∈ X be fixed and let {tk} be
a sequence in [0,∞) converging to 0. For each ε > 0, there exist n0, k0 ∈ N
such that

∞∑

n=n0+1

∣∣x(n)
∣∣2 <

ε2

2
and

n0∑

n=1

(
1− exp(−ntk)

)2
<

ε2

2
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for all k ∈ N with k ≥ k0. Hence, we have

‖T (tk)x− x‖2

=
n0∑

n=1

(
1− exp(−ntk)

)2 ∣∣x(n)
∣∣2 +

∞∑

n=n0+1

(
1− exp(−ntk)

)2 ∣∣x(n)
∣∣2

≤
n0∑

n=1

(
1− exp(−ntk)

)2 +
∞∑

n=n0+1

∣∣x(n)
∣∣2

≤ ε2.

That is, ‖T (tk)x− x‖ ≤ ε for all k ∈ N with k ≥ k0. Therefore

lim
k→∞

‖T (tk)x− x‖ = 0

for all x ∈ X. Let {tk} be a sequence in [0,∞) converging to some t ∈ [0,∞).
Then we have

lim
n→∞ ‖T (tk)x− T (t)x‖ ≤ lim

n→∞ ‖T (|tk − t|)x− x‖ = 0

for all x ∈ X. This implies (sg4). Define a sequence {ek} in X by

ek(n) =

{
1 if n = k,

0 if n 6= k.

Then we have

sup
k∈N

‖T (t)ek − ek‖ = sup
k∈N

(
1− exp(−kt)

)
= 1

for every t > 0. From Proposition 3, we obtain the desired result. ¤

4. Zhong’s function

In this section, we let h be a nondecreasing function from [0,∞) into [0,∞)
satisfying ∫ ∞

0

1
1 + h(t)

dt = ∞.

We also let X be a Banach space and z0 ∈ X. Zhong [25, 26] considered the
function g from X ×X into [0,∞) defined by

g(x, y) =
‖x− y‖

1 + h
(‖z0 − x‖)

for x, y ∈ X, and studied the relation between weak Palais-Smale condition
and coercivity. Suzuki in [13, 18] considered the functions p and q from X×X
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into [0,∞) defined by

p(x, y) =
∫ ‖z0−x‖+‖x−y‖

‖z0−x‖

1
1 + h(t)

dt (4.1)

and

q(x, y) =
∫ ‖z0−x‖+‖x−y‖

‖z0−x‖

1
1 + h(t)

dt +
∫ ‖z0−y‖+‖x−y‖

‖z0−y‖

1
1 + h(t)

dt (4.2)

for x, y ∈ X, and gave simpler proofs of Zhong’s results. We know the follow-
ing.

Proposition 4. ([13, 18]) p and q are τ -distances on X.

We now prove the following.

Proposition 5. The following are equivalent:
(i) p is a w-distance on X;
(ii) q is a w-distance on X;
(iii) limt→∞ h(t) < ∞.
(iv) there exist c1, c2 > 0 such that

c1 ‖x− y‖ ≤ p(x, y) ≤ c2 ‖x− y‖
for x, y ∈ X;

(v) there exist c3, c4 > 0 such that

c3 ‖x− y‖ ≤ q(x, y) ≤ c4 ‖x− y‖
for x, y ∈ X.

Proof. We note that p and q satisfy (w1) and (w2), and that p(x, y) ≤ q(x, y)
for x, y ∈ X. We also note that the metric d defined by d(x, y) = ‖x− y‖ for
x, y ∈ X is a w-distance on X. So by Lemma 1, we can prove (i) ⇒ (ii), (iv)
⇒ (i), and (v) ⇒ (ii). We next prove (ii) ⇒ (iii). We assume (iii) does not
hold, i.e., limt→∞ h(t) = ∞. We fix v ∈ X with ‖v‖ = 1. For each δ > 0,
there exists s > 0 such that 1/

(
1 + h(s)

) ≤ δ/2. Putting x = z0 + sv and
y = z0 + (s + 1)v, we have

q(x, y) =
∫ s+1

s

1
1 + h(t)

dt +
∫ s+2

s+1

1
1 + h(t)

dt

≤ 2
1 + h(s)

≤ δ,

q(x, x) = 0 and ‖x − y‖ = 1. Hence, q does not satisfy (w3). Therefore (ii)
implies (iii). Let us prove (iii) ⇒ (iv). We assume (iii). Then it is obvious
that

1
1 + limt→∞ h(t)

‖x− y‖ ≤ p(x, y) ≤ 1
1 + h(0)

‖x− y‖
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for all x, y ∈ X. This is (iv). We finally prove (iv) ⇒ (v). We assume (iv).
Then putting c3 = c1 and c4 = 2 c2, we have

c3 ‖x− y‖ = c1 ‖x− y‖ ≤ p(x, y)

≤ q(x, y) = p(x, y) + p(y, x)

≤ c2 ‖x− y‖+ c2 ‖y − x‖
= c4 ‖x− y‖

for x, y ∈ X. This is (v). This completes the proof. ¤
Example 3. Define a function h by h(t) = t for t ∈ [0,∞). Then functions p
and q defined by (4.1) and (4.2) are τ -distances, which are not w-distances.

5. τ -Distances on R

In this section, put X = R and let f and g be continuous functions from X
into [0,∞). Define a function p from X ×X into [0,∞) by

p(x, y) =

{∫ y
x f(t) dt, if x ≤ y,∫ x
y g(t) dt, if x ≥ y

(5.1)

for x, y ∈ X. We also define nondecreasing continuous functions F and G
from X into R by

F (x) =
∫ x

0
f(t) dt and G(x) =

∫ x

0
g(t) dt (5.2)

for x ∈ X. It is obvious that

p(x, y) =

{
F (y)− F (x), if x ≤ y,

G(x)−G(y), if x ≥ y

for x, y ∈ X.

Proposition 6. The following are equivalent:
(i) p is a τ -distance on X;
(ii) F and G are strictly increasing, and

∫ +∞

0
f(t) dt = ∞ and

∫ 0

−∞
g(t) dt = ∞.

Remark. F and G are strictly increasing if and only if
∫ x+ε

x
f(t) dt > 0 and

∫ x+ε

x
g(t) dt > 0

for all x ∈ X and ε > 0. Compare this condition with (ii) in Proposition 7.
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Proof. We first prove (ii) implies (i). Assume (ii). It is obvious p is continuous.
Hence p satisfies (τ3). It is also obvious that the following are equivalent:

• A sequence {xn} in X converges to z;
• limn p(z, xn) = 0;
• limn p(xn, z) = 0.

In the case of x ≤ y ≤ z, we have

p(x, z) =
∫ z

x
f(t) dt =

∫ y

x
f(t) dt +

∫ z

y
f(t) dt = p(x, y) + p(y, z).

In the case of x ≤ z ≤ y, we have

p(x, z) =
∫ z

x
f(t) dt ≤

∫ y

x
f(t) dt = p(x, y) ≤ p(x, y) + p(y, z).

In the case of z ≤ x ≤ y, we have

p(x, z) =
∫ x

z
g(t) dt ≤

∫ y

z
g(t) dt = p(y, z) ≤ p(x, y) + p(y, z).

Similarly we can prove p(x, z) ≤ p(x, y) + p(y, z) in the other cases. This is
(τ1). Define a function η from X × [0,∞) into [0,∞) by

η(x, t) = t + sup
{|x− y| : p(x, y) ≤ t

}

for x ∈ X and t ∈ [0,∞). We shall show that η satisfies (τ2)’. It is obvious that
η is nondecreasing in its second variable. Fix x ∈ X and define a function h
from X into [0,∞) by h(y) = p(x, y) for y ∈ X. Then we have h is continuous,
h is strictly decreasing on (−∞, x], h is strictly increasing on [x,+∞), and
h(x) = 0. Therefore inf{η(x, t) : t > 0} = 0. We next show (τ4). We
assume that limn sup{p(xn, ym) : m ≥ n} = 0 and limn η(xn, tn) = 0. From∫ +∞
0 f(t) dt = ∞ and

∫ 0
−∞ g(t) dt = ∞, we have {yn} is bounded. Let

z1, z2 ∈ X be cluster points of {yn}. Then

lim
n→∞ p(xn, z1) ≤ lim

n→∞ sup
m≥n

p(xn, ym) = 0

and hence {xn} converges to z1. Similarly we obtain {xn} converges to z2.
That is, {xn} converges to some number z ∈ X. Since

lim
n→∞ p(z, yn) ≤ lim

n→∞
(
p(z, xn) + p(xn, yn)

)
= 0,

{yn} also converges to z. We have

lim
n→∞ η(yn, tn)

= lim
n→∞

(
tn + sup

{|yn − w| : p(yn, w) ≤ tn
})

≤ lim
n→∞

(
tn + sup

{|yn − z|+ |z − w| : p(yn, w) ≤ tn
})
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≤ lim
n→∞

(
tn + |yn − z|+ sup

{|z − w| : p(z, w) ≤ p(z, yn) + tn
})

≤ lim
n→∞

(
tn + |yn − z|+ η

(
z, p(z, yn) + tn

))

= 0

because of limn

(
p(z, yn) + tn

)
= 0. This implies (τ4). Let us prove (τ5). We

assume that limn η(zn, p(zn, xn)) = 0 and limn η(zn, p(zn, yn)) = 0. Since

η
(
z, p(z, x)

) ≥ sup
{|z − y| : p(z, y) ≤ p(z, x)

} ≥ |z − x|
for all z, x ∈ X, we have limn |zn − xn| = 0 and limn |zn − yn| = 0. Hence
we have limn |xn − yn| = 0. Therefore we obtain p is a τ -distance on X. We
next prove (i) implies (ii). Assume that p is a τ -distance. If F is not strictly
increasing, then there exists x, y ∈ X with x < y and F (x) = F (y). So we
have

p(x, x) = 0 and p(x, y) = F (y)− F (x) = 0.
By Lemma 2, we have x = y. This is a contradiction. Hence, F is strictly in-
creasing. Similarly we can prove that G is strictly increasing. If

∫ +∞
0 f(t) dt <

∞, then −F is continuous, strictly decreasing function from X into R satisfy-
ing

inf
x∈X

−F (x) = lim
x→∞−F (x) = −

∫ +∞

0
f(t) dt > −∞.

That is, −F is bounded from below. Define a mapping T on X by Tx = x+1
for all x ∈ X. Then we have

−F (Tx) + p(x, Tx) = −F (Tx) + F (Tx)− F (x) = −F (x)

for all x ∈ X. So, by Theorem 1, there exists a fixed point of T . This is
a contradiction. Hence, we have

∫ +∞
0 f(t) dt = ∞. Similarly we can prove∫ 0

−∞ g(t) dt = ∞. This completes the proof. ¤

We also obtain the following.

Proposition 7. The following are equivalent:
(i) p is a w-distance on X;
(ii) f and g satisfy

inf
x∈X

∫ x+ε

x
f(t) dt > 0 and inf

x∈X

∫ x+ε

x
g(t) dt > 0

for every ε > 0.

Proof. Note that p satisfies (w1) and (w2). We also know that (ii) implies
(i); see [6, 11]. Thus, we shall prove that (i) implies (ii). From (w3), for each
ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply |x−y| ≤ ε.
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Since p(x, x) = 0 for all x ∈ X, we have p(x, y) ≤ δ implies |x− y| ≤ ε. That
is, |x− y| > ε implies p(x, y) > δ. So,

0 < δ ≤ inf
x∈X

p(x, x + 2ε) = inf
x∈X

∫ x+2ε

x
f(t) dt.

Similarly, we obtain

0 < δ ≤ inf
x∈X

p(x + 2ε, x) = inf
x∈X

∫ x+2ε

x
g(t) dt.

This completes the proof. ¤

From Proposition 6 and 7, we obtain the following

Example 4. Define functions f and g by

f(x) = g(x) = min {1, 1/|x|}
for x ∈ X. Then a function p defined by (5.1) is a τ -distance, which is not a
w-distance.

6. Other Examples

Examples 1 – 4 do not satisfy (w3). In this section, we give examples which
do not satisfy (w2).

We know the following. See also Kim, Kim and Shin [7], Takahashi [21],
and Ume [24].

Proposition 8. ([6]) Let X be a metric space with metric d and let T be a
continuous mapping on X. Then a function p from X×X into [0,∞) defined
by

p(x, y) = max{d(Tx, Ty), d(Tx, y)}
for x, y ∈ X is a w-distance on X.

Proposition 9. ([13]) Let X be a metric space and let p be a τ -distance on
X. Let T be a mapping on X satisfying that limn xn = y and limn Txn = y
imply Ty = y. Then a function q from X ×X into [0,∞) defined by

q(x, y) = max{p(Tx, Ty), p(Tx, y)}
for all x, y ∈ X is also a τ -distance.

As motivated by above, we give an example.

Example 5. Put X = R and define a function X ×X into [0,∞) by

p(x, y) = max
{∣∣∣ [x]− [y]

∣∣∣,
∣∣∣ [x] + 1/2− y

∣∣∣
}
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for x, y ∈ X, where [x] is denoted by the maximum integer not exceeding x.
Then p is a τ -distance, which is not a w-distance.

Proof. Define a mapping T on X by Tx = [x]+1/2 for x ∈ X. Then limn xn =
y and limn Txn = y imply Ty = y. So, by Proposition 9, p is a τ -distance.
We also have

p(0, y) = max
{∣∣ [y]

∣∣, ∣∣ 1/2− y
∣∣} .

So y 7→ p(0, y) is not lower semicontinuous because

lim
n→∞ p(0, 1− 1/n) = lim

n→∞(1− 1/n− 1/2) = 1/2 < 1 = p(0, 1).

Therefore p is not a w-distance. ¤

A mapping T on a metric space X is called a contractive mapping with
respect to a τ -distance p if there exists a τ -distance p and r ∈ [0, 1) such that

p(Tx, Ty) ≤ rp(x, y)

for all x, y ∈ X. In [10], Shioji, Suzuki and Takahashi discussed the relation
between contractive and Kannan mappings with respect to w-distances. In
[17], Suzuki did for τ -distances. Using the results in [10, 17], we can give the
following.

Example 6. Put X = R. Let C be a subset of R such that clC = R and⊔
q∈Q(q + C) = R \Q, where clC is the closure of C and

⊔
represents disjoint

union. Define a mapping T on X by

Tx =
{

0, if x ∈ Q,
q, if x ∈ (q + C) for some q ∈ Q.

Then for every w-distance p, T is not a contractive mapping with respect to
p. However, T is a contractive mapping with respect to a τ -distance q defined
by

q(x, y) =





0, if (x, y) = (0, 0),
1, if (x, y) ∈ (Q×Q) \ {(0, 0)},
2, if (x, y) ∈ (R× R) \ (Q×Q)

for x, y ∈ R.

Proof. We first show q is a τ -distance. Let x, y, z ∈ X be fixed. In the case of
(x, z) = (0, 0), we have

q(x, z) = 0 ≤ q(x, y) + q(y, z).

In the case of (x, z) ∈ (Q×Q) \ {(0, 0)}, since either (x, y) 6= (0, 0) or (y, z) 6=
(0, 0) holds, we have

q(x, z) = 1 ≤ max{q(x, y), q(y, z)} ≤ q(x, y) + q(y, z).
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In the case of (x, z) ∈ (R× R) \ (Q×Q), since either x ∈ R \Q or z ∈ R \Q
holds, we have

q(x, z) = 2 = max{q(x, y), q(y, z)} ≤ q(x, y) + q(y, z).

Therefore (τ1)q holds. Define a function η from X × [0,∞) into [0,∞) by
η(x, t) = t. Then η satisfies (τ2). Also, we can easily prove (τ3)q – (τ5)q.
Thus, q is a τ -distance. We next fix x, y ∈ X. In the case of (x, y) ∈ Q × Q,
since Tx = 0 and Ty = 0, we have

q(Tx, Ty) = 0 ≤ (1/2) q(x, y).

In the case of (x, y) ∈ (R× R) \ (Q×Q), since Tx ∈ Q and Ty ∈ Q, we have

q(Tx, Ty) ≤ 1 = (1/2) q(x, y).

Therefore q(Tx, Ty) ≤ (1/2) q(x, y) holds for every x, y ∈ X. That is, T is a
contractive mapping with respect to q. The remain is proved in [10]. ¤
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