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Abstract. Let P(z) be a polynomial of degree n which does not vanish outside the closed
disk |z| < k, where k ≤ 1. According to a famous result known as Turans Theorem for
k=1,we have

max
|z|=1

|P ′
(z)| ≤ n

2
max
|z|=1

|P (z)|

In this paper we shall present several interesting generalizations and a refinement of this

result which include some results due to Malik,Govil and others.we extend Turans Theorem

for the sth derivatives of a polynomial having t-fold zeros at origin and thereby obtain an

another generalization of this beautiful result.

1. Introduction

Let P(z) be a polynomial of degree n,then according to a famous result
known as Bernstein’s inequality(for refrence,see[6,p-531]or[7]),

max
|z|=1

|P ′
(z)| ≤ n max

|z|=1
|P (z)| (1.1)

The result is best possible and equality holds for the polynomial having all its
zeros at origin.In the reverse direction it was proved by Turan[8] that if P(z)
does not vanish in |z| > 1, then

max
|z|=1

|P ′
(z)| ≥ n

2
max
|z|=1

|P (z)| (1.2)
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Inequality (1) was refined by Aziz and Dawood by showing that under the
same hypothesis that (1.2) can be replaced by

max
|z|=1

|P ′
(z)| ≥ n

2

{
max
|z|=1

|P (z)|+ min
|z|=1

|P (z)|
}

(1.3)

Both the inequalities (1.2) and (1.3) are sharp and equality holds for P (z) =
αzn + β
where |α| = |β|.

As a generalization of inequality (1.2) Malik [5] proved that if all the zeros
of P(z) lie in |z| ≤ k, k ≤ 1, then

max
|z|=1

|P ′
(z)| ≥ n

1 + k
max
|z|=1

|P (z)| (1.4)

Equality in (1.4) holds for the polynomial P (z) = (z + k)n, k ≤ 1,

In the literature there exists several extensions and generalizations of in-
equalities (1.3) and (1.4)(see [2],[4]). recently Aziz and Shah [3] have proved
the following generalization of inequality (1.2).

Theorem 1.1. If P (z) =
n∑

j=0
ajz

j is a polynomial of degree n having all its

zeros in the disk |z| ≤ k ≤ 1 with s-fold zeros at origin,then for |z| = 1,

max
|z|=1

|P ′
(z)| ≥ n + ks

1 + k
max
|z|=1

|P (z)|. (1.5)

The result is sharp and extremal polynomial P (z) = zs(z + k)n−s, 0 < s ≤ n.

In this paper we shall first present the following refinement and a general-
ization of Theorem 1.1.

Theorem 1.2. If P(z) is a polynomial of degree n ≥ 1 having all its zeros in
|z| ≤ k, k ≤ 1 with t-fold zeros at the origin then for 1 ≤ s ≤ t + 1 ≤ n,

max
|z|=1

|P s(z)| ≥
(

n + kt

1 + k

)(
n + kt

1 + k
− 1

)
· · ·

(
n + kt

1 + k
− (s− 1)

)
max
|z|=1

|P (z)|

+Ls

(
n− t

1 + k

)
1
kt

min
|z|=k

|P (z)| (1.6)
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where

Ls = 1 for s = 1

= n(n− 1) · · · (n− s + 2) for s ≥ 2.

The result is best possible and equality holds for the polynomial P (z) = (z +
k)n, k ≤ 1.

Remark. For t=0 and s=1,this reduces to the result due to Malik.

For k=1,we get the following result.

Corollary. If P(z) is a polynomial of degree n having all its zeros in |z| ≤ 1,
with t-fold zeros at the origin then for 1 ≤ s ≤ t + 1 ≤ n,

max
|z|=1

|P s(z)| ≥
(

n + t

2

)(
n + t

2
− 1

)
· · ·

(
n + t

2
− (s− 1)

)
max
|z|=1

|P (z)|

+Ls

(
n− t

2

)
min
|z|=1

|P (z)|,

where
Ls = 1 for s = 1

= n(n− 1) · · · (n− s + 2) for n ≥ 2.

Next we prove the following result which extends inequality(1.4) to the sth
derivative.

Theorem 1.3. If P(z) is a polynomial of degree |z| ≤ k, k ≤ 1, having all its
zeros in |z| ≤ k, k ≤ 1,then

max
|z|=1

|P s(z)| ≥ n(n− 1) · · · (n− s + 2)
(1 + k)s

max
|z|=1

|P (z)|. (1.7)

The result is best possible with equality in (1.7) for the polynomial P (z) =
(z + k)n.
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2. Lemmas

For the proofs of these theorems,we need the following Lemmas.

Lemma 2.1. If P(z) is a polynomial of degree n having all its zeros in |z| ≤ k,
then

min
|z|=1

|P ′
(z)| ≥ n min

|z|=1
|P (z)| (2.1)

The result is best possible with equality for the polynomial P (z) = meiαzn,
m > 0.

Lemma 2.1 is due to Aziz and Dawood [1].

Lemma 2.2. If P(z) is a polynomial of degree n having all its zeros in
|z| ≤ k, k ≥ 1,then

min
|z|=k

|P s(z)| ≥ n(n− 1) · · · (n− s + 1)
ks

min
|z|=k

|P (z)| (2.2)

The result is best possible and equality in (2.2) holds for the polynomial P (z) =
(z + k)n.

Proof. Since P(z) has all its zeros in |z| ≤ 1.Let F(z)=P(kz) then F(z) has all
its zeros in |z| ≤ 1.Applying Lemma 2.1 to the polynomial F(z), we get

min
|z|=1

|F ′
(z)| ≥ n min

|z|=1
|F (z)|

Equavalently,

min
|z|=1

|P ′
(kz)| ≥ n

k
min
|z|=1

|P (kz)|

or

min
|z|=k

|P ′
(z)| ≥ n

k
min
|z|=k

|P (kz)| (2.3)

P
′
(z) is a polynomial of degree n-1,therefore by (2.3),we have

min
|z|=k

|P ”(z)| ≥ n(n− 1)
k2

min
|z|=k

|P (z)|

Proceeding in a similar way it follows that
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min
|z|=k

|P s(z)| ≥ n(n− 1) · · · (n− s + 1)
ks

min
|z|=k

|P (z)|

This completes the proof of Lemma 2.2. ¤
Lemma 2.3. If P(z) is a polynomial of degree n having all its zeros in
|z| ≤ k, k ≥ 1, with t-fold zeros at the origin, then

max
|z|=1

|P ′
(z)| ≥ n + kt

1 + k
max
|z|=1

|P (z)|+ n− t

(1 + k)kt
min
|z|=k

|P (z)| (2.4)

The result is sharp and equality holds for the polynomial P (z) = zt(z +
k)n−t, 0 < t ≤ n.

Proof. If m = min|z|=k |P (z)|,then m ≤ |P (z)| for |z| = k,which gives
m| zk |t ≤ |P (z)| for |z| = k.since all the zeros of P(z) lie in |z| ≤ k ≤ 1,
with t-fold zeros at the origin,therefore for every complex number α such that
|α| < 1, it follows (by Rouches Theorem for m > 0) that the polynomial
G(z) = P (z)+ αm

kt zt has all its zeros in |z| ≤ k, k ≤ 1, with t-fold zeros at the
origin.So that we can write

G(z) = ztH(z) (2.5)

Where H(z) is a polynomial of degree n-t having all its zeros in |z| ≤ k, k ≤ 1.

From (2.5),we get

zG
′
(z)

G(z)
= t +

zH
′
(z)

H(z)
(2.6)

If z1, z2, · · · , zn−t are the zeros of H(z), then |zj | ≤ k ≤ 1 and from (2.6),we
have

Re

{
eiθG

′
(eiθ)

G(eiθ)

}
= t + Re

{
eiθH

′
(eiθ)

H(eiθ)

}

= t + Re

n−t∑

j=1

eiθ

eiθ − zj



118 A. Aziz and B. A. Zargar

= t +
n−t∑

j=1

Re
1

1− zje−iθ
(2.7)

for points eiθ, 0 ≤ θ < 2π, which are not the zeros of H(z).

Now if |w| ≤ k ≤ 1,then it can be easily verified that

Re

(
1

1− w

)
≥ 1

1 + k
.
Using this fact in (2.7),we see that

∣∣∣∣∣
G
′
(eiθ)

G(eiθ)

∣∣∣∣∣ ≥ Re

(
eiθG

′
(eiθ)

G(eiθ)

)

= t +
n−t∑

j=1

Re
1

1− zje−iθ

≥ t +
n− t

1 + k
,

which gives,

|G′
(eiθ)| ≥ n + tk

1 + k
|G(eiθ)| (2.8)

for points eiθ, 0 ≤ θ < 2π, which are not the zeros of G(z).Since inequality
(2.8) is trivally true for points eiθ, 0 ≤ θ < 2π, which are the zeros of P(z), it
follows that

|G′
(z)| ≥ n + tk

1 + k
|G(z)| for |z| = 1 (2.9)

Replacing G(z) by P (z) + αm
kt zt in (2.9),then we get

|P ′
(z) + αt

m

kt
zt−1| ≥ n + tk

1 + k
|P (z) +

αm

kt
zt| for |z| = 1 (2.10)
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and for every α with |α| < 1. Choosing the argument of α such that

|P (z) +
αm

kt
zt| = |P (z)|+ |α|m

kt
for |z| = 1,

it follows from (2.10), that

|P ′
(z)|+ t|α|m

kt
≥ n + tk

1 + k

{
|P (z)|+ |α|m

kt

}
for |z| = 1,

Letting |α| → 1,we obtain

|P ′
(z)| ≥ n + tk

1 + k
|P (z)|+

{
n + tk

1 + k
− t

}
m

kt

=
n + tk

1 + k
|P (z)|+ n− t

1 + k

(m

kt

)
for |z| = 1.

This implies,

max
|z|=1

|P ′
(z)| ≥ n + kt

1 + k
max
|z|=1

|P (z)|+ n− t

(1 + k)kt
min
|z|=k

|P (z)|

Which is the desired result. ¤

3. Proof of the theorems

Proof of Theorem 1.2. We prove this result with the help of mathematical
induction.We use induction on s.For s=1,the result follows by Lemma 2.3.As-
sume that inequality (1.6) is true for s=r, that is we assume for 1 ≤ r ≤ t + 1,

max
|z|=1

|P r(z)| ≥
(

n + kt

1 + k

)(
n + kt

1 + k
− 1

)
· · ·

(
n + kt

1 + k
− (r − 1)

)
max
|z|=1

|P (z)|

+Lr (n− t)
(1 + k)kt

min
|z|=k

|P (z)| (3.1)

Where

Lr = 1 for r = 1
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= n(n− 1) · · · (n− r + 2) for r ≥ 2.

We show (1.6) holds for s=r+1 also.Since P(z) is a polynomial of degree n
having all its zeros in |z| ≤ k, k ≤ 1, with t-fold zeros at the origin,therefore
by Gauss-Lucas Theorem P r(z) which is a polynomial of degree n-r has all its
zeros in |z| ≤ k, k ≤ 1, with t-r fold zeros at the origin.Applying Lemma 2.3
to the polynomial P r(z),we get,

max
|z|=1

|P r+1(z)| ≥ (n− r) + (t− r)k
1 + k

max
|z|=1

|P r(z)|+(n− r)− (t− r)
(1 + k)kt−r

min
|z|=k

|P r(z)|
(3.2)

Using Lemma 2.2,we get

max
|z|=1

|P r+1(z)| ≥
{

n + tk

1 + k
− r

}
max
|z|=1

|P r(z)|

+
(n− t)

(1 + k)kt
n(n− 1) · · · (n− r + 1) min

|z|=k
|P (z)|

This implies with the help of Lemma 2.1 that,

max
|z|=1

|P r+1(z)|

≥
(

n + kt

1+k

)(
n + kt

1 + k
−1

)
· · ·

(
n + kt

1 + k
−(r − 1)

)(
n + kt

1 + k
−(r + 1− 1)

)

max
|z|=1

|P (z)|+ (n− t)
(1 + k)kt

n(n− 1) · · · (n− (r + 1) + 2) min
|z|=1

|P (z)|.
(3.3)

(3.3) shows that the result is true for s=r+1 also.We conclude with the help
of mathematical induction that (1.6) holds for all 1 ≤ s < n.This completes
the proof of Theorem 1.2. ¤
Proof of Theorem 1.3. Since P(z) has all its zeros in |z| ≤ k, k ≤
1,therefore by Gauss-Lucas Theorem P r(z) has all its zeros in |z| ≤ k, k ≤
1,for 1 ≤ s < n. Applying inequality (1.4) to the polynomial P s−1(z) and
proceeding similarly as in the above Theorem it follows that

max
|z|=1

|P s(z)| ≥ n(n− 1) · · · (n− s + 1)
(1 + k)s

max
|z|=1

|P (z)|.
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This proves Theorem 1.3. ¤
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