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Abstract. It is shown that the technique of iterative combinations introduced by Micchelli

[9] can be used to improve the rate of convergence by Szãsz-Durrmeyer Operators.

1. Introduction

Mazhar and Totik [8] and independently Kasana et al. [6] proposed the
following integral modification of Szãsz-Mirakian operators to approximate
Lebesgue integrable functions on [0,∞)

Mn(f(u), t) = n
∞∑

ν=0

pn,ν(t)
∫ ∞

0
pn,ν(u)f(u) du, f ∈ L1[0,∞) (1.1)

where pn,ν(t) = e−nt(nt)ν

ν! .
Alternatively, (1.1) may be written as

Mn(f(u), t) =
∫ ∞

0
W (n, t, u)f(u) du,

where W (n, t, u) = n
∑∞

ν=0 pn,ν(t) pn,ν(u).
In order to improve the rate of convergence O(n−1) by these operators, the

technique of linear combinations introduced by May [7] and Rathore [10] has
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been used (cf., e.g. [1]-[4]). There is yet another approach for improving the
order of approximation, which was offered by Micchelli [9] by considering the
iterative combinations Un,k = [I−(I−Bn)k] of the Bernstein polynomials Bn.
He proved some direct and saturation results for these operators Un,k using
semi-group method.

In the present paper, we have considered the Micchelli combinations of the
Szãsz-Mirakian Durrmeyer operators defined by (1.1) and proved some results
concerning the degree of approximation.

We begin with the class Ω of all Lebesgue measurable functions on [0,∞)
such that

Ω[0,∞) =
{

f :
∫ ∞

0
e−nt|f(t)| dt < ∞ for some positive integern

}
.

Obviously Ω[0,∞) ⊃ L1[0,∞) and hence Szsãz Mirakian-Durrmeyer opera-
tors Mn may be utilized for studying the approximation of a bigger class of
functions.

Let M r
n the rth iterate (superposition) of the operator Mn, be a mapping

from Ω[0,∞) into C∞(−∞,∞)(the class of infinitely differentiable functions
on the interval (−∞,∞)), then we define the operator
Tn,k : Ω[0,∞) → C∞(−∞,∞) as

Tn,k(f(u); t) =
(
I − (I −Mn)k

)
(f(u); t)

=
k∑

r=1

(−1)r+1

(
k

r

)
M r

n(f(u); t).

2. Preliminaries and auxiliary results

In the sequel, we shall require the following results.

Lemma 1. ([6]) Let the function µn,m(t),m ∈ N0 (the set of all nonnegative
integers) be defined by

µn,m(t) = Mn ((u− t)m; t) =
∫ ∞

0
W (n, t, u)(u− t)m du.

Then, µn,0(t) = 1, µn,1(t) = 1
n , µn,2(t) = 2

n(t+ 1
n) and the following recurrence

relation holds

µn,m+1(t) = tµ′n,m(t) + (m + 1)µn,m(t) + 2mtµn,m−1(t), m ∈ N. (2.1)

From the recurrence relation (2.1) we have the following consequences:
(i) µn,m(t) is a polynomial in t of degree [m/2] and in n−1 of degree m,
where [α] denotes the integral part of α.

(ii) For every t ∈ [0,∞), µn,m(t) = O
(
n−[(m+1)/2]

)
.
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For every m ∈ N0, the mth order moment µ
[p]
n,m(t) for the operator Mp

n is
defined as

µ[p]
n,m(t) = Mp

n ((u− t)m; t) .

From Lemma 1 it follows that µ
[p]
n,m(t) is a polynomial in t of degree [m/2].

We shall write µn,m(t) for µ
[1]
n,m(t).

Lemma 2. ([5]) Let γ and δ be two positive numbers and [a, b] ⊂ [0,∞).
Then, for any m > 0 there exists a constant Km such that

∥∥∥
∫

|u−t|≥δ
W (n, t, u)eγu du

∥∥∥
C[a,b]

≤ Kmn−m.

Lemma 3. There holds the recurrence relation

µ[p+1]
n,m (t) =

m∑

j=0

(
m

j

) [(m−j)/2]∑

i=0

1
i!

Di
(
µ

[p]
n,m−j(t)

)
µn,i+j(t),

where D denotes the operator d/dt, p ∈ N and m ∈ N0.

Proof. By definition, we have

µ[p+1]
n,m (t) = Mn(Mp

n ((u− t)m;x); t)

= Mn(Mp
n ((u− x + x− t)m; x); t)

=
m∑

j=0

(
m

j

)
Mn

(
(x− t)jMp

n

(
(u− x)m−j ; x

)
; t

)
.

Since Mp
n

(
(u− x)m−j ;x

)
is a polynomial in x of degree [(m− j)/2], by

Taylor’s expansion we may write it as
[(m−j)/2]∑

i=0

(x− t)i

i!
Di

(
µ

[r]
n,m−j(t)

)
,

which proves the lemma. ¤

Lemma 4. For p ∈ N, m ∈ N0 and every t ∈ [0,∞) we have

µ[p]
n,m(t) = O

(
n−[(m+1)/2]

)
.

Proof. We shall prove this result by mathematical induction on p. For p = 1,
it follows from Lemma 1 Therefore, assume it for a certain p. Then
µ

[p]
n,m−j(t) = O

(
n−[(m−j+1)/2]

)
. Since µ

[p]
n,m−j(t) is a polynomial in t of degree

[(m− j)/2], we have
Di

(
µ

[p]
n,m−j(t)

)
= O

(
n−[(m−j+1)/2]

) ∀ i, 0 ≤ i ≤ [(m− j)/2].
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Now, applying Lemma 2 we get

µ[p+1]
n,m (t) =

m∑

j=0

[(m−j)/2]∑

i=0

O
(
n−[(m−j+1)/2]+[(i+j+1)/2]

)

=
m∑

j=0

[(m−j)/2]∑

i=0

O
(
n−[(m+i+1)/2]

)

= O
(
n−[(m+1)/2]

)
.

¤

Lemma 5. For k, l ∈ N, and every t ∈ [0,∞) there holds

Tn,k

(
(u− t)l; t

)
= O(n−k).

Proof. For k = 1, the result follows from Lemma 1. Now, suppose that it is
true for some k then we shall prove it for k + 1.

Tn,k+1

(
(u− t)l; t

)
=

k+1∑

r=1

(−1)r+1

(
k + 1

r

)
µ

[r]
n,l(t)

=
k∑

r=1

(−1)r+1

(
k

r

)
µ

[r]
n,l(t) +

k+1∑

r=1

(−1)r+1

(
k

r − 1

)
µ

[r]
n,l(t)

= I1 + I2, say.

We may write I1 as

I1 = Tn,k

(
(u− t)l; t

)
. (2.2)

Next, by Lemma 3

I2 =
k∑

r=0

(−1)r+2

(
k

r

)
µ

[r+1]
n,l (t)

= −
l−1∑

j=1

(
l

j

) [(l−j)/2]∑

i=0

1
i!

[
DiTn,k

(
(u− t)l−j ; t

)]
µn,i+j(t) (2.3)

− Tn,k

(
(u− t)l; t

)
−

[l/2]∑

i=1

1
i!

[
DiTn,k

(
(u− t)l; t

)]
µn,i(t)
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Thus, combining (2.2) and (2.3)

Tn,k+1

(
(u− t)l; t

)
= −

l−1∑

j=1

(
l

j

) [(l−j)/2]∑

i=0

1
i!

[
DiTn,k

(
(u− t)l−j ; t

)]
µn,i+j(t)

−
[l/2]∑

i=1

1
i!

[
DiTn,k

(
(u− t)l; t

)]
µn,i(t)

= O(n−(k+1)).

This completes the proof. ¤
Lemma 6. ([6]) There exist polynomials qi,j,r(t) independent of n and ν
such that

tr
dr

dtr
(pn,ν(t)) =

∑
2i+j≤r
i,j≥0

ni (ν − nt)j qi,j,r(t) pn,ν(t).

3. Main results

First, we establish a Voronovskaja type asymptotic formula for the operators
Tn,k(., t)

Theorem 3.1. Let f ∈ Ω[0,∞) be bounded on every finite subinterval of
[0,∞) and f(t) = O(eαt) as t →∞ for some α > 0. If f (2k) exists at a point
t ∈ [0,∞) then

lim
n→∞nk [Tn,k(f ; t)− f(t)] =

2k∑

ν=2

f (ν)(t)
ν!

Q(ν, k, t) (3.1)

and
lim

n→∞nk [Tn,k+1(f ; t)− f(t)] = 0, (3.2)

where Q(ν, k, t) are certain polynomials in t of degree at most [ν/2].
Further the limits in (3.1-3.2) hold uniformly in t ∈ [0, a] if
f (2k) ∈ C[0, b), 0 < a < b.

Proof. By Taylor’s expansion of f, we have

f(u) =
2k∑

ν=0

f (ν)(t)
ν!

(u− t)ν + ε(u, t)(u− t)2k,

ε(u, t) → 0 as u → t and ε(u, t) = O(eαu) as u →∞. To prove this, let

ε(u, t) =
f(u)−∑2k

ν=0
f (ν)(t)

ν! (u− t)ν

(u− t)2k
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Then

lim
u→t

ε(u, t) = lim
u→t

f(u)−∑2k
ν=0

f (ν)(t)
ν! (u− t)ν

(u− t)2k
,

(
0
0

form
)

= lim
u→t

f (2k−1)(u)− (f (2k−1)(t) + (u− t)f (2k)(t))
2k!(u− t)

(applying L’Hospital’s rule successively(2k − 1)times)

=
1

2k!
lim
u→t

f (2k−1)(u)− f (2k−1)(t)
(u− t)

− f (2k)(t)
2k!

=
f (2k)(t)

2k!
− f (2k)(t)

2k!
= 0.

Since Mn(u, t) = t + n−1, it follows that M r
n(u, t) = t + rn−1 for every r ∈ N.

As M r
n(1, t) = 1 and M r

n is a linear positive operator, we have
M r

n((u− t), t) = rn−1. Consequently,
Tn,k((u− t), t) = n−1

∑k
r=1(−1)r+1

(
k
r

)
r = 0. By the Taylor’s expansion of

f(u) about u = t, we have

nk [Tn,k(f ; t)− f(t)] = nk
2k∑

ν=1

f (ν)(t)
ν!

Tn,k ((u− t)ν ; t)

+ nk
k∑

r=1

(−1)r+1

(
k

r

)
M r

n

(
ε(u, t)(u− t)2k; t

)

= I1 + I2, say,

where ε(u, t) → 0 as u → t and ε(u, t) = O(eαu) as u →∞.
Since Tn,k(u; t) = t by Lemma 5

I1 =
2k∑

ν=2

f (ν)(t)
ν!

Q(ν, k, t) + o(1),

where Q(ν, k, t) is the coefficient of n−k in Tn,k ((u− t)ν ; t) .
Hence, in order to prove (3.1) it is sufficient to show that I2 → 0 as n →∞.
For a given ε > 0 there exists a δ > 0 such that |ε(u, t)| < ε whenever
0 < |u− t| < δ. For |u− t| ≥ δ, since f is bounded on every finite subinterval
of [0,∞), we have |ε(u, t)| ≤ Meαu for some positive constant M.
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Let χ
δ
(u) be the characteristic function of the interval (t− δ, t + δ), then

|I2| ≤ nk
k∑

r=1

(
k

r

)
M r

n

(
|ε(u, t)|(u− t)2kχ

δ
(u); t

)

+ nk
k∑

r=1

(
k

r

)
M r

n

(
|ε(u, t)|(u− t)2k(1− χ

δ
(u)); t

)

= I3 + I4, say.

Using Lemma 4, we get

I3 ≤ ε nk

[
k∑

r=1

(
k

r

)]
max

1≤r≤k
M r

n

(
(u− t)2k; t

)
= ε O(1).

Next, applying Cauchy Schwarz inequality and Lemma 2, for an arbitrary
s > 0, we have

I4 ≤ nk
k∑

r=1

(
k

r

)
M r

n

(
Meαu(u− t)2k(1− χ

δ
(u)); t

)

≤ Kn−s.

Thus, I4 = o(1) and therefore in view of the arbitrariness of ε > 0. we have
|I2| = o(1), as n →∞.
The assertion (3.2) follows similarly due to the fact that
Tn,k+1((u− t)l, t) = O(n−(k+1)), l ∈ N.

The uniformity assertion follows due to the uniform continuity of f (2k) on
[0, a] (enabling δ to become independent of t ∈ [0, a] and the uniformness of
o(1) term occurring in the estimate of I1 (because, in fact it is a polynomial
in n−1 and t). ¤

In the next result we obtain an estimate of the degree of approximation by
Tn,k for smooth functions.

Theorem 3.2. Let f ∈ Ω[0,∞) be bounded on every finite subinterval of
[0,∞) and f(t) = O(eαt) as t →∞ for some α > 0. If f (p) exists and is
continuous on an interval (a− η, b + η) ⊂ (0,∞), η > 0 then for all n
sufficiently large there holds

‖Tn,k(f)− f‖ ≤ max
{

C1n
−p/2ω

(
f (p); n−1/2

)
, C2n

−k
}

,

where C1 = C1(k, p),C2 = C2(k, p, f), ω
(
f (p); δ

)
denotes the modulus of

continuity of f (p) on (a− η, b + η) and ‖.‖ denotes the sup-norm on [a, b].
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Proof. If u ∈ (a− η, b + η) and t ∈ [a, b], we have

f(u) =
p∑

i=0

f (i)(t)
i!

(u− t)i +

(
f (p)(ξ)− f (p)(t)

)

p!
(u− t)p,

where ξ lies between u and t. Hence we can write

f(u) =
p∑

i=0

f (i)(t)
i!

(u− t)i +

(
f (p)(ξ)− f (p)(t)

)

p!
(u− t)pχ(u)+F (u, t)(1−χ(u)),

(3.3)
where χ(u) denotes the characteristic function of (a− η, b + η) and

F (u, t) = f(u)−
p∑

i=0

f (i)(t)
i!

(u− t)i,

for all u ∈ [0,∞) and t ∈ [a, b].
Now, operating by Tn,k(; t) on (3.3) and breaking the right hand side into
three parts I1, I2 and I3, say, corresponding to the three terms on the right
hand side of (3.3), by Lemma 5 we have I1 = f(t) + O(n−k) uniformly in
t ∈ [a, b]. Next, applying Schwarz inequality and Lemma 4 we get

|I2| ≤
k∑

r=1

(
k

r

)
M r

n

(
|f (p)(ξ)− f (p)(t)|

p!
|u− t|pχ(u); t

)

≤ ω
(
f (p); n−1/2

)

p!

k∑

r=1

(
k

r

)
M r

n

((|u− t|p + n1/2|u− t|p+1
)
; t

)

= ω
(
f (p); n−1/2

)
O(n−p/2),

uniformly in t ∈ [a, b].
The function F (u, t) for t ∈ [a, b] is bounded by Meαu for some constant
M > 0 hence using Lemma 2 we have I3 = o(n−s) uniformly in [a, b], for any
s > 0. Choosing s > k, we obtain I3 = o(n−k) uniformly in t ∈ [a, b].
Combining the estimates of I1, I2 and I3, the required result follows. ¤

Finally in the following theorem we show that the derivative T
(p)
n,kf is an

approximation process for f (p), p = 1, 2, 3, ...

Theorem 3.3. Let f ∈ Ω[0,∞) and be bounded on every finite subinterval of
[0,∞) admitting a derivative of order p at a fixed point t ∈ (0,∞). Let
f(t) = O(eαt) as t →∞ for some α > 0, then we have

lim
n→∞T

(p)
n,k(f ; t) = f (p)(t). (3.4)
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Further, if f (p) exists and is continuous on (a− η, b + η) ⊂ (0,∞), η > 0 then
(3.4) holds uniformly in t ∈ [a, b].

Proof. To prove the theorem, it suffices to show that for each r ∈ N

lim
n→∞Dp (M r

n(f ; t)) = f (p)(t),

and that it holds uniformly in the uniformity case. By the hypothesis, we
have

f(u) =
p∑

i=0

f (i)(t)
i!

(u− t)i + ε(u, t)(u− t)p, (3.5)

where ε(u, t) → 0 as u → t and ε(u, t) = O(eαu) as u →∞.
We can write

M r
n(f(u); t) = Mn(M r−1

n (f(u); v); t)

=
∫ ∞

0
W (n, t, v)M r−1

n (f(u); v) dv.

Hence, using (3.5) we get

dp

dtp
M r

n(f(u); t) =
∫ ∞

0
W (p)(n, t, v)M r−1

n (f(u); v) dv

=
p∑

i=0

f (i)(t)
i!

∫ ∞

0
W (p)(n, t, v)M r−1

n ((u− t)i; v) dv

+
∫ ∞

0
W (p)(n, t, v)M r−1

n (ε(u, t)(u− t)p; v) dv

= I1 + I2, say.

Let us estimate I1 first.

I1 =
p∑

i=0

f (i)(t)
i!

i∑

j=0

(
i

j

)
(−t)i−j

∫ ∞

0
W (p)(n, t, v)M r−1

n (uj ; v) dv.

Since
∫ ∞

0
W (p)(n, t, v)M r−1

n (uj ; v) dv =
dp

dtp
M r

n(uj ; t), we have

I1 =
p∑

i=0

f (i)(t)
i!

i∑

j=0

(
i

j

)
(−t)i−j dp

dtp
M r

n(uj ; t).

By Lemma 1, it follows that Mn(uj ; t) is a polynomial in t of degree j and
the coefficient of tj is 1. Consequently, M r

n(uj ; t), r ∈ N is also a polynomial



144 P. N. Agrawal and Kareem J. Thamer

in t of degree j and the coefficient of tj is 1. Hence, as long as

0 ≤ j ≤ p− 1,
dp

dtp
M r

n(uj ; t) = 0. Thus

I1 =
f (p)(t)

p!
dp

dtp
M r

n(up; t)

=
f (p)(t)

p!
(p!) = f (p)(t).

To estimate I2, ε(u, t) → 0 as u → t implies that for a given ε > 0 there
exists a δ > 0 such that |ε(u, t)| < ε whenever 0 < |u− t| < δ and for
|u− t| ≥ δ, |ε(u, t)||u− t|p < Meαu for some M > 0.
Hence, using Lemma 6

I2 ≤ C1

∑
2i+j≤p
i,j≥0

ni+1
∞∑

ν=0

|ν − nt|j
{

ε

∫ ∞

0
pn,ν(v)M r−1

n (|u− t|pχ
δ
(u); v) dv

+
∫ ∞

0
pn,ν(v)M r−1

n (Meαu(1− χ
δ
(u)); v) dv

}

= I3 + I4, say,

where, C1 = sup
2i+j≤p
i,j≥0

|qi,j,p(t)|
|t|p ,M is a constant independent of u and χδ(u) is

the characteristic function of (t− δ, t + δ).
Applying Cauchy Schwarz inequality three times, we get

I3 ≤ εC1

∑
2i+j≤p
i,j≥0

ni

( ∞∑

ν=0

pn,ν(t)(ν − nt)2j

)1/2

×

×
[
n

∞∑

ν=0

pn,ν(t)
(∫ ∞

0
pn,ν(v)M r−1

n

(
(u− t)2p; v

)
dν

)]1/2

,

in view of
∫∞
0 pn,ν(u) du = n−1.

It is known [6] that for each t ∈ [0,∞) and m ∈ N0,

∞∑

ν=0

pn,ν(t)
(ν

n
− t

)m
= O

(
n−[(m+1)/2]

)
. (3.6)

Consequently, using Lemma 4 we obtain

I3 = εC1

∑
2i+j≤p
i,j≥0

niO
(
nj/2

)
O

(
n−p/2

)
= εO(1).
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Now, again applying Cauchy Schwarz inequality, Lemma 2 and (3.6) it
follows that
I4 = O

(
n−(p−m)/2

)
for any m > 0. Choosing m > p, we get I4 = o (1) and

therefore in view of the arbitrariness of ε > 0, we have I2 = o (1) .
Combining the estimates of I1 and I2, we obtain (3.4). The second assertion
follows as in the proof of Theorem 3.1. ¤
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Demonstratio Math. 29 (1) (1996), 7-16.

[5] H. S. Kasana, On approximation of unbounded functions by linear combinations of
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