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Abstract. In this paper, we introduce and study a class of vector quasi-variational-like

inequalities with non-monotonicity and non-compactness assumptions and establish some

existence results by using maximal element theorem. The results of this paper generalize

and unify the corresponding results of several authors.

1. Introduction

Quasi-variational inequalities involving multifunctions provide us with a
unified, natural, innovative and general approach to study a wide class of
problems arising in different branches of mathematics, physics and engineer-
ing sciences. Very recently Khaliq [13], Khaliq and Rashid [15,16], Khaliq,
Siddiqi and Krishan [17] have studied quasi-variational inequalities involving
multifunctions in the setting of topological vector spaces and Banach spaces
by using one person game theorems, KKM Fan theorem and fixed point the-
orems. Quasi equilibria constitute an extension of Nash equilibria which are
of fundamental importance in the theory of non-cooperative games. Cubiotti
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[7], Ding [8,9] and Noor and Otteli [21] have studied quasi equilibrium prob-
lems and recently generalized to vector valued functions by Ansari and Yao
[5], Khaliq and Krishan [14], Khaliq [13], Ansari and Flores-Bazan [4] and
references therein.

In this paper we introduce a new class of vector quasi-variational inequality
problem involving multifunctions which contains equilibrium problem as a
special case, so it is interesting to compare these two ways of problem settings.
We established some existence results for solution of this type of variational
inequality problem by using maximal element theorem. The results of this
paper generalize and unify the corresponding results of several authors and
can be considered as a significant extension of the previously known results.

Let X be a real locally convex Hausdorff topological vector space and Y be
a real Hausdorff topological vector space. We denote by L(X, Y ), the space
of all continuous linear mappings from X into Y and 〈u, x〉 the evaluation of
u ∈ L(X, Y ) at x ∈ X. Let σ be the family of all bounded subsets of X whose
union is total in X, i.e., the linear hull of ∪{S : S ∈ σ} is dense in X. Let
B be a neighbourhood base of 0 in Y. When S runs through σ, V through B,
the family

M(S, V ) = {l ∈ L(X, Y ) : ∪x∈S〈l, x〉 ⊂ V }
is a neighbourhood base of 0 in L(X, Y ) for a unique translation-invariant
topology, called the topology of uniform convergence on the set S ∈ σ, or
briefly the σ-topology. Also L(X,Y ) becomes a locally convex topological
vector space under σ-topology , where Y assumed a locally convex topological
space, see Schaeffer [23, pp. 80]. Let K be a nonempty convex subset of
X and T : K → 2L(X,Y ) and A : K → 2X be multifunctions. For given
vector valued bifunctions θ : K × L(X,Y ) → L(X,Y ), f : K ×K → Y and
η : K ×K → X, and a mapping g : K → K, we consider the following vector
quasi-variational-like inequality problem:

Find x∗ ∈ K such that x∗ ∈ A(x∗) and for all y ∈ A(x∗)

∃ s∗ ∈ T (x∗) : 〈θ(x∗, s∗), η(y, x∗)〉+ f(g(x∗), y) /∈ −intY C(x∗). (1.1)

It is easy to see that x∗ is a solution of the problem (1.1) is equivalent to
finding x∗ ∈ K satisfying x∗ ∈ A(x∗) and for all y ∈ A(x∗)

〈θ(x∗, T (x∗)), η(y, x∗)〉+ f(g(x∗), y) * −intY C(x∗), (1.2)

where 〈θ(x∗, T (x∗)), η(y, x∗)〉 =
⋃

s∗∈T (x∗)

〈θ(x∗, s∗)), η(y, x∗)〉.

If we take T as single valued mapping then as corollary, we consider the
problem of finding x∗ ∈ K such that x∗ ∈ A(x∗) and for all y ∈ A(x∗)

〈θ(x∗, T (x∗)), η(y, x∗)〉+ f(g(x∗), y) /∈ −intY C(x∗). (1.3)
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If η(x, y) = x − g(y), for all x, y ∈ K, then as corollary, we consider the
problem of finding x∗ ∈ K such that x∗ ∈ A(x∗) and for all y ∈ A(x∗)

〈θ(x∗, T (x∗)), y − g(x∗)〉+ f(g(x∗), y) /∈ −intY C(x∗). (1.4)

Problems (1.3) and (1.4) also appears to be new.
If T = 0, then (1.1) reduces to the problem of finding x∗ ∈ K such that

x∗ ∈ A(x∗) and for all y ∈ A(x∗)

f(g(x∗), y) /∈ −intY C(x∗). (1.5)

This problem was introduced and studied by Khaliq [12] and is known as
implicit vector quasi-equilibrium problem. If g = I, the identity mapping,
then (1.5) was considered by Khaliq and Krishan [14].

If f = 0, then (1.1) reduces to the problem of finding x∗ ∈ K such that
x∗ ∈ A(x∗) and for all y ∈ A(x∗)

∃ s∗ ∈ T (x∗) : 〈θ(x∗, s∗), η(y, x∗)〉 /∈ −intY C(x∗). (1.6)

This problem was considered and studied by Khaliq and Rashid [15].
If θ(x∗, s∗) = s∗, and g = I, the identity mapping, problem (1.1) reduces to

the problem of finding x∗ ∈ K such that x∗ ∈ A(x∗) and for all y ∈ A(x∗)

∃ s∗ ∈ T (x∗) : 〈s∗, η(y, x∗)〉+ f(x∗, y) /∈ −intY C(x∗). (1.7)

It is called generalized vector quasi-variational-like inequality problem consid-
ered and studied by Khaliq and Rashid [16].

If f = 0, then the problem (1.7) reduces to the vector quasi-variational-like
inequality problem studied with certain monotonocity assumptions by Ding
[10], which also contains as special cases the generalized vector variational like
inequalities in [1,2,3,24]. For suitable choice of the mappings one can obtain a
number of known variational and equilibrium problems as special cases from
the above problems, see for example [11,19,20,26].

2. Preliminaries

We need the following.

Definition 2.1. Let X and Y be two real topological vector spaces, K be a
nonempty and convex subset of X, C : K → 2Y be a multifunction such that
C(x) is closed, convex and pointed cone with apex at 0 for each x ∈ K. Let
θ : K × L(X, Y ) → L(X, Y ) and η : K × K → X be bifunctions. T : K →
2L(X,Y ) is said to satisfy the generalized θ − L − η condition iff for any finite

set {y1, y2...yn} in K, xo =
n∑

i=1

λiyi with λi ≥ 0 and
n∑

i=1

λi = 1, there exists
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s ∈ T (xo) such that

〈θ(xo, s),
n∑

i=1

λiη(yi, xo)〉 /∈ −intY C(xo).

If θ(xo, s) = s, then T is said to satisfy the generalized L− ηcondition

〈s,
n∑

i=1

λiη(yi, xo)〉 /∈ −intY C(xo).

Remark 2.1. If η is affine in first argument and for all x ∈ K, there exists
s ∈ T (x) such that

〈θ(x, s), η(x, x)〉 /∈ −intY C(x)

and
〈s, η(x, x)〉 /∈ −intY C(x),

then T satisfies the generalized θ − L− η and L− ηconditions, respectively.

Definition 2.2. Let C : K → 2Y be a multifunction. The vector valued
bifunction f : K × K → Y is said to be 0 − C(x) diagonally convex with
respect to the second argument if for any finite subset {y1, y2...yn} in K and

any x ∈ K with x =
n∑

i=1

λiyi, λi ≥ 0 and
n∑

i=1

λi = 1, we have

n∑

i=1

λif(x, yi) ∈ C(x).

The bifunction f is said to be 0 − C(x) diagonally concave with respect to
the second argument if −f is 0− C(x) diagonally convex with respect to the
second argument.

Remark 2.2. If C(x) = {a ∈ R : a ≥ o} and Y = R∪{+
−∞} then the 0−C(x)

diagonally convexity of f reduces to the 0 − C(x) diagonally convexity of f ,
see Zhou and Chen [27].

Lemma 2.1.[10] Let X and Y be topological vector spaces and let L(X, Y ) be
equipped with the uniform topology δ. Then the bilinear form 〈·, ·〉 : L(X, Y )×
X → Y is continuous on (L(X, Y ), δ)×X.

Lemma 2.2.[6] Let X and Y be topological vector spaces. If T : X → 2Y is
upper semicontinuous multifunction with closed values, then T is closed.

Lemma 2.3.[26] Let X and Y be two topological vector spaces. Suppose
T : X → 2Y and P : X → 2Y are multifunctions having open lower sections.
Then
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(i) the multifunction F : X → 2Y defined by, for each x ∈ X, F (x) =
co(T (x)) has open lower sections.

(ii) the multifunction G : X → 2Y defined by, for each x ∈ X θ(x) =
T (x) ∪ P (x) has open lower sections.

Lemma 2.4.[18] Let K be a nonempty convex subset of a Hausdorff topo-
logical vector space X and S : K → 2K be a multifunction such that for each
x ∈ K, x /∈ co(S(x)) and for each y ∈ K,S−1(y) is open in K. Suppose
further that there exists a nonempty compact subset N of K and a nonempty
compact convex subset B of K such that co(S(x)) ∩B 6= ∅ for all x ∈ K \N.
Then there exists a point x∗ ∈ K such that S(x∗) = ∅.
Lemma 2.5.[25] Let X and Y be topological spaces and T : X → 2Y be upper
semicontinuous multifunction with compact values. Suppose {xλ} is a net in
X such that xλ → x0. If yλ ∈ T (xxλ

) for each λ, then there is a y0 ∈ T (x0)
and a subnet {yβ} of {yλ} such that yβ → y0.

3. Existence results

In this section, we state and prove our main existence results.

Theorem 3.1. Let K be a nonempty convex subset of a locally convex real
Hausdorff topological vector space X and Y be a real Hausdorff topological
vector space. Let L(X, Y ) be equipped with the σ-topology. Let C : K → 2Y

and A : K → 2K be the multifunctions such that ∀x ∈ K, A(x) is nonempty
convex, ∀y ∈ K, A−1(y) is open in K, ∀x ∈ K, C(x) is closed, convex and
pointed cone in Y such that intY C(x) is nonempty and the set M = {x ∈ K :
x ∈ A(x)} is closed in K. Suppose that the following assumptions hold:

(i) the mapping g : K → K is continuous, the bifunction f : K ×K → Y
is continuous with respect to the first argument and 0−C(x) diagonally
convex with respect to the second argument,

(ii) the multifunction T : K → 2L(X,Y ) is upper semicontinuous on K
with compact values and η : K ×K → X is continuous in the second
argument, such that T satisfies the generalized θ − L− η-condition,

(iii) the multifunction W : K → 2Y defined by W (x) = Y \ (−intY C(x))
for all x ∈ K, is upper semicontinuous on K,

(iv) θ(xλ, sλ) → θ(x, s), whenever xλ → x in K, for sλ ∈ T (xλ) and
s ∈ T (x),

(v) there exists a nonempty and compact subset N of K and a nonempty,
compact and convex subset B of K such that ∀ x ∈ K\N , ∃y∗ ∈ B,
such that y∗ ∈ A(x) and

〈θ(x, s), η(y∗, x)〉+ f(g(x), y∗) ∈ −intY C(x),∀s ∈ T (x).
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Then there exists a point x∗ ∈ K such that x∗ ∈ A(x∗) and for all y ∈ A(x∗),

∃ s∗ ∈ T (x∗) : 〈θ(x∗, s∗), η(y, x∗)〉+ f(g(x∗), y) /∈ −intY C(x∗).

Proof. Define G : K → 2K by
G(x) = {y ∈ K : 〈θ(x, T (x)), η(y, x)〉+ f(g(x), y) ⊆ −intY C(x)}

= {y ∈ K : 〈θ(x, s), η(y, x)〉+ f(g(x), y) ∈ −intY C(x)},
∀s ∈ T (x), ∀x ∈ K. We first prove that x /∈ coG(x), for all x ∈ K. To see

this, suppose, by way of contradiction, that there exists some xo ∈ K such
that xo ∈ coG(xo). Then there exists finite points y1, y2...yn in K, and λi ≥ 0

with
n∑

i=1

λi = 1 such that xo =
n∑

i=1

λiyi and yi ∈ G(xo) for all i = 1, 2, ..., n.

This follows

〈θ(xo, s), η(yi, xo)〉+ f(g(xo), yi) ∈ −intY C(xo) for all s ∈ T (xo)

and i = 1, ..., n.
Since intY C(x)} is convex set, we obtain

〈θ(xo, s),
n∑

i=1

λiη(yi, xo)〉+
n∑

i=1

λif(g(xo), yi) ∈ −intY C(xo) (3.1)

for all s ∈ T (xo). From the 0− C(x) diagonal convexity with respect to the
second argument of f , we have

n∑

i=1

λif(g(xo), yi) ∈ C(xo). (3.2)

By (3.1) and (3.2), we get for all s ∈ T (xo),

〈θ(xo, s),
n∑

i=1

λiη(yi, xo)〉 ∈ −
n∑

i=1

λif(g(xo), yi)− intY C(xo)

⊆ −C(xo)− intY C(xo) ⊆ −intY C(xo),

which contradicts the fact that T satisfies the generalized θ−L− η-condition.
Now we show that G−1(y) is open in K, which is equivalent to show that

[G−1(y)]c = K \G−1(y) is closed. Indeed we have for all s ∈ T (x).

G−1(y) = {x ∈ K : y ∈ G(x)}
= {x ∈ K : 〈θ(x, T (x)), η(y, x)〉+ f(g(x), y) ⊆ −intY C(x)}
= {x ∈ K : 〈θ(x, s), η(y, x)〉+ f(g(x), y) ∈ −intY C(x)}

and

[G−1(y)]c = {x ∈ K : 〈θ(x, s), η(y, x)〉+ f(g(x), y) /∈ −intY C(x)}.
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Let u ∈ [G−1(y)]c, the closure of [G−1(y)]c in K. We claim that u ∈ [G−1(y)]c.
Indeed, let {xλ}λ∈Λ be a net in [G−1(y)]c such that xλ → u. Since {xλ}λ∈Λ ∈
[G−1(y)]c, there exists {sλ}λ∈Λ ∈ T (xλ) such that

〈θ(xλ, sλ), η(y, xλ)〉+ f(g(xλ), y) /∈ −intY C(xλ),∀y ∈ K.

That is
〈θ(xλ, sλ), η(y, xλ)〉+ f(g(xλ), y) ∈ W (xλ).

From the upper semicontinuity and compact values of T and Lemma 2.5,
without loss of generality, we may assume that sλ converges to some s ∈ T (x).
By Lemma 2.1 we have for each x ∈ K and for all s ∈ T (x), x → 〈s, η(y, x)〉
is continuous. Since f is continuous in the first argument and g is continuous.
From assumption (iv), we have

〈θ(xλ, sλ), η(y, xλ)〉+ f(g(xλ), y) → θ(u, s), η(y, u)〉+ f(g(u), y).

By Lemma 2.2 and upper semicontinuity of W , it follows that

θ(u, s), η(y, u)〉+ f(g(u), y) ∈ W (u),

that is
θ(u, s), η(y, u)〉+ f(g(u), y) /∈ −intY C(u)

and so [G−1(y)]c is closed. Therefore, G has open lower sections in K. By
Lemma 2.3, we know that coG : K → 2K also has open lower sections. Also
define another multifunction S : K → 2K by

S(x) =
{

A(x) ∩ coG(x) if x ∈ M
A(x) if x /∈ M.

Then it is clear that for all x ∈ K, S(x) is convex and x /∈ S(x) = coS(x).
Since for all y ∈ K,

S−1(y) = {x ∈ K : y ∈ S(x)}
= {x ∈ M : y ∈ A(x) ∩ coG(x)}
∪ {x ∈ K \M : y ∈ A(x)}
= {M ∩A−1(y) ∩ coG−1(y)} ∪ {(K \M) ∩A−1(y)}
= [{M ∩A−1(y) ∪ coG−1(y)} ∪ (K \M)]

∩ [{M ∩A−1(y) ∪ coG−1(y)} ∪A−1(y)]

= [K ∩ [{(A−1(y) ∩ coG−1(y)) ∪ (K \M)}]
∩ [{M ∪A−1(y)} ∩A−1(y))]

= [{(A−1(y) ∩ coG−1(y)) ∪ (K \M)} ∩A−1(y)]

= {A−1(y) ∩ coG−1(y)} ∪ {(K \M) ∩A−1(y)} (3.3)
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and A−1(y), coG−1(y) and K \M are open in K, we have S−1(y) is open in
K. Condition (v) implies that there exist a nonempty compact subset N of
K and a nonempty, compact and convex subset B of K such that S(x)∩B =
coS(x) ∩ B 6= ∅ for all x ∈ K \ N. Hence by Lemma 2.4, there exist x∗ ∈ K
such that S(x∗) = ∅. Since for all x ∈ K, A(x) is nonempty, we have x∗ ∈ M
and A(x∗) ∩ coG(x∗) = ∅. This implies x∗ ∈ A(x∗) and A(x∗) ∩ G(x∗) = ∅.
Consequently, x∗ ∈ A(x∗) and for all y ∈ A(x∗), there exist s∗ ∈ T (x∗)
satisfying 〈θ(x∗, s∗), η(y, x∗)〉+ f(g(x∗), y) /∈ −intY C(x∗). ¤

Corollary 3.1. If in Theorem 3.1 we take T as single valued mapping then
there exists x∗ ∈ K such that x∗ ∈ A(x∗) and for all y ∈ A(x∗)

〈θ(x∗, T (x∗)), η(y, x∗)〉+ f(g(x∗), y) /∈ −intY C(x∗).

Corollary 3.2. If in Theorem 3.1 we take η(x, y) = x − g(y), for all x, y ∈
K, then there exists x∗ ∈ K such that x∗ ∈ A(x∗) and for all y ∈ A(x∗)
〈θ(x∗, T (x∗)), y − g(x∗)〉+ f(g(x∗), y) /∈ −intY C(x∗).

If T is a zero operator, then we have the following existence result for the
implicit vector quasi-equilibrium problem.

Corollary 3.3. Let K be a nonempty convex subset of a locally convex real
Hausdorff topological vector space X and Y be a real Hausdorff topological
vector space. Let L(X, Y ) be equipped with the σ-topology. Let C : K → 2Y

and A : K → 2K be the multifunctions such that ∀x ∈ K, A(x) is nonempty
convex, ∀y ∈ K, A−1(y) is open in K, ∀x ∈ K, C(x) is closed, convex and
pointed cone in Y such that intY C(x) is nonempty and the set M = {x ∈ K :
x ∈ A(x)} is closed in K. Suppose that the following assumptions hold:

(i) the mapping g : K → K is continuous, the bifunction f : K ×K → Y
is continuous with respect to the first argument and 0−C(x) diagonally
convex with respect to the second argument,

(ii) the multifunction W : K → 2Y defined by W (x) = Y \ (−intY C(x))
for all x ∈ K, is upper semicontinuous on K,

(iii) there exists a nonempty and compact subset N of K and a nonempty,
compact and convex subset B of K such that ∀ x ∈ K\N , ∃y∗ ∈ B,
such that y∗ ∈ A(x) and f(g(x), y∗) ∈ −intY C(x).

Then there exists a point x∗ ∈ K such that x∗ ∈ A(x∗) and

f(g(x∗), y) /∈ −intY C(x∗), ∀y ∈ A(x∗).

By Theorem 3.1 and Remark 2.1, we have the following corollary.
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Corollary 3.4. Let K be a nonempty convex subset of a locally convex real
Hausdorff topological vector space X and Y be a real Hausdorff topological
vector space. Let L(X, Y ) be equipped with the σ-topology. Let C : K → 2Y

and A : K → 2K be the multifunctions such that ∀x ∈ K, A(x) is nonempty
convex, ∀y ∈ K, A−1(y) is open in K, ∀x ∈ K, C(x) is closed, convex and
pointed cone in Y such that intY C(x) is nonempty and the set M = {x ∈ K :
x ∈ A(x)} is closed in K. Suppose that the following assumptions hold:

(i) the mapping g : K → K is continuous, the bifunction f : K ×K → Y
is continuous with respect to the first argument and 0−C(x) diagonally
convex with respect to the second argument,

(ii) the multifunction T : K → 2L(X,Y ) is upper semicontinuous on K
with compact values and η : K ×K → X is continuous in the second
argument and affine with respect to the first argument such that for all
x ∈ K, there exists s ∈ T (x) satisfying, 〈θ(x, s), η(x, x)〉 /∈ −intY C(x),

(iii) the multifunction W : K → 2Y defined by W (x) = Y \ (−intY C(x))
for all x ∈ K, is upper semicontinuous on K,

(iv) θ(xλ, sλ) → θ(x, s), whenever xλ → x in K, for sλ ∈ T (xλ) and
s ∈ T (x),

(v) there exists a nonempty and compact subset N of K and a nonempty,
compact and convex subset B of K such that ∀ x ∈ K\N , ∃y∗ ∈ B,
such that

y∗ ∈ A(x) and 〈θ(x, s), η(y∗, x)〉+ f(g(x), y∗) ∈ −intY C(x),

∀s ∈ T (x).
Then there exists a point x∗ ∈ K such that x∗ ∈ A(x∗) and for all y ∈ A(x∗),

∃ s∗ ∈ T (x∗) : 〈θ(x∗, s∗), η(y, x∗)〉+ f(g(x∗), y) /∈ −intY C(x∗).

If f = 0, then by Theorem 3.1 and Corollary 3.2, we have the following.

Corollary 3.5. Let K be a nonempty convex subset of a locally convex real
Hausdorff topological vector space X and Y be a real Hausdorff topological
vector space. Let L(X, Y ) be equipped with the σ-topology. Let C : K → 2Y

and A : K → 2K be the multifunctions such that ∀x ∈ K, A(x) is nonempty
convex, ∀y ∈ K, A−1(y) is open in K, ∀x ∈ K, C(x) is closed, convex and
pointed cone in Y such that intY C(x) is nonempty and the set M = {x ∈ K :
x ∈ A(x)} is closed in K. Suppose that the following assumptions hold:

(i) the mapping g : K → K is continuous and the multifunction W : K →
2Y defined by W (x) = Y \ (−intY C(x)) ∀x ∈ K, is upper semicontin-
uous on K,

(ii) θ(xλ, sλ) → θ(x, s), whenever xλ → x in K, for sλ ∈ T (xλ) and
s ∈ T (x).
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(iii) there exists a nonempty and compact subset N of K and a nonempty,
compact and convex subset B of K such that ∀ x ∈ K\N , ∃y∗ ∈ B,
such that

y∗ ∈ A(x) and 〈θ(x, s), η(y∗, x)〉 ∈ −intY C(x), ∀s ∈ T (x),

(iv) the multifunction T : K → 2L(X,Y ) is upper semicontinuous on K
with compact values and η : K ×K → X is continuous in the second
argument. Moreover, one of the following conditions satisfied

(a) T satisfies the generalized θ − L− η-condition,
(b) η : K ×K → X is affine with respect to the first argument such that

for all x ∈ K, there exists s ∈ T (x) satisfying, 〈θ(x, s), η(x, x)〉 /∈
−intY C(x).

Then there exists a point x∗ ∈ K such that x∗ ∈ A(x∗) and

∀y ∈ A(x∗),∃ s∗ ∈ T (x∗) : 〈θ(x∗, s∗), η(y, x∗)〉 /∈ −intY C(x∗).

Theorem 3.2. Let K be a nonempty convex subset of a locally convex real
Hausdorff topological vector space X and Y be a real Hausdorff topological
vector space. Let L(X, Y ) be equipped with the σ-topology. Let C : K → 2Y

and A : K → 2K be the multifunctions such that ∀x ∈ K, A(x) is nonempty
convex, ∀y ∈ K, A−1(y) is open in K, ∀x ∈ K, C(x) is closed, convex and
pointed cone in Y such that intY C(x) is nonempty and the set M = {x ∈ K :
x ∈ A(x)} is closed in K. Suppose that the following assumptions hold:

(i) the mapping g : K → K is continuous and the multifunction W : K →
2Y defined by W (x) = Y \ (−intY C(x)) ∀x ∈ K, is upper semicontin-
uous on K,

(ii) θ(xλ, sλ) → θ(x, s), whenever xλ → x in K, for sλ ∈ T (xλ) and
s ∈ T (x),

(iii) there exists a nonempty and compact subset N of K and a nonempty,
compact and convex subset B of K such that ∀ x ∈ K\N , ∃y∗ ∈ B,
such that

y∗ ∈ A(x) and 〈θ(x, s), η(y∗, x)〉 ∈ −intY C(x), ∀s ∈ T (x),

(iv) the multifunction T : K → 2L(X,Y ) is upper semicontinuous on K with
compact values, η : K ×K → X is continuous in the second argument
and there exists a mapping h : K ×K → Y , such that

(a) for all x, y ∈ K, ∃s ∈ T (x), such that

h(x, y)− 〈θ(x, s), η(y, x)〉 ∈ −intY C(x), ∀s ∈ T (x),
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(b) for any finite set {y1, y2...yn} ⊆ K and x∗ =
n∑

i=1

λiyi with λi ≥ 0 and

n∑

i=1

λi = 1, there is i ∈ {1, 2, 3, ..., n} such that h(x∗, yi) /∈ −intY C(x∗).

Then there exists a point x∗ ∈ K such that x∗ ∈ A(x∗) and

∀y ∈ A(x∗),∃ s∗ ∈ T (x∗) : 〈θ(x∗, s∗), η(y, x∗)〉 /∈ −intY C(x∗).

Proof. For all x ∈ K define two multifunctions G,P : K → 2K by

G(x) = {y ∈ K : 〈θ(x, T (x)), η(y, x)〉 ⊆ −intY C(x)}
= {y ∈ K : 〈θ(x, s), η(y, x)〉 ∈ −intY C(x), ∀s ∈ T (x)}

P (x) = {y ∈ K : h(x, y) ∈ −intY C(x)}.
We first prove that x /∈ coP (x), for all x ∈ K. To see this, suppose, by way

of contradiction, that there exists some xo ∈ K such that xo ∈ coP (xo). Then

there exists finite points y1, y2...yn in K, and λi ≥ 0 with
n∑

i=1

λi = 1 such that

xo =
n∑

i=1

λiyi and yi ∈ P (xo) for all i = 1, 2, ..., n. This follows

h(xo, yi) ∈ −intY C(xo), i = 1, 2, 3, ..., n.

This contradicts the condition (iv)(b). Hence x /∈ coP (x) for all x ∈ K. The
condition (vi)(a) implies that P (x) ⊇ G(x) for all x ∈ K. Hence x /∈ coG(x)
for all x ∈ K. The remaining proof is similar to that of the proof of Theorem
3.1. ¤

Corollary 3.6. Let K be a nonempty convex subset of a locally convex real
Hausdorff topological vector space X and Y be a real Hausdorff topological
vector space. Let L(X, Y ) be equipped with the σ-topology. Let C : K → 2Y

and A : K → 2K be the multifunctions such that ∀x ∈ K, A(x) is nonempty
convex, ∀y ∈ K, A−1(y) is open in K, ∀x ∈ K, C(x) is closed, convex and
pointed cone in Y such that intY C(x) is nonempty and the set M = {x ∈ K :
x ∈ A(x)} is closed in K. Suppose that the following assumptions hold:

(i) the mapping g : K → K is continuous and the multifunction W : K →
2Y defined by W (x) = Y \ (−intY C(x)) ∀x ∈ K, is upper semicontin-
uous on K,

(ii) θ(xλ, sλ) → θ(x, s), whenever xλ → x in K, for sλ ∈ T (xλ) and
s ∈ T (x),

(iii) there exists a nonempty and compact subset N of K and a nonempty,
compact and convex subset B of K such that ∀ x ∈ K\N , ∃y∗ ∈ B,
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such that

y∗ ∈ A(x) and 〈θ(x, s), η(y∗, x)〉 ∈ −intY C(x), ∀s ∈ T (x),

(iv) the multifunction T : K → 2L(X,Y ) is upper semicontinuous on K with
compact values, η : K ×K → X is continuous in the second argument
and there exists a mapping h : K ×K → Y , such that

(a) for all x, y ∈ K, ∃s ∈ T (x), such that

h(x, y)− 〈θ(x, s), η(y, x)〉 ∈ −intY C(x), ∀s ∈ T (x),

(b) the set {y ∈ K : H(x, y) ∈ −intY C(x)} is convex for all x ∈ K,
(c) h(x, x) /∈ −intC(x), for all x ∈ K.

Then there exists a point x∗ ∈ K such that x∗ ∈ A(x∗) and

∀y ∈ A(x∗),∃ s∗ ∈ T (x∗) : 〈θ(x∗, s∗), η(y, x∗)〉 /∈ −intY C(x∗).

Proof. Following the arguments similar to those used in proving [11, Corollary
3], by the condition (iv)(b) and (iv)(c), the condition (iv)(b) of Theorem 3.2
holds. By Theorem 3.4, we know that the conclusion is correct. ¤

Remark 3.1. Theorem 3.1 generalizes and improves the corresponding results
in [1, 2, 11, 15, 17, 19]. Corollary 3.3 and [12, Theorem 3.1] are different. Also
Corollary 3.5 and [15, Theorem 2.1] are different. We note that our proof of
Corollary 3.3 and 3.5 depends on the maximal element theorem instead of one
person game theorem.
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