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Abstract. We provide a local convergence analysis of Newton’s method for solving a certain

class of generalized equations in a Banach space setting under Hölder and center-Hölder

continuity conditions on the Fréchet-derivative of the operator involved. Using more precise

estimates and under the same hypotheses/computational cost we provide a finer convergence

analysis of Newton’s method than before [5], [6], [9].

1. Introduction

In this study we are concerned with the problem of approximating a solution
x of the generalized equation

0 ∈ f(x) + F (x), x ∈ X, (1.1)

where f is a Fréchet-differentiable operator defined on a Banach space X with
values in a Banach space Y and F : X → 2Y has a closed graph. If F = {0},
then (1.1) is an equation. When F = Ri+ the positive orthant in Ri, then (1.1)
is a system of inequalities. If F is a normal cone to a convex and closed set in
X, then (1.1) represents a variational inequality.

The most popular method for generating a sequence approximating x is
undoubtedly Newton’s method

0 ∈ f(xn) + f ′(xn)(xn+1 − xn) + F (xn+1) (n ≥ 0), (x0 ∈ X), (1.2)

where f ′(xn) is the Fréchet derivative of f at xn and x0 is the initial guess.
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A survey on local as well as semilocal convergence results on method (1.2)
can be found in [1]–[11], and the references there. In particular we pay atten-
tion in the work by Piétrus in [9] who is using the K-Hölder condition

‖F ′(v)− F ′(w)‖ ≤ K‖v − w‖α for all v, w ∈ D ⊆ X, α ∈ [0, 1]. (1.3)

A local convergence analysis was provided in [9] for Newton’s method using
condition (1.3). Here we also introduce the (K0, x) center-Hölder continuity
condition for a given x ∈ D by

‖F ′(v)− F ′(x)‖ ≤ K0‖v − x‖α for all v ∈ D. (1.4)

Note that

K0 ≤ K (1.5)

holds in general and
K

K0
can be arbitrarily large [2], [3].

Using a combination of (1.3) and (1.4) instead of only (1.3) we provide (in
view of K0 < K) a finer local convergence analysis of Newton’s method (1.2).

2. Local Convergence Analysis of Method (1.2)

We need to introduce a certain type of continuity attributed to Aubin [1]. A
set-valued map Γ from Y to the subsets of Z is said to be M -pseudo-Lipschitz
around

(y0, x0) ∈ Graph Γ = {(y, z) ∈ Y × Z | z ∈ Γ(y)}
if there exist neighborhoods V of y0 and U of z0 such that

sup
z∈Γ(y1)∩U

dist(z,Γ(y2)) ≤M‖y1 − y2‖ for all y1 and y2 in V. (2.1)

Let A and C be subsets of X. If we denote by e(C,A) the excess from the set
A to the set C given by

e(C,A) = sup{dist(x,A), x ∈ C} (2.2)

then (2.1) is equivalent to a definition of a M -pseudo-Lipschitz set-valued
replacing (2.1) by

e
(
Γ(y1) ∩ U,Γ(y2)

)
≤M‖y1 − y2‖. (2.3)

We need the following generalization of a fixed point theorem [6], [7]:

Lemma 2.1. Let (X, ρ) be a Banach space, let T map X to the closed subsets
of X; let q0 ∈ X, and let r > 0 and λ ∈ [0, 1) be such that:

dist(q0, T (q0)) < r(1− λ) (2.4)

and

e
(
T (v) ∩ U(q0, r), T (w)

)
≤ λρ(v, w), (2.5)
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for all v, w ∈ U(q0, r) = {x ∈ X | ‖x− q0‖ ≤ r}. Then T has a fixed point in
U(q0, r). Moreover, if T is single valued, then X is the unique fixed point of
T in U(q0, r).

Define
G(x) = f(x∗) + f ′(x∗)(x− x∗) + F (x), (2.6)

where x∗ is a solution of (1.1). We show the map

x→ Tn(x) = G−1
(
f(x∗) + f ′(x∗)(x− x∗)− f(xn)− f ′(xn)(x− xn)) (2.7)

has a fixed point xn+1, which will satisfy

0 ∈ f(xn) + f ′(xn)(xn+1 − xn) + F (xn).

That is xn+1 is a solution of (1.2).

We can show the local convergence theorem for Newton’s method (1.2).

Theorem 2.2. Let x∗ be a solution of (1.1), let f be a Fréchet differentiable
operator in an open neighborhood D of x∗, let f ′ be K-Hölder continuous and
(K,x∗) center Hölder continuous in D. Let F be a set-valued map with closed
graph and let G−1 given by (2.6) be M -pseudo Lipschitz around (0, x∗). Then
for any c > 1

α+1MK = c0, there exists δ > 0 such that for any initial guess

x0 ∈ U(x∗, δ), there exists a sequence {xn} generated by Newton’s method (1.2)
converging to x∗ and satisfying

‖xn+1 − x∗‖ ≤ c‖xn − x∗‖2 (n ≥ 0). (2.8)

Moreover if x∗ is an isolated solution of (1.1), then for every c > c0, there
exists δ > 0 such that sequence {xn} with xn ∈ U(x∗, δ) (n ≥ 0) satisfies (2.8).

To prove Theorem 2.2 we first show:

Proposition 2.3. Under the hypotheses of Theorem 2.2 there exists δ > 0
such that for all x0 6= x∗ and x0 ∈ U(x∗, δ) the map T0(x) given by (2.7) has
a fixed point x1 ∈ U(x∗, δ).

Proof. Let c > c0, and let a > 0, b > 0 be fixed positive constants such that

e
(
G−1(v) ∩ U(x∗, a), G−1(w)

)
≤M‖v − w‖ for all v, w ∈ U(0, b). (2.9)

Let δ > 0 be fixed such that U(x∗, δ) ⊆ D and

δ < δ0, (2.10)

where,

δ0 = min

{
a,

[
(1 + α)b

K +K0(1 + α)

] 1
1+α

,

(
1

c

) 1
α

,

[
1

K0

(
1

M
− 1

(1 + α)c

)] 1
α

}
. (2.11)
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In view of Lemma 2.1 and [3], we have in turn

dist(x∗, T0(x∗)) ≤ e
(
G−1(0) ∩ U(x∗, δ), G−1(f(x∗)− f(x0)

− f ′(x0)(x∗ − x0))
)

≤ M‖f(x∗)− f(x0)− f ′(x0)(x∗ − x0)‖

≤ MK

1 + α
‖x∗ − x0‖1+α

≤ c‖x∗ − x0‖1+α(1−MK0δ
α) (2.12)

by the choice of δ and c. Let

q0 = x∗, λ = MK0δ
α, r = r0 = c‖x0 − x∗‖1+α.

In view of (2.10) it follows λ ∈ (0, 1), and r0 ≤ a, which shows (2.4). Set

y = f(x∗) + f ′(x∗)(x− x∗)− f ′(x0)(x− x0) for x ∈ U(x∗, δ).

Using (1.3) and (1.4) we get

‖y‖ ≤ ‖f(x∗)− f(x0)− f ′(x0)(x∗ − x0)‖+ ‖(f ′(x∗)− f ′(x0))(x− x∗)‖

≤ 1

1 + α
K‖x∗ − x0‖1+α +K0‖x0 − x∗‖α‖x− x∗‖

≤
(

1

1 + α
K +K0

)
δ1+α < b (2.13)

by the choice of δ, which implies

f(x∗) + f ′(x∗)(x− x∗)− f(x0)− f ′(x0)(x− x0) ∈ U(0, b). (2.14)

Therefore by (2.9), (2.13) and (2.14) we get for all v, w ∈ U(x∗, r0):

e
(
T0(v) ∩ U(x∗, r0), T0(w)

)
≤ e

(
T0(v) ∩ U(x∗, δ), T0(w)

)
≤M‖(f ′(x∗)− f ′(x0))(v − w)‖

≤ MK0δ
α‖v − w‖,

which shows (2.5). It follows from Lemma 2.1 that there exists a fixed point
x1 ∈ U(x∗, r0) for T0. The proof of Proposition 2.3 is now complete since
δ > r0. �

Proof of Theorem 2.2. Note x1 ∈ U(x∗, r0) implies ‖x1−x∗‖ ≤ r0 = c‖x0−
x∗‖1+α, so that x1 satisfies (2.8). Using induction we assume xk ∈ U(x∗, rk−1)
and apply Lemma 2.1 with

q0 = x∗, λ = MK0δ
α, r = rk = c‖xk − x∗‖1+α

to the map Tk given by (2.7) to obtain the existence of a fixed point xk+1 ∈
U(x∗, rk) for Tk (by Proposition 2.3).
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Let x∗ be an isolated solution of (1.1). Note that we can find a sufficiently
small neighborhood U inside which x∗ is the unique solution of (1.1). Let us
choose a fixed δ > 0 satisfying (2.10), such that U(x∗, jδ) ⊂ U for j ∈ N−{0}.
It suffices to use j = 4. Let xk ∈ U(x∗, 4δ), then

xk+1 ∈ G−1
(
f(x∗) + f ′(x∗)(xk+1 − x∗)− f(xk)− f ′(xk)(xk+1 − xk)

)
.

In view of x∗ = G−1(0) ∩ U(x∗, 4δ), we obtain in turn

‖xk+1 − x∗‖ = dist
(
xk+1, G

−1(0) ∩ U(x∗, 4δ)
)

= dist
(
xk+1, G

−1(0)
)
≤ e
(
G−1(Tk) ∩ U(x∗, 4δ), G−1(0)

)
≤ M‖f(x∗)− f(xk)− f ′(xk)(x∗ − xk)‖

+ M‖
(
f ′(xk)− f ′(x∗)

)
(xk+1 − x∗)‖

≤ 1

1 + α
MK‖x∗ − xk‖1+α +MK0δ

α‖xk+1 − x∗‖, (2.15)

which leads to

‖xk+1 − x∗‖ ≤
MK‖xk − x∗‖1+α

(1 + α)(1−MK0δα)
≤ c‖xk − x∗‖1+α, (2.16)

by the choice of δ and c. That completes the proof of Theorem 2.2. �

Remark 2.4. If equality holds in (1.5) our results reduce to the corresponding
ones in [9]. Moreover if α = 1 then they reduce to the ones in [5], [6]. Otherwise
they constitute an improvement over these results. Indeed define

δ1 = min

{
a ,

√
2b

3K
,

1

c
,

1

MK
− 1

2c

}
(2.17)

and

δ2 = min

{
a,

[
(1 + α)b

(2 + a)K

] 1
1+α

,

(
1

c

) 1
α

,

[
1

MK
− 1

(α+ 1)c

] 1
α

}
. (2.18)

The constants δ1 and δ2 were used in [9] and [6] respectively instead of our δ0

given by (2.11). In view of (1.5), (2.11), (2.17) and (2.18) we get

δ1 ≤ δ0

and
δ2 ≤ δ0.

Therefore our results can provide a wider choice of initial guesses x0 than the
corresponding ones in [6], [9]. Note that the choice of δ influences the choice
of c, which c can be smaller in our case. These observations are important in
computational mathematics [3], [8].
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