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Abstract. We provide a local convergence analysis of Newton’s method for solving a certain
class of generalized equations in a Banach space setting under Holder and center-Holder
continuity conditions on the Fréchet-derivative of the operator involved. Using more precise
estimates and under the same hypotheses/computational cost we provide a finer convergence
analysis of Newton’s method than before [5], [6], [9].

1. INTRODUCTION

In this study we are concerned with the problem of approximating a solution
x of the generalized equation

0€ f(x)+ F(x), ze€X, (1.1)

where f is a Fréchet-differentiable operator defined on a Banach space X with
values in a Banach space Y and F: X — 2" has a closed graph. If F = {0},
then (1.1) is an equation. When F = R’ the positive orthant in R’, then (1.1)
is a system of inequalities. If F' is a normal cone to a convex and closed set in
X, then (1.1) represents a variational inequality.

The most popular method for generating a sequence approximating x is
undoubtedly Newton’s method

0 € flan) + f/(@n)(@nt1 — 2n) + F(wny1) (n>0), (z0 € X), (1.2)

where f’(x,,) is the Fréchet derivative of f at x,, and x¢ is the initial guess.
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A survey on local as well as semilocal convergence results on method (1.2)
can be found in [1]-[11], and the references there. In particular we pay atten-
tion in the work by Piétrus in [9] who is using the K-Hoélder condition

|F'(v) — F'(w)|| < K|jv —w||* forallv,we DC X, ac|0,1]. (1.3)

A local convergence analysis was provided in [9] for Newton’s method using
condition (1.3). Here we also introduce the (Ko, z) center-Holder continuity
condition for a given z € D by

|F'(v) — F'(2)]| < Kollv — x||* for allv e D. (1.4)
Note that
Ky<K (1.5)
holds in general and % can be arbitrarily large [2], [3].
0
Using a combination of (1.3) and (1.4) instead of only (1.3) we provide (in

view of Ky < K) a finer local convergence analysis of Newton’s method (1.2).

2. LocAL CONVERGENCE ANALYSIS OF METHOD (1.2)

We need to introduce a certain type of continuity attributed to Aubin [1]. A
set-valued map I' from Y to the subsets of Z is said to be M-pseudo-Lipschitz
around

(yo, o) € Graph ' ={(y,2) e Y x Z | z € I'(y)}

if there exist neighborhoods V of yg and U of zy such that

sup dist(z,I'(y2)) < M||y1 — y2| for all y; and yo in V. (2.1)
z€Tl'(y1)NU

Let A and C' be subsets of X. If we denote by e(C, A) the excess from the set
A to the set C given by

e(C, A) = sup{dist(z, A), v € C} (2.2)

then (2.1) is equivalent to a definition of a M-pseudo-Lipschitz set-valued
replacing (2.1) by

e(T(y) NUT(y2)) < Mllyr — el (2.3)

We need the following generalization of a fixed point theorem [6], [7]:

Lemma 2.1. Let (X, p) be a Banach space, let T map X to the closed subsets
of X; let qo € X, and let r > 0 and X € [0,1) be such that:

dist(qo, T(qo)) < r(1—A) (2.4)

and
e(T(v) NU(qo,7), T(w)) < Ap(v,w), (2.5)
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for allv,w € U(qo,7) ={x € X | ||z —qo|| < r}. Then T has a fized point in
Ul(qo,r). Moreover, if T is single valued, then X is the unique fized point of
T in U(qo,T).

Define
G(z) = f(@") + /(") (x — 2") + F(2), (2.6)
where z* is a solution of (1.1). We show the map
v = To(x) = G (f(2") + f/(2") (@ — 2") = flwn) = f(2n)(@ —2a)) (27)
has a fixed point z,41, which will satisfy
0€ f(xn) + f,(xn)(anrl - mn) + F(xn)

That is x,,11 is a solution of (1.2).

We can show the local convergence theorem for Newton’s method (1.2).

Theorem 2.2. Let x* be a solution of (1.1), let f be a Fréchet differentiable
operator in an open neighborhood D of x*, let f' be K-Hélder continuous and
(K, x*) center Hélder continuous in D. Let F' be a set-valued map with closed
graph and let G=1 given by (2.6) be M-pseudo Lipschitz around (0,z*). Then
for any ¢ > O%HMK = c¢g, there exists § > 0 such that for any initial guess
xo € U(x*,0), there exists a sequence {xy} generated by Newton’s method (1.2)
converging to x* and satisfying

|zn41 — 2| < cllzn —2*|* (2 0). (2.8)

Moreover if x* is an isolated solution of (1.1), then for every ¢ > ¢y, there
exists § > 0 such that sequence {z,} with x,, € U(x*, ) (n > 0) satisfies (2.8).

To prove Theorem 2.2 we first show:

Proposition 2.3. Under the hypotheses of Theorem 2.2 there exists § > 0
such that for all xg # x* and xo € U(z*,0) the map To(x) given by (2.7) has
a fized point x1 € U(x*,9).

Proof. Let ¢ > ¢y, and let a > 0, b > 0 be fixed positive constants such that
e(G(v)NU(x* a),G (w)) < Mjv —w|| for all v,w € U(0,b).  (2.9)
Let 6 > 0 be fixed such that U(z*,0) C D and
0 < 0o, (2.10)

where,

om0 ) Bt} e
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In view of Lemma 2.1 and [3], we have in turn
dist(a", To(")) < e(GTH0)NU(a",0), G (f(z") — f(zo)
— f'(zo) (2" — 20)))

< M| f(z") = f(zo) — f'(zo)(z" — o)l

< MK HLL’* _onlJra

- 14«

< cllzt = zolMT(1 — MKo6®) (2.12)

by the choice of § and ¢. Let
qo =1z, A=MKy?*, r=ry=c|zo—z*| T
In view of (2.10) it follows A € (0, 1), and r9 < a, which shows (2.4). Set
y=f@")+ (@)@ —2%) = f'(o)(z — o) for z € U(a",9).
Using (1.3) and (1.4) we get
Iyl < [1f @) = f(@o) — f'(zo) (@ — zo)l| + [[(f'(2") — ' (20))(z — 27)

1 * *
< oKl — ao||"T + Kollzo — 2| ¥l — 2|
_|_
1
< (K + K, ) st < (2.13)
1+

by the choice of §, which implies

f@) + f'(@") (@ — 2%) = f(z0) — f'(z0)(z — z0) € U(0, ). (2.14)
Therefore by (2.9), (2.13) and (2.14) we get for all v,w € U(z*,ro):

e(To(v) VU (2%, 70), To(w))
(T ()ﬂU(w 0), To(w)) < MI|(f'(2") = f'(z0))(v — w)]

< e
< MKpé%||v —w||,

which shows (2. 5) It follows from Lemma 2.1 that there exists a fixed point
xy € U(x*,rg) for Ty. The proof of Proposition 2.3 is now complete since
6 > rg. O

Proof of Theorem 2.2. Note z; € U(z*,rg) implies ||z1 —z*| < ro = ¢|lxo—
o*||+, so that 1 satisfies (2.8). Using induction we assume 3, € U(x*,75_1)
and apply Lemma 2.1 with

Q=1 A=MEKy®, r=rp=c|z, -z

to the map T}, given by (2.7) to obtain the existence of a fixed point zj41 €
U(z*,ry) for Ty, (by Proposition 2.3).
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Let z* be an isolated solution of (1.1). Note that we can find a sufficiently
small neighborhood U inside which z* is the unique solution of (1.1). Let us
choose a fixed § > 0 satisfying (2.10), such that U(z*, jé) C U for j € N —{0}.
It suffices to use j = 4. Let x € U(x*,46), then

e € GTH(F(@*) + f/(@) (wpr — %) — fan) — f/(2n) (@41 — 1))
In view of x* = G~1(0) N U(z*,45), we obtain in turn
|2kt — ¥ = dist(zpq1, G0N U(xz*,40))
= dist(z11,G1(0)) < e(GH(Ty) NU(2*,46),G71(0))
< M| f(") = flaw) = f (o) (@ — )|
+ M| (f'(zr) = £'(@")) (Tpsr — 7))

1
T ME 2 =i+ MES ey a7 (215)

IN

which leads to

MK ||z), — ¥+
(1+ a)(1 — MKpié®)
by the choice of § and c¢. That completes the proof of Theorem 2.2. O

[@p1 — 2™ < < cf|zy — ||, (2.16)

Remark 2.4. If equality holds in (1.5) our results reduce to the corresponding
ones in [9]. Moreover if & = 1 then they reduce to the ones in [5], [6]. Otherwise
they constitute an improvement over these results. Indeed define

. 26 1 1 1
6]_—1'11111{@7 3[{’0’]\4[{_2@} (217)

1 1 1
, (14+a)b]™e (1\= [ 1 1 7=
5, = - - EENCRT
2 mln{a, [(24—@)[( "\¢) "|MK (a+1)c (2.18)
The constants 01 and 2 were used in [9] and [6] respectively instead of our dy

given by (2.11). In view of (1.5), (2.11), (2.17) and (2.18) we get
01 < do

and

and

02 < dp.
Therefore our results can provide a wider choice of initial guesses x¢ than the
corresponding ones in [6], [9]. Note that the choice of ¢ influences the choice
of ¢, which ¢ can be smaller in our case. These observations are important in
computational mathematics [3], [8].
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