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Abstract. The aim of this paper is to establish some coincidence and common fixed point

theorems for a sequence of hybrid type nonself mappings defined on a closed subset of a

metrically convex metric space using diametral δ-distance instead of Hausdorff distance.

Our results generalize some earlier results due to Dhage [7], Dhage et al. [8], Huang and

Cho [12], Imdad et al. [14], Khan [19], C̀iric̀ and Ume [6], Rhoades [25] and several others.

Some related results are also discussed.

1. Introduction

Several fixed point theorems for set-valued and hybrid pairs of mapping are
proved using Hausdorff distances and by now there exists a spate of research
article in this direction. To mention a few, one can cite Rhoades [25], Imdad
and Ahmad [13], Pathak [24], Popa [22] and references cited therein. On the
other hand, Assad and Kirk [4] gave a sufficient condition enunciating fixed
point of set-valued mappings satisfying a specific boundary condition in met-
rically convex metric spaces. In the recent years the work due to Assad and
Kirk [4] has inspired extensive activities which includes Itoh [15], Khan [19],
Ahmad and Imdad [1,2], Imdad, Ahmad and Kumar [14] and others.
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Most recently, Dhage et al. [8] proved some fixed point theorems for a
sequence of set-valued mappings which generalize several results due to Dhage
[7], Huang and Cho [12] and others. The purpose of this paper is to prove some
coincidence and common hybrid fixed point theorems for a sequence of set-
valued and a pair of single valued nonself mappings using diametral distance
(instead of Hausdorff distance) satisfying certain contraction type condition
which is essentially patterned after Huang and Cho [12] or Dhage [7]. Our
results either partially or completely generalize earlier results due to Itoh [15],
Khan [19], C̀iric̀ and Ume [6], Rhoades [25], Imdad et al. [14], Huang and Cho
[12], Dhage [7], Dhage et al. [8] and several others.

2. Preliminaries

Before proving our results, we collect the relevant notations and conventions.
Let (X, d) be a metric space. Then following Nadler [21], we recall

(i) CB(X) = {A : A is nonempty closed and bounded subset of X},
(ii) C(X) = {A : A is nonempty compact subset of X}.
(iii) For nonempty subsets A, B of X and x ∈ X,

d(x,A) = inf {d(x, a) : a ∈ A},
D(A, B) = inf {d(a, b) : a ∈ A, b ∈ B},
H(A, B) = max [{sup d(a,B) : a ∈ A}, {sup d(A, b) : b ∈ B}] and

δ(A, B) = sup {d(a, b) : a ∈ A, b ∈ B}.
Notice that D(A,B) ≤ H(A,B) ≤ δ(A,B), it is well known (See [18]) that

CB(X) is a metric space with the distance H which is known as Hausdorff-
Pompeiu metric on X.

The following definitions and lemmas will be frequently used in the sequel.

Definition 2.1. Let K be a nonempty subset of a metric space (X, d), T :
K → X and F : K → CB(X). The pair (F, T ) is said to be pointwise R-
weakly commuting on K if for given x ∈ K and Tx ∈ K, there exists some
R = R(x) > 0 such that

d(Ty, FTx) ≤ R d(Tx, Fx) for each y ∈ K ∩ Fx. (2.1)

Moreover, the pair (F, T ) will be called R-weakly commuting on K if (2.1)
holds for each x ∈ K, Tx ∈ K with some R > 0.

If R = 1, we get the definition of weak commutativity of (F, T ) on K due
to Hadžic̀ [10]. For K = X, Definition 2.1 reduces to ‘pointwise R-weak com-
mutativity and R-weak commutativity’ for single valued self mappings due to
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Pant [23].

Definition 2.2.([10],[11]) Let K be a nonempty subset of a metric space
(X, d), T : K → X and F : K → CB(X). The pair (F, T ) is said to be weakly
commuting (See [10]) if for every x, y ∈ K with x ∈ Fy and Ty ∈ K, we have

d(Tx, FTy) ≤ d(Ty, Fy)

whereas the pair (F, T ) is said to be compatible (See [11]) if for every sequence
{xn} ⊂ K, from the relation

lim
n→∞ d(Fxn, Txn) = 0

and Txn ∈ K (for every n ∈ N) it follows that lim
n→∞ d(Tyn, FTxn) = 0, for

every sequence {yn} ⊂ K such that yn ∈ Fxn, n ∈ N.

For hybrid pairs of self type mappings these definitions were introduced by
Kaneko and Sessa [17].

Definition 2.3.([14]) Let K be a nonempty subset of a metric space (X, d), T :
K → X and F : K → CB(X). The pair (F, T ) is said to be quasi-coincidentally
commuting if for all coincidence points ‘x′ of (F, T ), TFx ⊂ FTx whenever
Fx ⊂ K and Tx ∈ K for all x ∈ K.

Definition 2.4.([14]) A mapping T : K → X is said to be coincidentally
idempotent w.r.t mapping F : K → CB(X), if T is idempotent at the coinci-
dence points of the pair (F, T ) i.e. Tx ∈ F (x) implies T 2x = Tx.

Definition 2.5.([4]) A metric space (X, d) is said to be metrically convex if
for any x, y ∈ X with x 6= y there exists a point z ∈ X, x 6= z 6= y such that

d(x, z) + d(z, y) = d(x, y).

Lemma 2.6.([4]) Let K be a nonempty closed subset of a metrically convex
metric space (X, d). If x ∈ K and y /∈ K then there exists a point z ∈ δK (the
boundary of K) such that d(x, z) + d(z, y) = d(x, y).

Lemma 2.7.([9]) Let {An} and {Bn} be two sequences in CB(X) and con-
verging in CB(X) to the sets A and respectively B. Then

lim
n→∞ δ(An, Bn) = δ(A, B).
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3. Results

Our main result runs as follows.

Theorem 3.1. Let (X, d) be a complete metrically convex metric space and K
a nonempty closed subset of X. Let {Fn}∞n=1 : K → CB(X) and S, T : K → X
which satisfy:

(i) ∂K ⊆ SK ∩ TK, Fi(K) ∩K ⊆ SK, Fj(K) ∩K ⊆ TK,
(ii) Tx ∈ ∂K ⇒ Fi(x) ⊆ K, Sx ∈ ∂K ⇒ Fj(x) ⊆ K, and

δ(Fi(x), Fj(y)) ≤ a max{d(Tx, Sy), d(Tx, Fi(x)), d(Sy, Fj(y))}

+b [d(Tx, Fj(y)) + d(Sy, Fi(x))], (3.1)

where i = 2n− 1, j = 2n, (n ∈ N), i 6= j for all x, y ∈ K with x 6= y, a, b ≥
0, such that 2a + 3b < 1,

(iii) (Fi, T ) and (Fj , S) are compatible pairs,
(iv) {Fn}, S and T are continuous on K.

Then {Fn}, S and T have a common coincidence point.

Proof. Firstly, we proceed to construct two sequences {xn} and {yn} in the
following way.

Let x ∈ ∂K. Then (due to ∂K ⊆ TK) there exists a point x0 ∈ K such
that x = Tx0. Since Tx ∈ ∂K ⇒ Fi(x) ⊆ K for every odd integer (i ∈ N),
one concludes that F1(x0) ⊆ F1(K) ∩ K ⊆ SK. Let x1 ∈ K be such that
y1 = Sx1 ∈ F1(x0) ⊆ K. Since y1 ∈ F1(x0), there exists a point y2 ∈ F2(x1).
Suppose y2 ∈ K. Then y2 ∈ F2(K) ∩ K ⊆ TK, implies that there exists a
point x2 ∈ K such that y2 = Tx2. Otherwise, if y2 /∈ K then there exists a
point p ∈ ∂K such that

d(Sx1, p) + d(p, y2) = d(Sx1, y2).

Since p ∈ ∂K ⊆ TK, there exists a point x2 ∈ K with p = Tx2 so that

d(Sx1, Tx2) + d(Tx2, y2) = d(Sx1, y2).

Let y3 ∈ F3(x2). If y3 ∈ K then y3 ∈ F3(K) ∩K ⊆ SK which implies that
there exists a point x3 ∈ K such that y3 = Sx3. Otherwise if y3 /∈ K there
exists a point p1 ∈ ∂K such that

d(Tx2, p1) + d(p1, y3) = d(Tx2, y3).

Since p1 ∈ ∂K ⊆ SK there exists a point x3 ∈ K with p1 = Sx3 so that

d(Tx2, Sx3) + d(Sx3, y3) = d(Tx2, y3).

Thus, repeating the foregoing arguments, we obtain two sequences {xn} and
{yn} such that
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(v) y2n ∈ F2n(x2n−1) for every (n ∈ N), y2n+1 ∈ F2n+1(x2n) for every (n ∈
N0 = N ∪ {0}),

(vi) y2n ∈ K ⇒ y2n = Tx2n or y2n /∈ K ⇒ Tx2n ∈ ∂K and
d(Sx2n−1, Tx2n) + d(Tx2n, y2n) = d(Sx2n−1, y2n),

(vii) y2n+1 ∈ K ⇒ y2n+1 = Sx2n+1 or y2n+1 /∈ K ⇒ Sx2n+1 ∈ ∂K and

d(Tx2n, Sx2n+1) + d(Sx2n+1, y2n+1) = d(Tx2n, y2n+1).

We denote
P◦ = {Tx2i ∈ {Tx2n} : Tx2i = y2i},
P1 = {Tx2i ∈ {Tx2n} : Tx2i 6= y2i},
Q◦ = {Sx2i+1 ∈ {Sx2n+1} : Sx2i+1 = y2i+1},
Q1 = {Sx2i+1 ∈ {Sx2n+1} : Sx2i+1 6= y2i+1}.

One can note that (Tx2n, Sx2n+1) 6∈ P1 ×Q1 and (Sx2n−1, Tx2n) 6∈ Q1 × P1.
Now, we distinguish the following three cases.

Case 1. If (Tx2n, Sx2n+1) ∈ P◦ ×Q◦, then

d(Tx2n, Sx2n+1)

≤ δ(F2n+1(x2n), F2n(x2n−1))

≤ a max{d(Tx2n, Sx2n−1), d(Tx2n, F2n+1(x2n)), d(Sx2n−1, F2n(x2n−1))}
+ b [d(Tx2n, F2n(x2n−1)) + d(Sx2n−1, F2n+1(x2n))],

≤ a max{d(y2n, y2n−1), d(y2n, y2n+1), d(y2n−1, y2n)}
+ b [d(y2n−1, y2n) + d(y2n, y2n+1)].

If we suppose that d(y2n−1, y2n) ≤ d(y2n, y2n+1), then one obtains

d(Tx2n, Sx2n+1) ≤ (a + 2b) d(y2n, y2n+1)

which is a contradiction. Otherwise if d(y2n, y2n+1) ≤ d(y2n−1, y2n), then one
obtains

d(Tx2n, Sx2n+1) ≤ (a + b) d(y2n, y2n−1) + bd(y2n, y2n+1)

which in turn yields

d(Tx2n, Sx2n+1) ≤ (
a + b

1− b
) d(Sx2n−1, Tx2n).

Similarly, if (Sx2n−1, Tx2n) ∈ Q◦ × P◦, then

d(Sx2n−1, Tx2n) ≤ (
a + b

1− b
) d(Sx2n−1, Tx2n−2).

Case 2. If (Tx2n, Sx2n+1) ∈ P◦ ×Q1, then

d(Tx2n, Sx2n+1) + d(Sx2n+1, y2n+1) = d(Tx2n, y2n+1),
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which in turn yields

d(Tx2n, Sx2n+1) ≤ d(Tx2n, y2n+1) = d(y2n, y2n+1),

and hence

d(Tx2n, Sx2n+1) ≤ d(y2n, y2n+1) ≤ δ(F2n+1(x2n), F2n(x2n−1)).

Now, proceeding as in Case 1, we have

d(Tx2n, Sx2n+1) ≤
(

a + b

1− b

)
d(Sx2n−1, Tx2n).

Similarly, if (Sx2n−1, Tx2n) ∈ Q1 × P◦, then

d(Sx2n−1, Tx2n) ≤
(

a + b

1− b

)
d(Sx2n−1, Tx2n−2).

Case 3. If (Tx2n, Sx2n+1) ∈ P1×Q◦, then Sx2n−1 = y2n−1. Proceeding as in
Case 1, one gets

d(Tx2n, Sx2n+1) = d(Tx2n, y2n+1)

≤ d(Tx2n, y2n) + d(y2n, y2n+1),

≤ d(Tx2n, y2n) + δ(F2n+1(x2n), F2n(x2n−1)),

≤ d(Tx2n, y2n) + a max{d(Tx2n, Sx2n−1), d(Tx2n, F2n+1(x2n)),

d(Sx2n−1, F2n(x2n−1))}+ b [d(Tx2n, F2n(x2n−1)

+ d(Sx2n−1, F2n+1(x2n))].

Since

d(Sx2n−1, Tx2n) + d(Tx2n, y2n) = d(Sx2n−1, y2n),

therefore

d(Tx2n, Sx2n+1) ≤ d(Sx2n−1, y2n) + a max{d(Sx2n−1, y2n), d(Tx2n, y2n+1),

d(Sx2n−1, y2n)}+ b [d(Tx2n, y2n) + d(y2n−1, y2n+1)],

≤ d(Sx2n−1, y2n) + a max{d(Sx2n−1, y2n), d(Tx2n, y2n+1),

d(Sx2n−1, y2n)}+ b [d(Tx2n, y2n) + d(y2n−1, Tx2n)

+ d(Tx2n, y2n+1)]

≤ d(Sx2n−1, y2n) + a max{d(Sx2n−1, y2n), d(Tx2n, y2n+1),

d(Sx2n−1, y2n)}+ b [d(y2n, y2n−1) + d(Tx2n, y2n+1)]
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which in turn yields

d(Tx2n, Sx2n+1)

≤




( 1+b
1−a−b) d(Sx2n−1, y2n), if d(Sx2n−1, y2n) ≤ d(Tx2n, y2n+1)

(1+a+b
1−b ) d(Sx2n−1, y2n), if d(Sx2n−1, y2n) ≥ d(Tx2n, y2n+1).

Now, proceeding as earlier, one also obtains

d(Sx2n−1, y2n) ≤ (
a + b

1− b
) d(Sx2n−1, Tx2n−2).

Therefore combining the above inequalities, we have

d(Tx2n, Sx2n+1) ≤ k d(Sx2n−1, Tx2n−2),

where k = max{( 1+b
1−a−b)(

a+b
1−b ), (

1+a+b
1−b )(a+b

1−b )} < 1, since 2a + 3b < 1.

Thus in all the cases, we have

d(Tx2n, Sx2n+1) ≤ k max{d(Sx2n−1, Tx2n), d(Tx2n−2, Sx2n−1)},
whereas

d(Sx2n+1, Tx2n+2) ≤ k max{d(Sx2n−1, Tx2n), d(Tx2n, Sx2n+1)}.
Now, on the lines of Assad and Kirk [4], it can be shown by induction that

for n ≥ 1, we have

d(Tx2n, Sx2n+1) < kn α and d(Sx2n+1, Tx2n+2) < kn+ 1
2 α,

whereas
α = k

−1
2 max{d(Tx0, Sx1), d(Sx1, Tx2)}.

Thus the sequence {Tx0, Sx1, Tx2, Sx3, ......., Sx2n−1, Tx2n, Sx2n+1, ......} is
Cauchy and hence converges to the point z in X. Then as noted in [10] there
exists at least one subsequence {Tx2nk

} or {Sx2nk+1} which is contained in
P◦ or Q◦ respectively.

Suppose that there exists a subsequence {Tx2nk
} which is contained in P◦

for each k ∈ N, also converges to z. Using compatibility of (Fj , S), we have

lim
k→∞

d(Sx2nk−1, Fj(x2nk−1)) = 0 for any even integer j ∈ N,

which implies that lim
k→∞

d(STx2nk
, Fj(Sx2nk−1)) = 0.

Using the continuity of S and Fj , one obtains Sz ∈ Fj(z) for any even
integer j ∈ N. Similarly, the continuity of T and Fi implies Tz ∈ Fi(z) for any
odd integer i ∈ N. Now
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d(Tz, Sz) ≤ δ(Fi(z), Fj(z))

≤ a max{d(Tz, Sz), d(Tz, Fi(z)), d(Sz, Fj(z))}
+ b [d(Tz, Fj(z)) + d(Sz, Fi(z))],

≤ a max{d(Tz, Sz), 0, 0}+ b [d(Tz, Sz) + d(Tz, Sz)],

≤ (a + 2b) d(Tz, Sz),

yielding thereby Tz = Sz, which shows that z is a common coincidence point
of the maps {Fn}, S and T. This completes the proof. ¤

Remark 3.2. By setting Fn = F (n ∈ N) and S = T = IK in Theorem 3.1,
one deduces a result due to Dhage [7].

Remark 3.3. By setting S = T = IK in Theorem 3.1, one deduces a result
due to Dhage et al. [8].

In our result, we note that Theorem 3.1 remains true for pointwise R-weakly
commuting mappings. Thus we have the following.

Theorem 3.4. Theorem 3.1 remains true if one replaces ‘compatibility’ by
‘pointwise R-weak commutativity’ in (iii) and retaining the rest of the hy-
potheses. Then (Fi, T ) as well as (Fj , S) has a point of coincidence.

Proof. On the lines of the proof of Theorem 3.1, one can show that the se-
quence {Tx2n} converges to a point z ∈ X. Now, we assume that there exists a
subsequence {Tx2nk

} of {Tx2n}, which is contained in P◦. Further subsequence
{Tx2nk

} and {Sx2nk+1} both converges to z ∈ K as K is a closed subset of the
complete metric space (X, d). Since Tx2nk

∈ Fj(x2nk−1) for any even integer
j ∈ N and Sx2nk−1 ∈ K. Using pointwise R-weak commutativity of (Fj , S),
we have

d(SFj(x2nk−1), Fj(Sx2nk−1)) ≤ R1 d(Fj(x2nk−1), Sx2nk−1) (3.2)

for any even integer j ∈ N with some R1 > 0. Also

d(SFj(x2nk−1), Fj(z)) ≤ d(SFj(x2nk−1), Fj(Sx2nk−1))+δ(Fj(Sx2nk−1), Fj(z)).
(3.3)

Making k →∞ in (3.2) and (3.3) and using continuity of Fj as well as S, we
get d(Sz, Fj(z)) ≤ 0 yielding thereby Sz ∈ Fj(z) for any even integer j ∈ N.

Since y2nk+1 ∈ Fi(x2nk
) and {Tx2nk

} ⊂ K, pointwise R-weak commutativ-
ity of (Fi, T ) implies

d(TFi(x2nk
), Fi(Tx2nk

)) ≤ R2 d(Fi(x2nk
), Tx2nk

)

for any odd integer i ∈ N with some R2 > 0, besides

d(TFi(x2nk
), Fi(z)) ≤ d(TFi(x2nk

), Fi(Tx2nk
)) + δ(Fi(Tx2nk

), Fi(z)).
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Therefore, as earlier the continuity of Fi as well as T implies d(Tz, Fi(z)) ≤ 0
giving thereby Tz ∈ Fi(z) as k →∞.

If we assume that there exists a subsequence {Sx2nk+1} contained in Q◦,
then analogous arguments establish the earlier conclusions. This concludes
the proof. ¤

In the next theorem, we utilize the closedness of TK and SK to replace the
continuity and compatibility (i.e (iii) and (iv)) requirements in Theorem 3.1,
we have the following.

Theorem 3.5. (a) Theorem 3.1 remains true if we replace conditions (iii) and
(iv) by the closedness of TK and SK and retaining the rest of the hypotheses.
(b) Moreover, if in addition to in (a), T is quasi-coincidentally commuting
and coincidentally idempotent w.r.t Fi, then (Fi, T ) has a common fixed point.
Similarly (Fj , S) has a common fixed point provided S is quasi-coincidentally
commuting and coincidentally idempotent w.r.t Fj .

Proof. On the lines of the Theorem 3.1, one assumes that there exists a subse-
quence {Tx2nk

} which is contained in P◦ and TK as well as SK are closed sub-
spaces of X. Since {Tx2nk

} is Cauchy in TK, it converges to a point u ∈ TK.
Let v ∈ T−1u, then Tv = u. Since {Sx2nk+1} is a subsequence of Cauchy
sequence, {Sx2nk+1} converges to u as well. Using (3.1), one can write

d(Fi(v), Tx2nk
) ≤ δ(Fi(v), Fj(x2nk−1))

≤ a max{d(Tv,Sx2nk−1),d(Sx2nk−1,Fj(x2nk−1)),d(Tv,Fi(v))}
+ b [d(Tv, Fj(x2nk−1)) + d(Sx2nk−1, Fi(v))],

which on letting k →∞, reduces to

d(Fi(v), u) ≤ a max{0, d(u, Fi(v)), 0}+ b [0 + d(Fi(v), u)],

≤ (a + b) d(u, Fi(v)),

yielding thereby u ∈ Fi(v), which implies that u = Tv ∈ Fi(v) as Fi(v) is
closed.

Since Cauchy sequence {Tx2n} converges to u ∈ K and u ∈ Fi(v), u ∈
Fi(K) ∩K ⊆ SK, there exists w ∈ K such that Sw = u. Again using (3.1),
one gets

d(Sw, Fj(w)) = d(Tv, Fj(w))

≤ δ(Fi(v), Fj(w))

≤ a max{d(Tv, Sw), d(Tv, Fi(v)), d(Sw, Fj(w))}
+ b [d(Tv, Fj(w)) + d(Sw, Fi(v))],

≤ (a + b) d(Sw, Fj(w)),
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implying thereby Sw ∈ Fj(w), that is w is a coincidence point of (S, Fj).
If one assumes that there exists a subsequence {Sx2nk+1} contained in Q◦

with TK as well as SK are closed subspaces of X, then noting that {Sx2nk+1}
is Cauchy in SK, the foregoing arguments establish that Tz ∈ Fi(z) and
Sw ∈ Fj(w).

Since z is a coincidence point of (Fi, T ) therefore using quasi-coincidentally
commuting property of (Fi, T ) and coincidentally idempotent property of T
w.r.t Fi, one can have

Tv ∈ Fi(v) and u = Tv ⇒ Tu = TTv = Tv = u,

therefore u = Tu = TTv ∈ TFi(v) ⊂ Fi(Tv) = Fi(u), which shows that u
is the common fixed point of (Fi, T ). Similarly, using the quasi-coincidentally
commuting property of (Fj , S) and coincidentally idempotent property of S
w.r.t Fj , one can show that (Fj , S) has a common fixed point as well. ¤

Remark 3.6. Theorem 3.5 remains true if we substitute closedness of ‘TK
and SK ′ with closedness of ‘Fi(K) and Fj(K)′.

Remark 3.7. By setting Fn = F (for all n ∈ N) and S = T = IK in Theorem
3.5, one deduces a multi-valued version of a result due to Khan et al. [20].

Remark 3.8. If we choose Fi = F (for any odd integer i ∈ N), Fj = G (for
any even integer j ∈ N) and S = T = IK in Theorem 3.5, one deduces a
sharpened form of a result due to Khan [19].

Remark 3.9. By restricting Fi = F (for any odd integer i ∈ N), Fj = G (for
any even integer j ∈ N) in Theorem 3.5, one deduces sharpened and modified
form of result due to Imdad et al. [14].

Remark 3.10. If we choose S = T = IK in Theorem 3.5, then one deduces a
result due to Huang and Cho [12].

Finally, we prove a theorem when ‘closedness of K ′ is replaced by ‘compact-
ness of K ′.
Theorem 3.11. Let (X, d) be a complete metrically convex metric space
and K a nonempty compact subset of X. Let {Fn}∞n=1 : K → CB(X) and
T : K → X which satisfy:

(i) ∂K ⊆ TK, (Fi(K) ∪ Fj(K)) ∩K ⊆ TK,
(ii) Tx ∈ ∂K ⇒ Fi(x) ∪ Fj(x) ⊆ K with

δ(Fi(x), Fj(y)) < M(x, y)

when M(x, y) > 0, for all x, y ∈ K where
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M(x, y) = a max{d(Tx, Ty), d(Tx, Fi(x)), d(Ty, Fj(y))}
+ b [d(Tx, Fj(y)) + d(Ty, Fi(x))]

(3.4)

for all x, y ∈ X with x 6= y, where a, b are non-negative reals such that
2a + 3b ≤ 1.

If T is compatible with {Fn} (n ∈ N) along with {Fn} and T are continuous
on K. Then {Fn} and T have a common point of coincidence.

Proof. We assert that M(x, y) = 0 for some x, y ∈ K. Otherwise M(x, y) 6= 0,
for any x, y ∈ K implies that

f(x, y) =
δ(Fi(x), Fj(y))

M(x, y)
is continuous and satisfies f(x, y) < 1 for all (x, y) ∈ K ×K. Since K ×K is
compact, there exists (u, v) ∈ K ×K such that f(x, y) ≤ f(u, v) = c < 1 for
x, y ∈ K, which in turn yields δ(Fi(x), Fj(y)) ≤ c M(x, y) for x, y ∈ K
and 0 < c < 1. Therefore using (3.4), one obtains c(2a + 3b) < 1. Now
by Theorem 3.1 (with restriction S = T), we get Tz ∈ Fi(z) ∩ Fj(z) for
some z ∈ K and one concludes M(z, z) = 0, contradicting the facts that
M(x, y) > 0. Therefore M(x, y) = 0 for some x, y ∈ K which implies Tx ∈
Fi(x) for any odd integer i ∈ N and Tx = Ty ∈ Fj(y) for any even integer j ∈
N. If M(x, x) = 0 then Tx ∈ Fj(x) for any even integer j ∈ N and if
M(x, x) 6= 0 then using (3.4), one infers that d(Tx, Fj(x)) ≤ 0 yielding
thereby Tx ∈ Fj(x) for any even integer j ∈ N. Similarly, in either of the cases
M(y, y) = 0 or M(y, y) > 0, one concludes that Ty ∈ Fi(y) for any odd integer
i ∈ N. Thus we have shown that {Fn} and T have a common point of coinci-
dence. ¤

While proving Theorem 3.11 the following question remains unresolved: Does
Theorem 3.11 hold for {Fn}, S and T instead of {Fn} and T?
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