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Abstract. In this paper, by means of the fixed point theorems of the cone expansion and

compression of norm type, an explicit interval for λ is derived such that for any λ in this

interval, the existence of at least one positive solution to singular boundary value problem

in question. Our results extend and improve many known results in the field including both

singular and non-singular cases.

1. Introduction

In this paper, we consider the existence of positive solutions for the following
boundary value problem(BVP):




u(4)(t)− λa(t)f(t, u, u′′) = 0, 0 < t < 1,
α1u(0)− β1u

′(0) = 0,
γ1u(1) + δ1u

′(1) = 0,
α2u

′′(0)− β2u
′′′(0) = 0,

γ2u
′′(1) + δ2u

′′′(1) = 0,

(1.1)
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where λ is a positive constant, αi, βi, γi, δi ≥ 0, ∆i = βiγi+αiγi+αiδi > 0 (i =
1, 2). a(t) can be singular at t = 0 and/or 1, f : [0, 1]× [0,+∞)× (−∞, 0] →
[0, +∞) is continuous and f(t, u, v) > 0 for any u > 0, v < 0.

The above boundary value problems for ordinary differential equations play
a very important role in both theory and application. It is used to describe
a large number of physical, biological and chemical phenomena. For exam-
ple, when λ = 1, BVP (1.1) subject to Lidstone boundary value conditions
u(0) = u(1) = u′′(0) = u′′(1) = 0 is used to model phenomena such as the
deflection of an elastic beam simply supported at the endpoints, and the u′′ in
f is the bending moment term which represents the bending effect. Owing to
its importance in physics, the existence of solutions to this problem has been
studied by many authors [1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Especially,
in recent years the existence of positive solutions has caught considerable at-
tention [2, 3, 6, 7, 10, 13, 14, 15]. In addition, it is worth mentioning Ma [7]
showed the existence of positive solution for the following BVP:

{
u(4)(t)− f(t, u, u′′) = 0, 0 < t < 1,
u(0) = u′(1) = u′′(0) = u′′(1) = 0,

(1.2)

where f ∈ C([0, 1]×[0, +∞)×(−∞, 0], [0, +∞)) is superlinear or sublinear and
Liu [6] improved the results of Ma [7]. Moreover, Ma [8, 9] used bifurcation
techniques to obtain nodal solutions to the problems which contain a special
bending moment term. We notice that, in all the above mentioned papers,
f is required satisfy some growth conditions or assumptions of monotonicity
which are essential for the technique used.

For the special case where f does not contain the bending moment term,
BVP (1.2) reduces to the following simple fourth-order BVP

{
u(4)(t)− f(t, u) = 0, 0 < t < 1,
u(0) = u′(1) = u′′(0) = u′′(1) = 0.

(1.3)

Ma and Wang [10] have shown the existence of positive solutions of the BVP
(1.3) under the condition that f(t, u) is either superlinear or sublinear on u
by employing Krasnoselskii’s fixed point theorem in cones. And then, Bai and
Wang [3] improved the results in [10], in which they obtained the following
result:

Theorem 1.1 ([3], Theorem 3.5). Assume that f : [0, 1]× [0, +∞) → [0,+∞)
is continuous such that one of the following conditions is satisfied:

(i) f0 < π4 < f∞;
(ii) f∞ < π4 < f0.

Then BVP (1.3) has at least one positive solution.
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Motivated by the above results, in this paper, we shall discuss the more
general form of BVP (1.1) which contains effect of the bending term and
possess the general Sturm-Liouville boundary condition.

The rest of the paper is organized as follows. In Section 2, we firstly present
some properties of Green’s functions that are to be used to define a positive
operator. Then in Section 3 the existence of positive solution for the BVP
(1.1) will be established by using the fixed point theory in cones.

Throughout this paper, we adopt the following assumptions:

(H1): f(t, u, v) ∈ C([0, 1]× [0, +∞)× (−∞, 0], [0,+∞)).
(H2): a ∈ C((0, 1), [0, +∞)), 0 <

∫ 1
0

[∫ 1
0 G1(s, s)G2(s, τ)a(τ)dτ

]
ds <

+∞,

where

G1(t, s) =
1

∆1

{
(γ1 + δ1 − γ1t)(β1 + α1s), 0 ≤ s ≤ t ≤ 1,
(γ1 + δ1 − γ1s)(β1 + α1t), 0 ≤ t ≤ s ≤ 1,

(1.4)

G2(t, s) =
1

∆2

{
(γ2 + δ2 − γ2t)(β2 + α2s), 0 ≤ s ≤ t ≤ 1,
(γ2 + δ2 − γ2s)(β2 + α2t), 0 ≤ t ≤ s ≤ 1.

(1.5)

It is well known that BVP (1.1) has a solution u = u(t) if and only if u
solves the operator equation

u(t) = Tu(t) =: λ

∫ 1

0

[∫ 1

0
G1(t, s)G2(s, τ)a(τ)f(τ, u(τ), u′′(τ))dτ

]
ds. (1.6)

Let

E = {u(t) ∈ C[0, 1] : u′′(t) is continuous, and u(t) ≥ 0, u′′(t) ≤ 0, 0 ≤ t ≤ 1}

with the norm ‖u‖2 = ‖u‖+‖u′′‖, where ‖u‖ = max
0≤t≤1

|u(t)|, ‖u′′‖ = max
0≤t≤1

|u′′(t)|.
Then (E, ‖ · ‖) is a Banach space.

Let µ ∈ (0, 1
2) be a fixed constant. We introduce the following symbols for

convenience:

f0 = lim sup
|x|+|y|→0

max
0≤t≤1

f(t, x, y)
|x|+ |y| , f∞ = lim inf

|x|+|y|→∞
min

µ≤t≤1−µ

f(t, x, y)
|x|+ |y| ,

f∞ = lim sup
|x|+|y|→∞

max
0≤t≤1

f(t, x, y)
|x|+ |y| , f0 = lim inf

|x|+|y|→0
min

µ≤t≤1−µ

f(t, x, y)
|x|+ |y| ,
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A1 = max
0≤t≤1

∫ 1

0

∫ 1

0
G1(t, s)G2(s, τ)a(τ)dτds,

A2 = max
0≤t≤1

∫ 1

0
G2(t, s)a(s)ds,

B1 = min
µ≤t≤1−µ

∫ 1

0

∫ 1−µ

µ
G1(t, s)G2(s, τ)a(τ)dτds,

B2 = min
µ≤t≤1−µ

∫ 1−µ

µ
G2(t, s)a(s)ds,

L = A1 + A2, l = ωB, B = min{B1, B2}.

2. Preliminaries and some lemmas

In this section, we give some lemmas that are important to the proof of our
main results.

Lemma 2.1 ([4]). Suppose that E is a Banach space, K is a cone in E. Let
Ω1 and Ω2 be two bounded open sets in E such that θ ∈ Ω1 and Ω1 ⊂ Ω2. Let
operator T : K ∩ (Ω2\Ω1) → K be completely continuous. Suppose that one of
the following two conditions is satisfied:

(i) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2.
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then T has at least one fixed point in K ∩ (Ω2 \ Ω1).

Lemma 2.2 ([5]). Let E be a Banach space, Tn : E → E (n = 1, 2, 3, · · · ) be
a completely continuous operator. Suppose that T : E → E satisfies

lim
n→∞ max

‖u‖≤r
‖Tnu− Tu‖ = 0, for some r > 0.

Then T is a completely continuous operator.

Now let

K =
{

u ∈ E : min
µ≤t≤1−µ

u(t) ≥ ω‖u‖, max
µ≤t≤1−µ

u′′(t) ≤ −ω‖u′′‖
}

,

where

0 < ω = min
{

µγ1 + δ1

γ1 + δ1
,
µα1 + β1

α1 + β1
,
µγ2 + δ2

γ2 + δ2
,
µα2 + β2

α2 + β2

}
< 1

is a constant satisfying

G1(t, s) ≥ ωG1(s, s), G2(t, s) ≥ ωG2(s, s), for µ ≤ t ≤ 1−µ, s ∈ [0, 1]. (2.1)

Clearly, K is a cone of Banach space E.
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For any 0 < r < R < +∞, let Kr = {x ∈ K : ‖x‖ < r}, ∂Kr = {x ∈ K :
‖x‖ = r}, and Kr,R = {x ∈ K : r ≤ ‖x‖ ≤ R}.

Lemma 2.3. Suppose that (H1) and (H2) are satisfied, then T : K → K is a
completely continuous operator.

Proof. For any u ∈ K and t ∈ [0, 1], by (1.4), (1.5) and (1.6), we have

(Tu)(t) =λ

∫ 1

0

[∫ 1

0
G1(t, s)G2(s, τ)a(τ)f(τ, u(τ), u′′(τ))dτ

]
ds

≤λ

∫ 1

0

[∫ 1

0
G1(s, s)G2(s, τ)a(τ)f(τ, u(τ), u′′(τ))dτ

]
ds.

Consequently,

‖Tu‖ ≤ λ

∫ 1

0

[∫ 1

0
G1(s, s)G2(s, τ)a(τ)f(τ, u(τ), u′′(τ))dτ

]
ds. (2.2)

It follows from (1.6) and (2.1) that

min
µ≤t≤1−µ

(Tu)(t) = min
µ≤t≤1−µ

λ

∫ 1

0

[∫ 1

0
G1(t, s)G2(s, τ)a(τ)f(τ, u(τ), u′′(τ))dτ

]
ds

≥λ

∫ 1

0

[∫ 1

0
ωG1(s, s)G2(s, τ)a(τ)f(τ, u(τ), u′′(τ))dτ

]
ds

≥ωλ

∫ 1

0

[∫ 1

0
G1(s, s)G2(s, τ)a(τ)f(τ, u(τ), u′′(τ))dτ

]
ds.

This together with (2.2) implies that

min
µ≤t≤1−µ

(Tu)(t) ≥ ω‖Tu‖.

On the other hand, by (1.6), for any t ∈ [0, 1], we have

(Tu)′′(t) =− λ

∫ 1

0
G2(t, s)a(s)f(s, u(s), u′′(s))ds

≥− λ

∫ 1

0
G2(s, s)a(s)f(s, u(s), u′′(s))ds,

which shows

‖(Tu)′′‖ ≤ λ

∫ 1

0
G2(s, s)a(s)f(s, u(s), u′′(s))ds.
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Hence,

max
µ≤t≤1−µ

(Tu)′′(t) =− min
µ≤t≤1−µ

λ

∫ 1

0
G2(t, s)a(s)f

(
s, u(s), u′′(s)

)
ds

≤− ωλ

∫ 1

0
G2(s, s)a(s)f

(
s, u(s), u′′(s)

)
ds

≤− ω‖(Tu)′′‖.
Therefore, T : K → K.

In the following, we prove that T is a completely continuous operator. For
any natural number n (n ≥ 2), we set

an(t) =





inft<s≤ 1
n

a(s), 0 ≤ t ≤ 1
n ,

a(t), 1
n ≤ t ≤ n−1

n ,
inf n−1

n
≤s≤t a(s), n−1

n ≤ t ≤ 1.
(2.3)

Then an : [0, 1] → [0, +∞) is continuous and an(t) ≤ a(t), t ∈ (0, 1). Now, for
any nature number n, we define an operator Tn : E → E by

(Tnu)(t) = λ

∫ 1

0

[∫ 1

0
G1(t, s)G2(s, τ)an(τ)f(τ, u(τ), u′′(τ))dτ

]
ds. (2.4)

It is obvious that Tn : E → E is completely continuous for each n ≥ 2. For
r > 0 and u ∈ Kr, by (1.6), (2.3), (2.4) and the absolute continuity of integral,
we have

lim
n→∞ sup

u∈Kr

‖Tnu− Tu‖

≤ lim
n→∞ sup

u∈Kr

max
0≤t≤1

λ

∫ 1

0

[∫ 1

0
G1(t, s)G2(s, τ)(a(τ)− an(τ))f(τ, u(τ), u′′(τ))dτ

]
ds

≤M lim
n→∞λ

∫ 1

0

[∫ 1

0
G1(s, s)G2(s, τ)(a(τ)− an(τ))dτ

]
ds

=M lim
n→∞λ

∫ 1

0

[∫

e(n)
G1(s, s)G2(s, τ)(a(τ)− an(τ))dτ

]
ds

≤M lim
n→∞λ

∫ 1

0

[∫

e(n)
G1(s, s)G2(s, τ)a(τ)dτ

]
ds = 0,

where M = max{f(t, x, y) : t ∈ [0, 1], x ∈ [0, r], y ∈ [−r, 0]}, e(n) = [0, 1
n ] ∪

[n−1
n , 1]. Therefore, T : K → K is a completely continuous operator by Lemma

2.2. ¤



Positive solutions for fourth-order singular differential equations 129

3. Main results

In this section, we present our main results as follows:

Theorem 3.1. Suppose 0 ≤ f0 < L−1 and 0 < l−1 < f∞ ≤ +∞. Then for
any

λ ∈
(

1
lf∞

,
1

Lf0

)
, (3.1)

BVP (1.1) has at least one positive solution.

Proof. Let λ satisfy (3.1), and choose ε1 > 0 such that f∞ − ε1 > 0 and
1

(f∞ − ε1)l
≤ λ ≤ 1

(f0 + ε1)L
. (3.2)

Since 0 ≤ f0 < L−1, there exists r > 0 such that

f(t, x, y) ≤ (f0 + ε1)(|x|+ |y|), for 0 ≤ t ≤ 1, 0 < |x|+ |y| ≤ r, x ≥ 0, y ≤ 0.

Hence, when u ∈ K, ‖u‖2 = r, we have

f(t, u(t), u′′(t)) ≤ (f0 + ε1)r = (f0 + ε1)‖u‖2, for t ∈ [0, 1]. (3.3)

For any u ∈ ∂Kr, i.e. ‖u‖2 = r, by (3.3), we obtain

‖Tu‖ = max
0≤t≤1

λ

∫ 1

0

∫ 1

0
G1(t, s)G2(s, τ)a(τ)f(τ, u(τ), u′′(τ))dτds

≤ λ

∫ 1

0

∫ 1

0
G1(s, s)G2(s, τ)a(τ)f(τ, u(τ), u′′(τ))dτds

≤ λ(f0 + ε1)‖u‖2

∫ 1

0

∫ 1

0
G1(s, s)G2(s, τ)a(τ)dτds

= λ(f0 + ε1)‖u‖2A1,

(3.4)

‖(Tu)′′‖ = max
0≤t≤1

λ

∫ 1

0
G2(t, s)a(s)f(s, u(s), u′′(s))ds

≤ λ

∫ 1

0
G2(s, s)a(s)f(s, u(s), u′′(s))ds

≤ λ(f0 + ε1)‖u‖2

∫ 1

0
G2(s, s)a(s)ds

= λ(f0 + ε1)‖u‖2A2.

(3.5)

For any u ∈ ∂Kr, by (3.4) and (3.5), we know

‖Tu‖2 = ‖Tu‖+ ‖(Tu)′′‖ ≤ λ(f0 + ε1)‖u‖2(A1 + A2) ≤ ‖u‖2. (3.6)

On the other hand, by 0 < l−1 < f∞ ≤ +∞, there exists R0 > 0 such that

f(t, x, y) ≥ (f∞ − ε1)(|x|+ |y|), for |x|+ |y| ≥ R0, µ ≤ t ≤ 1− µ. (3.7)
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Taking R > max{r, ω−1R0}, when u ∈ K and ‖u‖2 = R, for any t ∈ [µ, 1−µ],
we get |u(t)| + |u′′(t)| ≥ ω‖u‖2 ≥ R0. Hence, by (3.7), for any t ∈ [µ, 1 − µ],
we have

f(t, u(t), u′′(t)) ≥ (f∞ − ε1)(|u(t)|+ |u′′(t)|) ≥ (f∞ − ε1)ω‖u‖2. (3.8)

Therefore, for any µ ≤ t ≤ 1− µ and u ∈ ∂KR, by (3.2) and (3.8), we have

∣∣(Tu)′′(1/2)
∣∣ = λ

∫ 1

0
G2(1/2, s)a(s)f(s, u(s), u′′(s))ds

≥ λ

∫ 1−µ

µ
G2(1/2, s)a(s)f(s, u(s), u′′(s))ds

≥ (f∞ − ε1)ω‖u‖2λ

∫ 1−µ

µ
G2(1/2, s)a(s)ds

≥ (f∞ − ε1)ω‖u‖2λ min
µ≤t≤1−µ

∫ 1−µ

µ
G2(t, s)a(s)ds

= (f∞ − ε1)ω‖u‖2λB2

≥ (f∞ − ε1)‖u‖2λ l

≥ ‖u‖2.

So,

‖Tu‖2 = ‖Tu‖+ ‖(Tu)′′‖ ≥ ∣∣(Tu)′′(1/2)
∣∣ ≥ ‖u‖2, for u ∈ ∂KR. (3.9)

It follows from (3.6), (3.9) and Lemma 2.1 that the operator T has a fixed
point u0 ∈ K satisfying r ≤ ‖u0‖2 ≤ R and u0(t) ≥ 0, u′′0(t) ≤ 0 for any
t ∈ [0, 1]. Therefore, u0 is a positive solution of BVP (1.1) by the concavity
of u0 in [0, 1], i.e., u0 satisfies BVP (1.1) and u0(t) > 0, t ∈ (0, 1) and finishes
the proof. ¤

Remark 3.2. From lf∞ > 1, 0 ≤ Lf0 < 1, we have 1 ∈ ( 1
lf∞ , 1

Lf0 ). Therefore,
Theorem 3.1 also holds for λ = 1.

Remark 3.3. From the proof of Theorem 3.1 we can know that f(t, u, v) need
not be sub-linear or sup-linear. In fact, the Theorem 3.1 contains one of the
following cases:

(i) If f∞ = ∞, f0 > 0, λ ∈ (0, 1
Lf0 );

(ii) If f∞ = ∞, f0 = 0, λ ∈ (0,+∞);
(iii) If f∞ > l−1 > 0, f0 = 0, λ ∈ ( 1

lf∞ ,+∞).

Theorem 3.4. Suppose 0 ≤ f∞ < L−1 and 0 < l−1 < f0 ≤ +∞. Then for
any
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λ ∈
(

1
lf0

,
1

Lf∞

)
, (3.10)

BVP (1.1) has at least one positive solution.

Proof. Let λ satisfy (3.10), and choose ε2 > 0 such that L−1−ε2 > 0, f0−ε2 >
0 and

1
l(f0 − ε2)

< λ <
1

f∞

(
1
L
− ε2

)
.

Since 0 ≤ f∞ < L−1, there exists R0 > 0 such that

f(t, x, y) ≤ λ−1(L−1 − ε2)(|x|+ |y|), for 0 ≤ t ≤ 1, |x|+ |y| ≥ R0. (3.11)

Taking a sufficiently large R > R0 such that

max{f(t, x, y) : 0 ≤ t ≤ 1, |x|+ |y| ≤ R0} ≤ λ−1(L−1 − ε2)R. (3.12)

Then, by (3.11) and (3.12), for any u ∈ K, ‖u‖2 = R, we have

0 ≤ f(t, u(t), u′′(t)) ≤ λ−1(L−1 − ε2)R = λ−1(L−1 − ε2)‖u‖2. (3.13)

From (3.13), for any u ∈ ∂KR, we obtain

‖Tu‖ = max
0≤t≤1

λ

∫ 1

0

∫ 1

0
G1(t, s)G2(s, τ)a(τ)f(τ, u(τ), u′′(τ))dτds

≤ λ−1(L−1 − ε2)‖u‖2λ max
0≤t≤1

∫ 1

0

∫ 1

0
G1(t, s)G2(s, τ)a(τ)dτds

= (L−1 − ε2)‖u‖2A1,

(3.14)

‖(Tu)′′‖ = max
0≤t≤1

λ

∫ 1

0
G2(t, s)a(s)f(s, u(s), u′′(s))ds

≤ λ−1(L−1 − ε2)‖u‖2λ max
0≤t≤1

∫ 1

0
G2(t, s)a(s)ds

= (L−1 − ε2)‖u‖2A2.

(3.15)

By (3.14) and (3.15), we know

‖Tu‖2 = ‖Tu‖+ ‖(Tu)′′‖
≤ (L−1 − ε2)‖u‖2(A1 + A2) ≤ ‖u‖2, for u ∈ ∂KR.

(3.16)

On the other hand, since 0 < l−1 < f0 ≤ +∞, there exists r0 > 0 such that

f(t, x, y) ≥ (f0 − ε2)(|x|+ |y|), for |x|+ |y| ≤ r0, µ ≤ t ≤ 1− µ. (3.17)

Let r < r0, when u ∈ K, ‖u‖2 = r, by (3.17), for any t ∈ [µ, 1− µ], we have

f(t, u(t), u′′(t)) ≥ (f0 − ε2)(|u(t)|+ |u′′(t)|) ≥ (f0 − ε2)ω‖u‖2. (3.18)
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Therefore, for any µ ≤ t ≤ 1− µ and u ∈ ∂Kr, by (1.6) and (3.18), we have

∣∣(Tu)′′(1/2)
∣∣ = λ

∫ 1

0
G2(1/2, s)a(s)f(s, u(s), u′′(s))ds

≥ λ

∫ 1−µ

µ
G2(1/2, s)a(s)f(s, u(s), u′′(s))ds

≥ (f0 − ε2)ω‖u‖2λ

∫ 1−µ

µ
G2(1/2, s)a(s)ds

≥ (f0 − ε2)ω‖u‖2λ min
µ≤t≤1−µ

∫ 1−µ

µ
G2(t, s)a(s)ds

≥ (f0 − ε2)‖u‖2λ l

≥ ‖u‖2.

So,

‖Tu‖2 = ‖Tu‖+ ‖(Tu)′′‖ ≥ |(Tu)′′(1/2)| ≥ ‖u‖2, for u ∈ ∂Kr. (3.19)

It follows from (3.16), (3.19) and Lemma 2.1 that the operator T has a fixed
point u0 ∈ K satisfying r ≤ ‖u0‖2 ≤ R and u0(t) ≥ 0, u′′0(t) ≤ 0 for any
t ∈ [0, 1], and hence u0 is a positive solution of BVP (1.1) by the concavity of
u0 in [0, 1], i.e., u0 satisfies BVP (1.1) and u0(t) > 0, t ∈ (0, 1). The proof of
Theorem 3.4 is completed. ¤

Remark 3.5. From 0 ≤ Lf∞ < 1, lf0 > 1, we know that 1 ∈ ( 1
lf0

, 1
Lf∞ ).

Therefore, Theorem 3.4 also holds for λ = 1.

Remark 3.6. From the proof of Theorem 3.4 we can know that f(t, u, v) need
not be sub-linear or sup-linear. In fact, the Theorem 3.4 contains one of the
following cases:

(i) If f∞ = ∞, f0 > 0, λ ∈ (0, 1
Lf0 );

(ii) If f∞ = ∞, f0 = 0, λ ∈ (0,+∞);
(iii) If f∞ > l−1 > 0, f0 = 0, λ ∈ ( 1

lf∞ ,+∞).
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