Nonlinear Functional Analysis and Applications Vol. 17, No. 2 (2012), pp. 249-254

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright \odot 2012 Kyungnam University Press

ON THE SOLUTION OF GENERALIZED EQUATIONS UNDER HÖLDER CONTINUITY CONDITIONS

Ioannis K. Argyros

¹Department of Mathematical Sciences Cameron University Lawton, OK 73505, USA e-mail: iargyros@cameron.edu

Abstract. We provide a local convergence analysis of Newton's method for solving a certain class of generalized equations in a Banach space setting under Hölder and center-Hölder continuity conditions on the Fréchet-derivative of the operator involved. Using more precise estimates and under the same hypotheses/computational cost we provide a finer convergence analysis of Newton's method than before [5], [6], [9].

1. INTRODUCTION

In this study we are concerned with the problem of approximating a solution x of the generalized equation

$$
0 \in f(x) + F(x), \quad x \in X,\tag{1.1}
$$

where f is a Fréchet-differentiable operator defined on a Banach space X with values in a Banach space Y and $F: X \to 2^Y$ has a closed graph. If $F = \{0\},\$ then (1.1) is an equation. When $F = R_+^i$ the positive orthant in R^i , then (1.1) is a system of inequalities. If F is a normal cone to a convex and closed set in X , then (1.1) represents a variational inequality.

The most popular method for generating a sequence approximating x is undoubtedly Newton's method

$$
0 \in f(x_n) + f'(x_n)(x_{n+1} - x_n) + F(x_{n+1}) \quad (n \ge 0), \ (x_0 \in X), \tag{1.2}
$$

where $f'(x_n)$ is the Fréchet derivative of f at x_n and x_0 is the initial guess.

 0 Received January 20, 2012. Revised May 11, 2012.

⁰ 2000 Mathematics Subject Classification: 65H10, 65G99, 47H17, 49M15.

 0 Keywords: Newton's method, generalized equation, Banach space, Hölder continuity, Fréchet derivative, local convergence.

250 Ioannis K. Argyros

A survey on local as well as semilocal convergence results on method (1.2) can be found in $[1]-[11]$, and the references there. In particular we pay attention in the work by Piétrus in $[9]$ who is using the K-Hölder condition

$$
||F'(v) - F'(w)|| \le K ||v - w||^{\alpha} \text{ for all } v, w \in D \subseteq X, \ \alpha \in [0, 1]. \tag{1.3}
$$

A local convergence analysis was provided in [9] for Newton's method using condition (1.3). Here we also introduce the (K_0, x) center-Hölder continuity condition for a given $x \in D$ by

$$
||F'(v) - F'(x)|| \le K_0 ||v - x||^{\alpha} \text{ for all } v \in D.
$$
 (1.4)

Note that

$$
K_0 \le K \tag{1.5}
$$

holds in general and $\frac{K}{K}$ $\frac{1}{K_0}$ can be arbitrarily large [2], [3].

Using a combination of (1.3) and (1.4) instead of only (1.3) we provide (in view of $K_0 < K$) a finer local convergence analysis of Newton's method (1.2).

2. Local Convergence Analysis of Method (1.2)

We need to introduce a certain type of continuity attributed to Aubin [1]. A set-valued map Γ from Y to the subsets of Z is said to be M-pseudo-Lipschitz around

$$
(y_0, x_0) \in \text{Graph } \Gamma = \{(y, z) \in Y \times Z \mid z \in \Gamma(y)\}\
$$

if there exist neighborhoods V of y_0 and U of z_0 such that

$$
\sup_{z \in \Gamma(y_1) \cap U} \text{dist}(z, \Gamma(y_2)) \le M \|y_1 - y_2\| \quad \text{for all } y_1 \text{ and } y_2 \text{ in } V. \tag{2.1}
$$

Let A and C be subsets of X. If we denote by $e(C, A)$ the excess from the set A to the set C given by

$$
e(C, A) = \sup\{\text{dist}(x, A), \ x \in C\}
$$
\n
$$
(2.2)
$$

then (2.1) is equivalent to a definition of a M-pseudo-Lipschitz set-valued replacing (2.1) by

$$
e\big(\Gamma(y_1)\cap U, \Gamma(y_2)\big)\le M\|y_1-y_2\|.\tag{2.3}
$$

We need the following generalization of a fixed point theorem [6], [7]:

Lemma 2.1. Let (X, ρ) be a Banach space, let T map X to the closed subsets of X; let $q_0 \in X$, and let $r > 0$ and $\lambda \in [0,1)$ be such that:

$$
dist(q_0, T(q_0)) < r(1 - \lambda) \tag{2.4}
$$

and

$$
e(T(v) \cap U(q_0, r), T(w)) \le \lambda \rho(v, w), \tag{2.5}
$$

for all $v, w \in U(q_0, r) = \{x \in X \mid ||x - q_0|| \le r\}$. Then T has a fixed point in $U(q_0, r)$. Moreover, if T is single valued, then X is the unique fixed point of T in $U(q_0, r)$.

Define

$$
G(x) = f(x^*) + f'(x^*)(x - x^*) + F(x),
$$
\n(2.6)

where x^* is a solution of (1.1) . We show the map

$$
x \to T_n(x) = G^{-1}(f(x^*) + f'(x^*)(x - x^*) - f(x_n) - f'(x_n)(x - x_n)) \tag{2.7}
$$

has a fixed point x_{n+1} , which will satisfy

$$
0 \in f(x_n) + f'(x_n)(x_{n+1} - x_n) + F(x_n).
$$

That is x_{n+1} is a solution of (1.2).

We can show the local convergence theorem for Newton's method (1.2) .

Theorem 2.2. Let x^* be a solution of (1.1) , let f be a Fréchet differentiable operator in an open neighborhood D of x^* , let f' be K-Hölder continuous and (K, x^*) center Hölder continuous in D. Let F be a set-valued map with closed graph and let G^{-1} given by (2.6) be M-pseudo Lipschitz around $(0, x^*)$. Then for any $c > \frac{1}{\alpha+1}MK = c_0$, there exists $\delta > 0$ such that for any initial guess $x_0 \in U(x^*,\delta)$, there exists a sequence $\{x_n\}$ generated by Newton's method (1.2) $converging to x^*$ and satisfying

$$
||x_{n+1} - x^*|| \le c||x_n - x^*||^2 \quad (n \ge 0). \tag{2.8}
$$

Moreover if x^* is an isolated solution of (1.1), then for every $c > c_0$, there exists $\delta > 0$ such that sequence $\{x_n\}$ with $x_n \in U(x^*, \delta)$ $(n \geq 0)$ satisfies (2.8).

To prove Theorem 2.2 we first show:

Proposition 2.3. Under the hypotheses of Theorem 2.2 there exists $\delta > 0$ such that for all $x_0 \neq x^*$ and $x_0 \in U(x^*,\delta)$ the map $T_0(x)$ given by (2.7) has a fixed point $x_1 \in U(x^*, \delta)$.

Proof. Let $c > c_0$, and let $a > 0$, $b > 0$ be fixed positive constants such that

$$
e(G^{-1}(v) \cap U(x^*, a), G^{-1}(w)) \le M \|v - w\| \text{ for all } v, w \in U(0, b). \tag{2.9}
$$

Let $\delta > 0$ be fixed such that $U(x^*, \delta) \subseteq D$ and

$$
\delta < \delta_0,\tag{2.10}
$$

where,

$$
\delta_0 = \min\left\{a, \left[\frac{(1+\alpha)b}{K+K_0(1+\alpha)}\right]^{\frac{1}{1+\alpha}}, \left(\frac{1}{c}\right)^{\frac{1}{\alpha}}, \left[\frac{1}{K_0}\left(\frac{1}{M}-\frac{1}{(1+\alpha)c}\right)\right]^{\frac{1}{\alpha}}\right\}.
$$
 (2.11)

252 Ioannis K. Argyros

In view of Lemma 2.1 and [3], we have in turn

$$
dist(x^*, T_0(x^*)) \le e(G^{-1}(0) \cap U(x^*, \delta), G^{-1}(f(x^*) - f(x_0))
$$

\t
$$
- f'(x_0)(x^* - x_0))
$$

\t
$$
\le M \|f(x^*) - f(x_0) - f'(x_0)(x^* - x_0)\|
$$

\t
$$
\le \frac{MK}{1+\alpha} \|x^* - x_0\|^{1+\alpha}
$$

\t
$$
\le c \|x^* - x_0\|^{1+\alpha} (1 - MK_0 \delta^{\alpha})
$$
 (2.12)

by the choice of δ and c . Let

$$
q_0 = x^*, \quad \lambda = MK_0 \delta^{\alpha}, \quad r = r_0 = c ||x_0 - x^*||^{1+\alpha}.
$$

In view of (2.10) it follows $\lambda \in (0,1)$, and $r_0 \leq a$, which shows (2.4). Set

$$
y = f(x^*) + f'(x^*)(x - x^*) - f'(x_0)(x - x_0)
$$
 for $x \in U(x^*, \delta)$.

Using (1.3) and (1.4) we get

$$
\|y\| \le \|f(x^*) - f(x_0) - f'(x_0)(x^* - x_0)\| + \|(f'(x^*) - f'(x_0))(x - x^*)\|
$$

\n
$$
\le \frac{1}{1+\alpha}K\|x^* - x_0\|^{1+\alpha} + K_0\|x_0 - x^*\|^{\alpha}\|x - x^*\|
$$

\n
$$
\le \left(\frac{1}{1+\alpha}K + K_0\right)\delta^{1+\alpha} < b
$$
\n(2.13)

by the choice of δ , which implies

$$
f(x^*) + f'(x^*)(x - x^*) - f(x_0) - f'(x_0)(x - x_0) \in U(0, b).
$$
 (2.14)

Therefore by (2.9), (2.13) and (2.14) we get for all $v, w \in U(x^*, r_0)$:

$$
e(T_0(v) \cap U(x^*, r_0), T_0(w))
$$

\n
$$
\leq e(T_0(v) \cap U(x^*, \delta), T_0(w)) \leq M ||(f'(x^*) - f'(x_0))(v - w)||
$$

\n
$$
\leq MK_0 \delta^{\alpha} ||v - w||,
$$

which shows (2.5) . It follows from Lemma 2.1 that there exists a fixed point $x_1 \in U(x^*, r_0)$ for T_0 . The proof of Proposition 2.3 is now complete since $\delta > r_0$.

Proof of Theorem 2.2. Note $x_1 \in U(x^*, r_0)$ implies $||x_1 - x^*|| \le r_0 = c||x_0 - x^*||$ x^* ||^{1+ α}, so that x_1 satisfies (2.8). Using induction we assume $x_k \in U(x^*, r_{k-1})$ and apply Lemma 2.1 with

$$
q_0 = x^*, \quad \lambda = MK_0 \delta^{\alpha}, \quad r = r_k = c \|x_k - x^*\|^{1+\alpha}
$$

to the map T_k given by (2.7) to obtain the existence of a fixed point $x_{k+1} \in$ $U(x^*, r_k)$ for T_k (by Proposition 2.3).

Let x^* be an isolated solution of (1.1) . Note that we can find a sufficiently small neighborhood U inside which x^* is the unique solution of (1.1). Let us choose a fixed $\delta > 0$ satisfying (2.10), such that $U(x^*, j\delta) \subset U$ for $j \in N - \{0\}.$ It suffices to use $j = 4$. Let $x_k \in U(x^*, 4\delta)$, then

$$
x_{k+1} \in G^{-1}(f(x^*) + f'(x^*)(x_{k+1} - x^*) - f(x_k) - f'(x_k)(x_{k+1} - x_k)).
$$

In view of $x^* = G^{-1}(0) \cap U(x^*, 4\delta)$, we obtain in turn

$$
||x_{k+1} - x^*|| = \text{dist}(x_{k+1}, G^{-1}(0) \cap U(x^*, 4\delta))
$$

\n
$$
= \text{dist}(x_{k+1}, G^{-1}(0)) \le e(G^{-1}(T_k) \cap U(x^*, 4\delta), G^{-1}(0))
$$

\n
$$
\le M || f(x^*) - f(x_k) - f'(x_k)(x^* - x_k) ||
$$

\n
$$
+ M || (f'(x_k) - f'(x^*)) (x_{k+1} - x^*) ||
$$

\n
$$
\le \frac{1}{1+\alpha} M K ||x^* - x_k||^{1+\alpha} + M K_0 \delta^{\alpha} ||x_{k+1} - x^*||, \quad (2.15)
$$

which leads to

$$
||x_{k+1} - x^*|| \le \frac{MK||x_k - x^*||^{1+\alpha}}{(1+\alpha)(1 - MK_0\delta^{\alpha})} \le c||x_k - x^*||^{1+\alpha},\tag{2.16}
$$

by the choice of δ and c. That completes the proof of Theorem 2.2.

Remark 2.4. If equality holds in (1.5) our results reduce to the corresponding ones in [9]. Moreover if $\alpha = 1$ then they reduce to the ones in [5], [6]. Otherwise they constitute an improvement over these results. Indeed define

$$
\delta_1 = \min \left\{ a \ , \ \sqrt{\frac{2b}{3K}} \ , \ \frac{1}{c} \ , \ \frac{1}{MK} - \frac{1}{2c} \right\} \tag{2.17}
$$

and

and

$$
\delta_2 = \min\left\{a, \left[\frac{(1+\alpha)b}{(2+a)K}\right]^{\frac{1}{1+\alpha}}, \left(\frac{1}{c}\right)^{\frac{1}{\alpha}}, \left[\frac{1}{MK} - \frac{1}{(\alpha+1)c}\right]^{\frac{1}{\alpha}}\right\}.
$$
 (2.18)

The constants δ_1 and δ_2 were used in [9] and [6] respectively instead of our δ_0 given by (2.11) . In view of (1.5) , (2.11) , (2.17) and (2.18) we get

 $\delta_1 \leq \delta_0$

$$
\delta_2\leq \delta_0.
$$

Therefore our results can provide a wider choice of initial guesses x_0 than the corresponding ones in [6], [9]. Note that the choice of δ influences the choice of c, which c can be smaller in our case. These observations are important in computational mathematics [3], [8].

254 Ioannis K. Argyros

REFERENCES

- [1] J. P. Aubin, Lipschitz behavior of solutions to convex minimization problems, Math. Oper. Res., 9 (1984), 87–111.
- [2] I. K. Argyros, A unifying local-semilocal convergence analysis and applications for twopoint Newton-like methods in Banach space, J. Math. Anal. Appl., 298 (2004), 374–397.
- [3] I. K. Argyros, Newton Methods, Nova Science Publ. Inc., New York, 2005
- [4] I. K. Argyros, On the secant method for solving nonsmooth equations, J. Math. Anal. Appl., 322 (2006), 146–157.
- [5] A. L. Dontchev, W. W. Hager, An inverse function theorem for set-valued maps, Proc. Amer. Math. Soc., 121 (1994), 481–484.
- [6] A. L. Dontchev, Local convergence of the Newton method for generalized equations, C. R. Acad. Sci. Paris, Série I, 332 (1996), 327-331.
- [7] A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems, North Holland, Amsterdam, 1979.
- [8] L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1982.
- [9] A. Piétrus, *Generalized equations under mild differentiability conditions*, Rev. R. Acad. Cienc. Exact. Fis. Nat. Mathematicas, 94 (2000), 15–18.
- [10] R. T. Rockafellar, Lipschitz properties of multifunctions, Nonlinear Analysis, 9 (1985), 867–885.
- [11] B. Xiao and P. T. Harker, A nonsmooth Newton method for variational inequalities I: Theory, Math. Progr., 65 (1994), 151–194.