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Abstract.We prove the existence of continuous selections of set of mild solutions of second
order differential inclusions of the form

x′′(t) ∈ Ax(t) + F (t, x(t)), t ∈ I = [0, T ]

x(0) = ξ , x′(0) = η

where F : [0, T ] × X → 2X is a lower semi continuous, bounded closed, convex set valued

map in a separable Banach space X, A is the infinitesimal generator of a strongly continuous

cosine family {C(t) : t ∈ R} of bounded linear operators from X to X and ξ, η ∈ X.

1. Introduction

Existence of solutions of differential inclusions and integrodifferential equa-
tions has been studied by many authors [1, 3, 4]. Existence of solution x(·, ξ) of
the Cauchy problem x′(t) ∈ F (t, x(t)), x(0) = ξ such that the map ξ → x(·, ξ)
is continuous from a compact subset of Rn into the space of absolutely con-
tinuous functions was proved first by Cellina [7] for F which is Lipchitzean
with respect to x, defined on an open subset of R × Rn and taking compact,
uniformly bounded values. Cellina proved that the map that associates the set
of solutions S(ξ) of the above Cauchy problem to the initial point ξ, admits a
selection continuous from Rn to the space of absolutely continuous functions.
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The boundedness assumption on the values of F has been avoided in [8] allow-
ing F to take closed non empty values in Rn. An analog result for F defined
on a closed subset of R×Rn has been proved in [9].

Extensions of Cellina’s result to Lipchitzean maps with closed non empty
values in a separable Banach space has been obtained in [6] and [10]. In [12]
Staicu proved the existence of a continuous selection of the set valued map
ξ → S(ξ) where S(ξ) is the set of all mild solutions of the Cauchy problem

x′(t) ∈ Ax(t) + F (t, x(t)), x(0) = ξ

where A is the infinitesimal generator of a C0 - semi group and F is Lipchitzean
with respect to x. Staicu also proved the same result for the set of all weak
solutions by considering that −A is a maximal monotone map. In [11] the
controllability of the second order differential inclusion in Banach spaces has
been studied.

In [5] Benchohra.et.al proved the existence of mild solutions to the class
of second order damped differential inclusions with nonlocal conditions by
using fixed point theorems. In [2] Anguraj et al. proved the existence of mild
solutions for first order integrodifferential inclusions in Banach spaces by using
the successive approximation technique.

In this present work we prove the existence of a continuous selection of the
set of mild solutions of the second order differential inclusions of the form

x′′(t) ∈ Ax(t) + F (t, x(t)), t ∈ I = [0, T ], x(0) = ξ, x′(0) = η (1.1)

where F : [0, T ] × X → 2X is a lower semi continuous bounded convex set
valued map, ξ, η ∈ X and A is the linear infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear operators from a
Banach space X to X, with norm ‖ · ‖.

2. Preliminaries

Let T > 0, I = [0, T ] . Let L be the σ-algebra of all Lebesgue measurable
subsets of I. Let X be a real separable Banach space with norm ‖ · ‖. Let 2X

be the family of all non empty subsets of X. Let B(X) be the family of Borel
subsets of X.

If x ∈ X and A is a subset of X, then we define

d(x,A) = inf{‖x− y‖ : y ∈ A}.
For any two closed and bounded non empty subsets A and B of X, we define
Housdorff distance from A to B by

h(A,B) = max{sup{d(x,B) : x ∈ A}, sup{d(y,A) : x ∈ B}}.
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Let C(I, X) denote the Banach space of all continuous functions x : I → X
with norm

‖x‖∞ = sup{‖x(t)‖ : t ∈ I}.
A measurable function x : I → X is Bochner integrable if and only if ‖x‖ is

Lebesgue measurable. Let L1(I, X) denote the Banach space of all Bochner

integrable functions x : I → X with norm ‖x‖1 =
∫ T

0
‖x(t)‖dt. Let D be the

family of all decomposable closed non empty subsets of L1(I,X).
A set valued map G : X → 2X is said to be convex closed if G(x) is convex

closed for all x ∈ X.
A set valued map G : S → 2X is said to be lower semi continuous (l.s.c) if

for every closed subset C of X the set {s ∈ S : G(s) ⊂ C} is closed in S.
A function g : S → X such that g(s) ∈ G(s) for all s ∈ S is called a selection

of G(·). Let {C(t) : t ∈ R} be a family of bounded linear operators in a Banach
space X . This family is called a strongly continuous cosine family if and only
if

(1) C(0) = I (the identity mapping of X onto X),
(2) C(s + t) + C(s− t) = 2C(s)C(t) for all s, t ∈ R,
(3) C(t)x is continuous in t on R for every x ∈ X.

The strongly continuous sine family {S(t) : t ∈ R}, associated to the given
strongly continuous cosine family {C(t) : t ∈ R}, is defined by

S(t)x =
∫ ∞

0
C(s)x(s)ds, x ∈ X, t ∈ R

The infinitesimal generator A of a strongly continuous cosine family {C(t) :
t ∈ R}, is an operator A : X → X defined by

Ax =
d2

dt2
C(t)x|t=0.

We define
(

d

dt

)
C(t)x = AS(t)x for all x ∈ X and t ∈ R and we have

(
d2

dt2

)
C(t)x = AC(t)x = C(t)Ax for all x ∈ D and t ∈ R.

Now we assume the following:

(H1) There exists a constant M ≥ 1 such that |C(t)| ≤ M and |S(t)| ≤ MT
for all t ∈ I

(H2) F : I ×X → 2X is a lower semi continuous set valued map taking non
empty closed bounded values.

(H3) F is L ⊗ B(X) measurable.
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(H4) There exists a k ∈ L1(I, R) such that the Hausdorff distance satisfies
h(F (t, x(t)), F (t, y(t))) ≤ k(t)‖x(t) − y(t)‖ for all x, y ∈ X and a.e.
t ∈ I.

(H5) There exists a β ∈ L1(I,R) such that d(0, F (t, 0)) ≤ β(t) a.e. t ∈ I.
To prove our theorem we need the following two lemmas which can be easily

proved from Lemma 2.1([10]) and Lemma 2.2 ([10]).

Lemma 2.1. Let F : I × S → 2X , S ⊆ X, be measurable with non empty
closed values, and let F (t, ·) be lower semi continuous for each t ∈ I. Then
the map (ξ, η) → GF (ξ, η) given by

GF (ξ, η) = {v ∈ L1(I, X) : v(t) ∈ F (t, ξ) ∩ F (t, η) ∀ t ∈ I}
is lower semi continuous from S into D if and only if there exists a continuous
function β : S×S → L1(I, R) such that for all ξ, η ∈ S, we have d(0, F (t, ξ)∩
F (t, η)) ≤ β(ξ, η)(t) a.e. t ∈ I.

Lemma 2.2. Let ζ : S × S → D be a lower semi continuous set valued map
and let ϕ : S × S → L1(I, X) and ψ : S × S → L1(I,X) be continuous maps.
If for every ξ, η ∈ S the set

H(ξ, η) = cl{v ∈ ζ(ξ, η) : ‖v(t)− ϕ(ξ, η)(t)‖ < ψ(ξ, η)(t) a.e t ∈ I}
is non empty, then the map H : S×S → D defined above admits a continuous
selection.

3. Second order differential inclusions

Definition 3.1. A function x(·, ξ, η) : I → X is called a mild solution of (1.1)
if there exists a function f(·, ξ, η) ∈ L1(I, X) such that

(i) f(t, ξ, η) ∈ F (t, x(t, ξ, η)) for almost all t ∈ I

(ii) x(t, ξ, η) = C(t)ξ + S(t)η +
∫ t

0
S(t− s)f(s, ξ, η)ds for each t ∈ I.

Theorem 3.2. Let A be the linear infinitesimal generator of a strongly con-
tinuous cosine family {C(t) : t ∈ R} of bounded linear operators of X into
X and the hypotheses (H1)–(H5) be satisfied. Then there exists a function
x(·, ·, ·) : I ×X ×X → X such that

(i) x(·, ξ, η) ∈ S(ξ) ,the set of all mild solutions (1.1) for every ξ ∈ X and
(ii) (ξ, η) → x(·, ξ, η) is continuous from X ×X into C(I, X).

Proof. Let ε > 0 be given. For n ∈ N let εn = 1
εn+1 . Let M = sup{|C(t)| : t ∈

I}. For every (ξ, η) ∈ X ×X define x0(·, ξ) : I → X by

x0(t, ξ, η) = C(t)ξ + S(t)η (3.1)
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Now

‖x0(t, ξ1, η1)− x0(t, ξ2, η2)‖ ≤ |C(t)|‖ξ1 − ξ2‖+ |S(t)|‖η1 − η2‖
≤ M‖ξ1 − ξ2‖+ MT‖η1 − η2‖

i.e. The map (ξ, η) → x0(·, ξ, η) is continuous from X ×X into C(I, X). For
each (ξ, η) ∈ X define α(ξ, η) : I → R by

α(ξ, η)(t) = β(t) + k(t)‖x0(t, ξ, η)‖. (3.2)

Now

|α(ξ1, η1)(t)− α(ξ2, η2)(t)| = k(t)
(‖x0(t, ξ1, η1)‖ − ‖x0(t, ξ2, η2)‖

)

< k(t)‖x0(t, ξ1, η1)− x0(t, ξ2, η2)‖
< M‖ξ1 − ξ2‖+ MT‖η1 − η2‖

i.e. α(·, ·) is continuous from X ×X to L1(I, R). By (H4) and (3.2) we have

d(0, F (t, x0(t, ξ, η)) < β(t) + k(t)‖x0(t, ξ, η)‖
and so

d(0, F (t, x0(t, ξη)) < α(ξ, η)(t) for a.e. t ∈ I. (3.3)

Define set valued maps G0 : X ×X → 2L1(I,X) and H0 : X ×X → 2L1(I,X) by

G0(ξ, η) = {v ∈ L1(I, X) : v(t) ∈ F (t, x0(t, ξ, η)) a.e. t ∈ I},
H0(ξ, η) = cl{v ∈ G0(ξ, η) : ‖v(t)‖ < α(ξ, η)(t) + ε0} .

By Lemma 2.2 and (3.3) there exists a continuous selection h0 : X × X →
L1(I,X) of H0(·, ·).
Define m(t) =

∫ t

0
k(s)ds.

For n ≥ 1, define βn(ξ, η)(t) by

βn(ξ, η)(t) = MnTn

∫ t

0
α(ξ, η)(s)

[m(t)−m(s)]n−1

(n− 1) !
ds

+ MnTn+1
( n∑

i=0

εi

) [m(t)]n−1

(n− 1) !

(3.4)

Set f0(t, ξ, η) = h0(ξ, η)(t). By the definition of h0 we see that f0(t, ξ, η) ∈
F (t, x0(t, ξ, η)). Define

x1(t, ξ, η) = C(t)ξ + S(t)η +
∫ t

0
S(t− s)f0(s, ξ, η)ds ∀ t ∈ I\{0} (3.5)

By the definition of H0(·, ·) we see that ‖f0(t, ξ, η)‖ < α(ξ, η)(t) + ε0 for all
t ∈ I\{0}.
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From (3.1) and (3.5) we have

‖x1(t, ξ, η)− x0(t, ξ, η)‖ ≤
∫ t

0
|S(t− s)|‖f0(s, ξ, η)‖ds

< MT

∫ t

0

(
α(ξ, η)(s) + ε0

)
ds

< MT

∫ t

0
α(ξ, η)(s)ds + MT 2

( 1∑

i=0

εi

)

< β1(ξ, η)(t).

We claim that there are two sequences {fn(·, ξ, η)} and {xn(·, ξ, η)} such that
for n ≥ 1 the following properties are satisfied:

(a) the map (ξ, η) → fn(·, ξ) is continuous from X ×X into L1(I, X).
(b) fn(t, ξ, η) ∈ F (t, xn(t, ξ, η)) for each (ξ, η) ∈ X ×X a.e. t ∈ I.
(c) ‖fn(t, ξ, η)− fn−1(t, ξ, η)‖ ≤ k(t)βn(ξ, η)(t) for a.e. t ∈ I.
(d) xn+1(t, ξ, η) = C(t)ξ + S(t)η +

∫ t
0 S(t− s)fn(s, ξ, η)ds, for all t ∈ I.

We shall claim the above by induction on n.We assume that already there
exist functions f1, f2, . . . , fn and x1, x2 . . . , xn satisfying (a)–(d).
Define xn+1(·, ξ, η) : I → X by

xn+1(t, ξ, η) = C(t)ξ + S(t)η
∫ t

0
S(t− s)fn(s, ξ, η)ds, ∀t ∈ I.

Then by (c) and (d), for t ∈ I\{0}, we have
‖xn+1(t, ξ, η)− xn(t, ξ, η)‖

=
∥∥∥

∫ t

0
S(t− s){fn(s, ξ, η)− fn−1(s, ξ, η)}ds

∥∥∥

≤
∫ t

0
|S(t− s)| ‖fn(s, ξ, η)− fn−1(s, ξ, η)‖ ds

≤ MT

∫ t

0
‖fn(s, ξ, η)− fn−1(s, ξ, η)‖ds (3.6)

≤ MT

∫ t

0
k(s)βn(ξ, η)(s)ds

≤ MT

∫ t

0
k(s)

{
MnTn

∫ s

0
α(ξ, η)(u)

[m(s)−m(u)]n−1

(n− 1) !
du

+ MnTn+1
( n∑

i=0

εi

) [m(s)]n−1

(n− 1) !

}
ds (3.7)
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< Mn+1Tn+1

∫ t

0
α(ξ, η)(u)

[m(t)−m(u)]n

n !
du

+ Mn+1Tn+2
( n+1∑

i=0

εi

) [m(t)]n

n !
(3.8)

< βn+1(ξ, η)(t).

By (H3) we now have
d(fn(t, ξ, η), Fn(t, xn+1(t, ξ, η)))

≤ k(t)‖xn+1(t, ξ, η)− xn(t, ξ, η)‖
< k(t)βn+1(ξ, η)(t) (3.9)

Define a set valued map Gn+1 : X ×X → 2L1(I,X) by

Gn+1(ξ, η) = {v ∈ L1(I, X) : v(t) ∈ F (t, xn+1(t, ξ, η)) a.e. t ∈ I}
By Lemma 2.1 and (3.9), Gn+1 is lower semi continuous from X ×X into D.
Define a set valued map Hn+1 : X ×X → 2L1(I,X) by
Hn+1(ξ, η) =

cl{v ∈ Gn+1(ξ, η) : ‖v(t)− fn(t, ξ, η)‖ < k(t)βn−1(ξ, η)(t) a.e.t ∈ I} (3.10)

Therefore, Hn+1(ξ, η) is non empty for each (ξ, η) ∈ X ×X. By Lemma 2.2
and (3.10) we see that there exists a continuous selection

hn+1 : X ×X → L1(I,X) of Hn+1(··).
Then fn+1(t, ξ, η) = hn+1(ξη)(t) for each ξ, η ∈ X and each t ∈ I satisfies the
properties (a)–(c) of our claim. By the property (c) and (3.6)–(3.9) we have

‖xn+1(·, ξ, η)− xn(·, ξ, η)‖∞ ≤ MT‖fn(·, ξ, η)− fn−1(·, ξ, η)‖1

≤ (MT‖k‖1)n

n!
{
MT‖α(ξ, η)‖1 + MTε

}

Therefore, the sequence {fn(·, ξ, η)} is a Cauchy sequence in L1(I,X) and
the sequence {xn(·), ξ, η)} is a Cauchy sequence in C(I, X). Let f(·, ξ, η) ∈
L1(I,X) be the limit of the Cauchy sequence {fn(·, ξ, η)} and x(·, ξ, η) ∈
C(I,X) be the limit of the Cauchy sequence {xn(·), ξ, η)}.

Now we can easily show that the map (ξ, η) → f(·, ξ, η) is continuous from
X into L1(I,X) and the map (ξ, η) → x(·, ξ, η) is continuous from X × X
into C(I, X) and for all (ξ, η) ∈ X × X and almost all t ∈ I, f(t, ξ, η) ∈
F (t, x(t, ξ, η)). Taking limit in (d) we obtain

x(t, ξ, η) = C(t)ξ + S(t)η
∫ t

0
S(t− s)f(s, ξ, η)ds ∀ t ∈ I.

This completes the proof. ¤
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