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Abstract. Coincidence and common fixed points of non-linear hybrid mappings have been

obtained, without using the commutativity conditions or any of its generalizations. Our

results improve many well known results in the context of Hybrid fixed point theory.

1. Introduction

Nadlers contraction principle has led to a good fixed point theory in non-
linear analysis. Coincidence and common fixed points of non-linear hybrid con-
tractions (i.e. contractions involving single valued and multi-valued mappings
) have been recently studied by many authors. The concept of commutativity
of single valued mappings was extended by [5] to the setting of a single val-
ued mapping and a multi-valued mapping on a metric space. This concept of
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commutativity has been further generalized by many authors, viz weakly com-
muting [6], compatible [14], weak compatible [9]. It is interesting to note that
in all the results obtained so far, concerning common fixed points of hybrid
mappings, the mappings (single valued and multi-valued) under consideration
satisfy either the commutativity condition or any of its generalizations (For
instance see [2],[7],[9],[10],[11]). In this note we have shown the existence of
fixed points of hybrid contractions which do not satisfy any of the commu-
tativity conditions or its generalizations. Our results extends and improves
many well known results in the field of hybrid fixed point theory.

2. Preliminaries

For a metric space (X, d), let (CB(X), H) and (CL(X), H) denote respec-
tively the hyper-spaces of nonempty closed bounded and non-empty closed
subsets of X, where H is the Hausdorff metric induced by d. For f : X −→ X
and T : X −→ CL(X) we shall use the following notations.

L(x, y) = max{d(fx, fy), d(fx, Tx), d(fy, Ty),
1
2
(d(fx, Ty) + d(fy, Tx))}

N(x, y) = (max{d2(fx, fy), d(fx, Tx)d(fy, Ty), d(fx, Ty)d(fy, Tx),
1
2
d(fx, Tx)d(fy, Tx)

1
2
d(fx, Ty)d(fy, Ty)})1/2

Definition 2.1. ([5]) Mappings f and T are said to be commuting at a point
x ∈ X if fTx ⊆ Tfx. The mappings f and T are said to be commuting on X
if fTx ⊆ Tfx for all x ∈ X.

Definition 2.2. ([6]) Mappings f and T are said to be weakly commuting at
a point x ∈ X if H(fTx, Tfx) ≤ D(fx, Tx). The mappings f and T are said
to be weakly commuting on X if H(fTx, Tfx) ≤ D(fx, Tx) for all x ∈ X.

Definition 2.3. ([14]) The mappings f and T are said to be compatible iff
fTx ∈ CB(X) for all x ∈ X and H(Tfxn, fTxn) → 0, whenever {xn} is a
sequence in X, such that Txn → M ∈ CB(X) and fxn → t ∈ M.

Definition 2.4. ([9]) The mappings f and T are said to be f-weak compatible
iff fTx ∈ CB(X) for all x ∈ X and the following limits exists and satisfy the
inequalities:

(i) limn→∞H(Tfxn, fTxn) ≤ limn→∞H(Tfxn, Txn),

(ii) limn→∞ d(fTxn, fxn) ≤ limn→∞H(Tfxn, Txn),

whenever {xn} is a sequence in X, such that Txn → M ∈ CB(X) and fxn →
t ∈ M as n →∞.
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Definition 2.5. The mappings f and T are said to be coincidentally commut-
ing iff they commute at their coincidence points.

Definition 2.6. Mappings f and T are said to be coincidentally idempotent
iff f is idempotent at the coincidence points of f and T.

Let C(T, f) denote the set of all coincidence points of the mappings f and
T, that is C(T, f) = {u : fu ∈ Tu}.

We introduce the following.

Definition 2.7. Mappings f and T are said to be weakly coincidentally idem-
potent iff ffu = fu for some u ∈ C(T, f).

We remark that coincidentally idempotent pair of mappings are weakly
coincidentally idempotent, but the converse is not necessarily true as shown
in Example 3.9 of this note.

3. Main results

Let Γ denote the family of maps φ from the set R+of nonnegative real
numbers to itself such that φ is upper semi-continuous, non decreasing and
φ(t) < t for all t > 0.

We appeal to the following :
Lemma 3.1. ([10]) Let T : X −→ CB(X) and f : X −→ X be f-weak
compatible. If fw ∈ Tw for some w ∈ X and H(Tx, Ty) ≤ h(aL(x, y) + (1−
a)N(x, y)) for all x, y in Y , 0 ≤ a ≤ 1 and 0 < h < 1, then fTw = Tfw.

The above lemma has been used in [9], [10], and [11], to prove the existence
of fixed points of hybrid mappings. However, we have found that the above
lemma admits some counter example. We note that the usage of the incorrect
inequality d(f2w, fw) ≤ d(f2w, fTw) + d(fTw, fw) has led to this error. We
give the following counter example.

Example 3.2. ([10]) Let X = [0,∞) be endowed by the Euclidean metric.
Let f(x) = 3/2(x2 + x) and Tx = [0, x2 + 2]. We see that f and T satisfies all
conditions of the above lemma, and f0 ∈ T0, but fT0 6= Tf0.

Now we present our main results as follows:

Theorem 3.3. Let Y be an arbitrary nonempty set, (X, d) be a metric space,
f : Y −→ X and T : Y −→ CL(X) be such that

T (Y ) ⊆ f(Y ), (3.1)

H(Tx, Ty) ≤ φ(aL(x, y) + (1− a)N(x, y)) for all x, y ∈ Y, 0 ≤ a ≤ 1, (3.2)
φ(t) ≤ qt for all t > 0 and for some q ∈ (0, 1), (3.3)
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f(Y) or T(Y) is complete, (3.4)

there exists a point x0in Y such that T is asymptotically regular at x0. (3.5)

Then f and T has a coincidence point. Further if, f and T are weakly coinci-
dentally idempotent, then f and T has a common fixed point.

Proof. In view of (3.1), for a point x0 ∈ Y , we can construct sequences{xn} ∈
Y and yn ∈ X such that, for each n ∈ N , yn = fxn ∈ Txn−1 and d(yn, yn+1) ≤
q−1/2H(Txn−1, Txn).

By (3.5), we have limn→∞ d(yn, yn+1) = 0.
We will claim that {yn} is a Cauchy sequence. Suppose {yn} is not a

Cauchy sequence,then there exists a positive number ε such, that for each
positive integer k, there exists integers n(k) and m(k) such that

k ≤ n(k) < m(k) (3.6)

and
d(yn(k), ym(k)) ≥ ε. (3.7)

Then for each integer k, we have

ε ≤ d(yn(k), ym(k)) ≤ d(yn(k), ym(k)−1) + d(ym(k)−1, ym(k)). (3.8)

For each integer k, let m(k) denote the smallest integer satisfying (3.6) and
(3.7) for some n(k). Then we have d(yn(k), ym(k)−1) < ε and it follows from
(3.8) that

lim
k→∞

d(yn(k), ym(k)) = ε. (3.9)

Using the triangle inequality, we get

| d(yn(k), ym(k)−1)− d(yn(k), ym(k)) |≤ d(ym(k)−1, ym(k))

and

| d(yn(k)+1, ym(k)−1)− d(yn(k), ym(k)) |≤ d(yn(k), yn(k)+1) + d(ym(k)−1, ym(k)),

which yield

lim
k→∞

d(yn(k), ym(k)−1) = lim
k→∞

d(yn(k)+1, ym(k)−1) = ε.

Now
d(yn(k), ym(k)) ≤ d(yn(k), yn(k)+1) + d(yn(k)+1, ym(k))

≤ d(yn(k), yn(k)+1) + q−1/2H(Txm(k)−1, Txn(k))

≤ d(yn(k), yn(k)+1) + q−1/2φ(a.L(xm(k)−1, xn(k))

+ (1− a)N(xm(k)−1, xn(k))

(3.10)
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L(xm(k)−1, xn(k))

= max{d(fxm(k)−1, fxn(k)), d(fxm(k)−1, Txm(k)−1), d(fxn(k), Txn(k)),
1
2
(d(fxm(k)−1, Txn(k)) + d(fxn(k), Txm(k)−1))}

≤ max{d(fxm(k)−1, fxn(k)), d(fxm(k)−1, fxm(k)), d(fxn(k), fxn(k)+1),
1
2
(d(fxm(k)−1, fxn(k)+1) + d(fxn(k), fxm(k)))}

N(xm(k)−1, xn(k))

= [max{d2(fxm(k)−1, fxn(k)), d(fxm(k)−1, Txm(k)−1)d(fxn(k), Txn(k)),

d(fxm(k)−1, Txn(k))d(fxn(k), Txm(k)−1),
1
2
d(fxm(k)−1, Txm(k)−1)d(fxn(k), Txm(k)−1),

1
2
d(fxm(k)−1, Txn(k))d(fxn(k), Txn(k))}]1/2

≤ [max{d2(fxm(k)−1, fxn(k)), d(fxm(k)−1, fxm(k))d(fxn(k), fxn(k)+1),

d(fxm(k)−1, fxn(k)+1)d(fxn(k), fxm(k)),
1
2
d(fxm(k)−1, fxm(k)).d(fxn(k), fxm(k))

1
2
d(fxm(k)−1, fxn(k)+1)d(fxn(k), fxn(k)+1)}]1/2

Using the upper semicontinuity of f, and letting k →∞, we get using (3.10)
ε ≤ q−1/2.φ(ε) ≤ q−1/2.q.ε < ε, which is a contradiction to the choice of ε

and so sequence {yn} is a Cauchy sequence.
If f(Y) is complete, then sequence {fxn} has a limit in f(Y), say u. Let

w ∈ f−1(u). By (3.2) we have

d(fxn+1, Tw) ≤ H(Txn, Tw)

≤ φ(aL(xn, w) + (1− a)N(xn, w)
(3.11)

L(xn, w)

= max{d(fxn, fw), d(fxn, Txn), d(fw, Tw),
1
2
(d(fxn, Tw) + d(fw, Txn))}

≤ max{d(fxn,fw),d(fxn, fxn+1),d(fw, Tw),
1
2
(d(fxn, Tw)+d(fw, fxn+1))}

N(xn, w)

= [max{d2(fxn, fw), d(fxn, Txn).d(fw, Tw), d(fxn, Tw)d(fw, Txn),
1
2
d(fxn, Txn)d(fw, Txn),

1
2
d(fxn, Tw)d(fw, Tw)}]1/2
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≤ [max{d2(fxn, fw), d(fxn, fxn+1)d(fw, Tw), d(fxn, Tw)d(fw, fxn+1),
1
2
d(fxn, fxn+1)d(fw, fxn+1),

1
2
d(fxn, Tw)d(fw, Tw)}]1/2

Passing the limits as n →∞ and using (3.11), we get

d(fw, Tw) ≤ φ(ad(fw, Tw) + (
1− a√

2
)d(fw, Tw)

If fw /∈ Tw, we get, d(fw, Tw) ≤ q(ad(fw, Tw)+( 1−a√
2

)d(fw, Tw), a contra-
diction. Hence fw ∈ Tw. If T(Y) is complete, then since T (Y ) ⊆ f(Y ), this
case pertains to the previous case.

Now if f and T are weakly coincidentally idempotent then ffw = fw for
some w ∈ C(T, f). Then we have

H(Tfw, Tw) ≤ φ(aL(fw, w) + (1− a)N(fw, w)) (3.12)

L(fw, w)

= max{d(ffw, fw), d(ffw, Tfw),d(fw, Tw),
1
2
(d(ffw, Tw)+d(fw, Tfw))}

≤ max{d(fw, fw), d(fw, Tfw), d(fw, Tw),
1
2
(d(fw, Tw) + d(fw, Tfw))}

≤ max{d(fw, fw),H(Tw, Tfw), d(fw, Tw),
1
2
(d(fw, Tw) + H(Tw, Tfw))}

= H(Tw, Tfw),

N(fw, w)

= [max{d2(ffw, fw), d(ffw, Tfw)d(fw, Tw), d(ffw, Tw)d(fw, Tfw),
1
2
d(ffw, Tfw)d(fw, Tfw),

1
2
d(ffw, Tw)d(fw, Tw)]1/2

≤ [max{d2(fw, fw), d(fw, Tfw)d(fw, Tw), d(fw, Tw)d(fw, Tfw),
1
2
d(fw, Tfw)d(fw, Tfw),

1
2
d(fw, Tw)d(fw, Tw)]1/2

≤ [max{d2(fw, fw),H(Tw, Tfw)d(fw, Tw), d(fw, Tw)H(Tw, Tfw),
1
2
H(Tw, Tfw)H(Tw, Tfw),

1
2
d(fw, Tw)d(fw, Tw)]1/2

= H(Tw, Tfw).

Hence from (3.12), we have

H(Tfw, Tw) ≤ φ(H(Tfw, Tw)).

If Tfw 6= Tw, we get H(Tfw, Tw) ≤ q(H(Tfw, Tw)), a contradiction. Hence
Tfw = Tw. Thus we have fw = ffw and fw ∈ Tw = Tfw. That is fw is a
common fixed point of f and T. ¤
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Theorem 3.4. Let Y be an arbitrary nonempty set, (X, d) be a metric space,
f : Y −→ X and T : Y −→ CL(X) be such that

T (Y ) ⊆ f(Y ), (3.13)

H(Tx, Ty) ≤ h(aL(x, y) + (1− a)N(x, y))
for all x, y in Y, 0 ≤ a ≤ 1, and 0 < h < 1.

(3.14)

f(Y) or T(Y) is complete. (3.15)
Then f and T has a coincidence point. Further if, f and T are weakly coinci-
dentally idempotent, then f and T has a common fixed point.

Proof. A proper blend of proof of Theorem 3.3 and [[11],Theorem 2] will com-
plete the proof. ¤

Taking a = 1 in Theorem 3.3, we have the following :

Corollary 3.5. Let Y be an arbitrary nonempty set, (X, d) be a metric space,
f : Y −→ X and T : Y −→ CL(X) be such that:

T (Y ) ⊆ f(Y ), (3.16)
H(Tx, Ty) ≤ φ(L(x, y)) for all x , y in Y, (3.17)

φ(t) ≤ qt for all t > 0 and for some q ∈ (0, 1), (3.18)
f(Y) or T(Y) is orbitally complete, (3.19)

there exists a point x0in Y such that T is asymptotically regular at x0.
(3.20)

Then f and T has a coincidence point. Further if f and T are weakly coinci-
dentally idempotent, then f and T has a common fixed point.

Taking a = 0 in Theorem 3.3, we have the following :

Corollary 3.6. Let Y be an arbitrary nonempty set, (X, d) be a metric space,
f : Y −→ X and T : Y −→ CL(X) be such that

T (Y ) ⊆ f(Y ), (3.21)

H(Tx, Ty) ≤ φ(N(x, y)) for all x, y in Y, (3.22)
φ(t) ≤ qt for all t > 0 and for someq ∈ (0, 1). (3.23)

f(Y) or T(Y) is orbitally complete. (3.24)
there exists a point x0 in Y such that T is asymptotically regular at x0.

(3.25)
Then f and T has a coincidence point. Further if f and T are weakly coinci-
dentally idempotent, then f and T has a common fixed point.

Taking a = 1 in Theorem 3.4, we have the following :
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Corollary 3.7. Let Y be an arbitrary non empty set , (X, d) be a metric
space, f : Y −→ X and T : Y −→ CL(X) be such that

T (Y ) ⊆ f(Y ) (3.26)

H(Tx, Ty) ≤ h.(L(x, y)) for all x , y in Y (3.27)

f(Y) or T(Y) is orbitally complete (3.28)

Then f and T has a coincidence point. Further if , f and T are weakly coinci-
dentally idempotent, then f and T has a common fixed point.

Taking a = 0 in Theorem 3.4, we have the following:

Corollary 3.8. Let Y be an arbitrary non empty set, (X, d) be a metric space,
f : Y −→ X and T : Y −→ CL(X) be such that

T (Y ) ⊆ f(Y ) (3.29)

H(Tx, Ty) ≤ h(N(x, y)) for all x, y in Y (3.30)

f(Y) or T(Y) is orbitally complete (3.31)

Then f and T has a coincidence point. Further if f and T are weakly coin-
cidentally idempotent, then f and T has a common fixed point.

The following example shows that Theorem 3.3 is a proper generalization
of the fixed point results of [7], [9] , [10], [11].

Example 3.9. Let X = [0,∞) be endowed with the Euclidean metric, f :
X −→ X and T : X −→ CL(X) be defined by fx = 3.(x2 + x) and
Tx = [0, x2 + 5]. Then mappings f and T are not commuting and also does
not satisfy any of its generalizations, viz weakly commuting, compatible, weak
compatible. Also the mappings f and T are not coincidentally commuting.
Note that f1 ∈ T1, but ff1 6= f1 and so f and T are not coincidentally idem-
potent, but f0 ∈ T0 and ff0 = f0 and so f and T are weakly coincidentally
idempotent. For all x and y in X, we have

H(Tx, Ty) =| x2 − y2 |

= (
(x + y

3
)(x + y + 1))(3 | x− y | (x + y + 1))

= (
x + y

3
)(x + y + 1)(3 | x2 − y2 + x− y |)

≤ (1/3)d(fx, fy)

Thus f and T satisfy all conditions of Theorem 3.1, and 0 is a common fixed
point of f and T. But we see that the results of [7], [9], [10], and [11] cannot
be applied to the mappings f and T.
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Let ψ : (0,∞) −→ [0, 1) be a function having the following property (cf.
[2],[3]):

(P) For t > 0, there exists δ(t) > 0, s(t) < 1 such that

0 ≤ r − t < δ(t) implies ψ(r) ≤ s(t).

The following theorem is a generalization of Hu [3, Theorem 2], Jungck [5],
Kaneko [8], Nadler [12, Theorem 5] and Beg and Azam [2, Theorem 5.4 and
Corollary 5.5.

Theorem 3.10. Let Y be an arbitrary nonempty set, (X, d) be a metric space,
f : Y −→ X and T : Y −→ CL(X) be such that

T (Y ) ⊆ f(Y ) (3.32)

Hr(Tx, Ty) < ψ(d(fx, Tx))dr(fx, fy) for all x, y in Y, (3.33)

where r is some positive real number.
If f(Y) is complete, then

(i) there exists an asymptotically T-regular sequence {xn} with respect to
f in Y

(ii) f and T has a coincidence point.

Further if , f and T are weakly coincidentally idempotent, then f and T has
a common fixed point.

Proof. For some x0 in Y, let y0 = fx0 and choose x1 in Y such that y1 =
fx1 ∈ Tx0. Then by (3.7.2) we have

H(Tx0, Tx1) < ψ(d(fx0, fx1))dr(fx0, fx1).

Using (3.32) and Lemma 3.1, we can choose x2 ∈ Y such that y2 = fx2 ∈ Tx1

and
dr(y1, y2) = d(fx1, fx2)

< ψ(d(fx0, fx1))dr(fx0, fx1)

< dr(fx0, fx1).

By induction we construct sequence {xn} in Y and {yn} in f(Y) such that
yn = fxn ∈ Txn−1. Also we have,

dr(yn+1, yn+2) = dr(fxn+1, fxn+2)

< ψ(d(fxn, fxn+1))dr(fxn, fxn+1)

< dr(fxn, fxn+1)

= dr(yn, yn+1).
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It follows that the sequence {d(yn, yn+1} is decreasing and converges to its
greatest lower bound say t. Clearly t ≥ 0. We will claim that t = 0.. For if
t > 0 then by property (P) of ψ, there will exist δ(t) > 0, s(t) < 1 such that

0 ≤ r − t < δ(t) implies ψ(r) ≤ s(t).

For this δ(t) > 0 there exist a natural number N such that,

0 ≤ d(yn, yn+1)− t < δ(t), whenever n ≥ N.

Hence ψ(dyn, yn+1) ≤ s(t), whenever n ≥ N .
Let K = max{ψ(d(y0, y1)), ψ(d(y1, y2)), · · · , ψ(d(yN−1, yN )), s(t)}.

Then for n = 1, 2, 3, · · · ,
dr(yn, yn+1) < ψ(d(yn−1, yn))dr(yn−1, yn)

≤ Kdr(yn−1, yn)

≤ Kndr(y0, y1) → 0 as n →∞,

which contradicts the assumption that t > 0. Hence

lim
n→∞ d(yn, yn+1) = 0,

i.e
d(fxn, Txn) → 0.

Hence the sequence {xn} is asymptotically T-regular with respect to f.
We claim that {fxn} is a Cauchy sequence. Suppose not. Then there exists a
positive number t∗ and subsequences {n(i)}, {m(i)} of natural numbers with
n(i) < m(i) and such that d(yn(i), ym(i)) ≥ t∗, d(yn(i)−1, ym(i)−1) < t∗ for
i = 1, 2, 3, · · · . Then we have

t∗ ≤ d(yn(i), ym(i))

≤ d(yn(i), ym(i)−1)d(ym(i)−1, ym(i)).

Letting i →∞ we get
lim

n→∞ d(yn(i), ym(i)) = t∗.

For this t∗ > 0 there exists δ(t∗) > 0, s(T ∗) < 1 such that

0 ≤ r − t∗ < δ(t∗) implies ψ(r) ≤ s(t∗).

For this δ(t∗) > 0 there exists a natural number N0 such that

i ≥ N0 implies 0 ≤ d(yn(i), ym(i))− t∗ < δ(t∗).

Hence ψ(d(yn(i), ym(i))) ≤ s(t∗) for ı ≥ N0. Thus we have
dr(yn(i), ym(i) ≤ [d(yn(i), yn(i)+1) + d(yn(i)+1, ym(i)+1) + d(ym(i)+1, ym(i))]r.
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Expanding binomially we get

dr(yn(i), ym(i) ≤ dr(yn(i)+1, ym(i)+1)

+ terms containing dr(yn(i), yn(i)+1) and d(ym(i), ym(i)+1)

≤ ψ(d(yn(i), ym(i)))d
r(yn(i), ym(i))

+ terms containing d(yn(i), yn(i)+1) and d(ym(i), ym(i)+1)

≤ s(t∗).dr(yn(i), ym(i))

+ terms containing d(yn(i), yn(i)+1) and d(ym(i), ym(i)+1).

Letting i → ∞ we get t∗ ≤ s(t∗)t∗ < t∗, a contradiction. Hence {fxn} is a
Cauchy sequence in f(Y). Since f(Y) is complete {fxn} converges to some p
in f(Y). Let z ∈ f−1(p). Then fz = p. Then we have

dr(fz, Tz) ≤ [d(fz, fxn+1) + d(fxn+1, T z)]r. Expanding binomially we get,

dr(fz, Tz) ≤ dr(fxn+1, T z) + terms containg d(fz, fxn+1)

≤ Hr(Txn, T z) + terms containg d(fz, fxn+1)

≤ ψ(d(fxn, fz))dr(fxn, fz) + terms containg d(fz, fxn+1).

Letting n →∞ we get
dr(fz, Tz) ≤ 0.

Hence fz ∈ Tz.
Now if f and T are weakly coincidentally idempotent then ffw = fw for

some w ∈ C(T, f). Then we have

Hr(Tfw, Tw) ≤ ψ(d(ffw, fw))dr(ffw, fw) = 0.

Hence Tfw = Tw. Thus we have ffw = fw ∈ Tw = Tfw. Hence fw is a
common fixed point of T and f. ¤

Now we state some fixed point theorems for Kannan type multivalued map-
pings which extends and generalizes the corresponding results of Shiau, Tan
and Wang [11] and Beg and Azam [1,2]. A proper blend of proof of Theorem
3.1 and those of [11, Th.6, Th.7, Th.8 respectively] will complete the proof.
Hence we omit the proof of these theorems.

Theorem 3.11. Let Y be an arbitrary nonempty set, (X, d) be a metric space,
f : Y −→ X and T : Y −→ CL(X) be such that

T (Y ) ⊆ f(Y ), (3.34)

Hr(Tx, Ty) ≤ α1(d(fx, Tx))dr(fx, Tx) + α1(d(fy, Ty))dr(fy, Ty), (3.35)

for all x, y ∈ Y, where αi : R −→ [0, 1) (i = 1, 2) and r is some fixed
positive real number. If one of f(Y) or T(Y) is complete, and if there exists
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an asymptotically T-regular sequence {xn} with respect to f in Y (i.e, If there
exist a sequence {xn} in Y such that

lim
n→∞ d(fxn, Txn) = 0,

then {xn} is said to be asymptotically T-regular with respect to f.), then f
and T has a coincidence point. Further, if f and T are weakly coincidentally
idempotent, then f and T has a common fixed point.

Theorem 3.12. Let Y be an arbitrary nonempty set, (X, d) be a metric space,
f : Y −→ X and T : Y −→ CL(X) be such that (3.8.1) and (3.8.2) are satis-
fied. If one of f(Y) or T(Y) is complete, and if there exists an asymptotically
T-regular sequence {xn} with respect to f in Y, and Txn is compact, for all
n ∈ N , then f and T has a coincidence point. Further, if f and T are weakly
coincidentally idempotent, then f and T has a common fixed point.

Theorem 3.13. Let Y be an arbitrary nonempty set, (X, d) be a metric
space, f : Y −→ X and T : Y −→ CL(X) be such that (3.7.1) and (3.7.2)
are satisfied for all x,y in Y. If one of f(Y) or T(Y) is complete, and if there
exists an asymptotically T-regular sequence {xn} with respect to f in Y, and
Txn is compact, for all n ∈ N , then f and T has a coincidence point. Further,
if f and T are weakly coincidentally idempotent, then f and T has a common
fixed point.
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