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Abstract. It is shown that the technique of iterative combinations introduced by Micchelli

[9] can be used to improve the rate of convergence by Szasz-Durrmeyer Operators.

1. INTRODUCTION

Mazhar and Totik [§8] and independently Kasana et al. [6] proposed the
following integral modification of Szasz-Mirakian operators to approximate
Lebesgue integrable functions on [0, c0)

o0 0
M(F0,8) =03 puelt) [ pusla)fu)du, £ € La0.o0) (L)
v=0

e—nt (nt)v

where py,,(t) = —
Alternatively, (1.1) may be written as

Ahwwﬁ=AmWWMWWMw

where W(n,t,u) =n>. " Pnw(t) pny(u).
In order to improve the rate of convergence O(n~!) by these operators, the
technique of linear combinations introduced by May [7] and Rathore [10] has

9 Received December 19, 2006. Revised April, 22. 2008.

92000 Mathematics Subject Classification: 41A36, 41A25.

O Keywords: Szasz-Mirakian Durrmeyer operators, rate of convergence, iterative
combinations.



136 P. N. Agrawal and Kareem J. Thamer

been used (cf., e.g. [1]-[4]). There is yet another approach for improving the
order of approximation, which was offered by Micchelli [9] by considering the
iterative combinations U,, y = [I — (I — By)¥] of the Bernstein polynomials B,,.
He proved some direct and saturation results for these operators U, ; using
semi-group method.

In the present paper, we have considered the Micchelli combinations of the
Szasz-Mirakian Durrmeyer operators defined by (1.1) and proved some results
concerning the degree of approximation.

We begin with the class 2 of all Lebesgue measurable functions on [0, c0)
such that

Q[0,00) = {f : / e ™| f(t)| dt < oo for some positive integern} .
0

Obviously Q[0,00) D L1][0,00) and hence Szsaz Mirakian-Durrmeyer opera-
tors M,, may be utilized for studying the approximation of a bigger class of
functions.

Let M) the rth iterate (superposition) of the operator M,,, be a mapping
from [0, 00) into C*°(—o00, 00)(the class of infinitely differentiable functions
on the interval (—o0, 00)), then we define the operator
Tk 2 Q[0,00) — C°(—00,00) as

Tur(f(u)it) = (1= =M)) (f(u)i)
- i(—l)r“(‘ﬁ)m(ﬂu);w.

T
r=1

2. PRELIMINARIES AND AUXILIARY RESULTS

In the sequel, we shall require the following results.

Lemma 1. ([6]) Let the function pinm(t),m € N (the set of all nonnegative
integers) be defined by

Pnm () = My (uw— 1) t) = /000 W(n,t,u)(u—t)" du.

Then, pno(t) =1, pn1(t) = 2, pn2(t) = 2(t+21) and the following recurrence
relation holds

tinm+1(t) = t:u;z,m(t) + (M + 1) tin,m (t) + 2mtpnm-1(t), m € N. (2.1)
From the recurrence relation (2.1) we have the following consequences:
(i) pnm(t) is a polynomial in ¢ of degree [m/2] and in n~! of degree m,
where [a] denotes the integral part of a.
(ii) For every t € [0,00), tin,m(t) = O (n*[(mﬂ)m) .
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For every m € N°, the mth order moment ,u[p] (t) for the operator M} is
defined as

i (1) = ME ((u = 8)"51).

[p]

From Lemma (1] it follows that un m(t) is a polynomial in ¢ of degree [m/2].

We shall write gy, m(t) for ,u[ ] m(t).

Lemma 2. ([5]) Let v and § be two positive numbers and [a,b] C [0, 00).
Then, for any m > 0 there exists a constant K,, such that

H/ W(n,t,u)e™ duH < Kpn™ ™.
|lu—t|>d Cla,b]

Lemma 3. There holds the recurrence relation
moe [(m—37)/2] 1 .
b0 =3 (") S L () s 0
j=0 i=0
where D denotes the operator d/dt, p € N and m € N°,
Proof. By definition, we have
ple i) = My (MR ((u—1)™; 2); 1)

(MP(u—ax+2x—1t)";2);t)

n

(> (= 1) MP ((u— )" s 1)

= M,
m
7=0
Since M} ((u — )™ ;) is a polynomial in z of degree [(m — j)/2], by
Taylor’s expansion we may write it as

(m=g)/2l
S P (),

which proves the lemma. O

Lemma 4. For p € N,m € N° and every t € [0,00) we have
(1) =0 (nfumﬂ)/z}) '

Proof. We shall prove this result by mathematical induction on p. For p =1,
it follows from Lemma [1 Therefore, assume it for a certain p. Then

o _(#) = O (n71m=3+D/2) “Since ulP) (1) is a polynomial in ¢ of degree
[(m 7)/2], we have
Di (M[p] (t)) = O (n~lm=3+0/2) v i 0 <i < [(m — 5)/2).

n,m—j
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Now, applying Lemma 2| we get

m [(m—j)/2]
IO 0 <n—[(m—j+1>/21+[(i+j+1)/21>
j=0 =0
i [(m—3)/2] ( ’ y ]>
—_ O(n~ m—+i+1)/2
j=0 =0
O
Lemma 5. For k,l € N, and every t € [0,00) there holds
T ((u - t)l;t) = 0(n").
Proof. For k = 1, the result follows from Lemma [1. Now, suppose that it is
true for some k then we shall prove it for k£ 4 1.
k+1
- k+1\ 1
Tokt1 ((U—t)l;t) = Z(—l) +1( . )ML,]z(t)
r=1
k i k+1 1
SISV (IORS S B 0
r=1 r=1
= 1) + I7,say.
We may write I; as
I =T ((u — ) t) . (2.2)
Next, by Lemma 3
k i X
no= (Mo
r=0
=1 [(1=35)/2] 1
_ 175 _ i o
> () S g [P (000 Jimanst) 2
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Thus, combining (2.2) and (2.3)

=1 ((1—5)/2] 1 ‘ '
Tn,kJrl ((u - t)l; t) = - Z <]) Z E [DlTn,k ((u - t)lij; t)} M i4-j (t)
j=1 i=0
[1/2] 1 '
-> 5 DT (= 0'58) | (1)
i=1
= 0 n*(kﬂ)).
This completes the proof. O

Lemma 6. ([6]) There exist polynomials g; j(t) independent of n and v
such that

r

£ ona() = D2 0 (0= 0t o () P (t).
2i+j>§'r
1,7 >0

3. MAIN RESULTS

First, we establish a Voronovskaja type asymptotic formula for the operators
Tok(.,1)

Theorem 3.1. Let f € Q[0,00) be bounded on every finite subinterval of
0,00) and f(t) = O(e™) as t — oo for some a > 0. If f*¥) exists at a point
t € [0,00) then

Tim n® [Tk (f1) Z f(u v, k1) (3.1)
and
Tim n* [T (f51) = f(D)] =0, (3:2)

where Q(v, k,t) are certain polynomials in t of degree at most [v/2].
Further the limits in (3.113.2) hold uniformly in t € [0,a] if
@R € C[0,b),0 < a < b.

Proof. By Taylor’s expansion of f, we have

2 ()
py =3 0 w0 4ty 1
v=0

€(u,t) = 0 as u — ¢ and €(u,t) = O(e*") as u — oo. To prove this, let

flu) — 3k: f(l;),(t) u —t)¥
) - L= Tl )
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Then
_y2k FO@
iige(u,t) = 11}3 J(w) Z(I;L:O t)lé!k’ (=9 , <8 form)
o PO - (D + = D)
C u—t 2k'(u—t)

(applying L’Hospital’s rule successively(2k — 1)times)
OB IO B Lill)

= (=1 20l
FER@E) ()
T2k 2k

Since M,,(u,t) =t +n~", it follows that M (u,t) =t +rn~! for every r € N.
As M (1,t) =1 and M) is a linear positive operator, we have
M) ((u— t), t) =rn~L. Consequently,
Toi((u—1),t) =0~ 8 (=1)*1(¥)r = 0. By the Taylor’s expansion of
f(u) about u = t, we have

2k )
sl fi0) = S0) = 032 O (- 1721
- kz 7"+1(> My, (elu,t)(u — 6)%:1)
= I1+12,8ay,

where €(u,t) — 0 as u — t and €(u,t) = O(e*") as u — oc.
Since Ty, ;(u;t) =t by Lemma 5

2k )
I = ZQ / V!(t)Q(y, k,t) + o(1),

where Q(v, k,t) is the coefficient of n=% in T,, 1, ((u — t)*; ).

Hence, in order to prove (3.1) it is sufficient to show that Iy — 0 as n — oo.
For a given € > 0 there exists a § > 0 such that |e(u,t)| < € whenever

0 < |u—t| <. For |u—t| >4, since f is bounded on every finite subinterval
of [0, 00), we have |e(u,t)| < Me*" for some positive constant M.
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Let x,(u) be the characteristic function of the interval (¢t — d,t 4 6), then
. (k
Ll < nf 05, (JeCu, )l — )2, (w)s )
< b3 () (00

F oty (5) a2 (w0l = 02501 = s )et)

= I3+ I4,say.

Using Lemma 4, we get

I3<enf [zk: (f)] max M) ((u — t)%;t> =eO0(1).

r=1

Next, applying Cauchy Schwarz inequality and Lemma 2, for an arbitrary
s > 0, we have

Lo< oy (’“) 0 (M6 (= 125(1 — ()t
r=1

< Kn™%.

Thus, I4 = o(1) and therefore in view of the arbitrariness of € > 0. we have
|I2] = o(1), as n — oc.

The assertion (3.2) follows similarly due to the fact that

Tn,k—l—l((u - t)l’t) = O(n_(k—H))?l € N.

The uniformity assertion follows due to the uniform continuity of f(2%) on

[0, a] (enabling ¢ to become independent of ¢ € [0, a] and the uniformness of
o(1) term occurring in the estimate of I; (because, in fact it is a polynomial
in n~! and t). O

In the next result we obtain an estimate of the degree of approximation by
T, ;. for smooth functions.

Theorem 3.2. Let f € Q[0,00) be bounded on every finite subinterval of
[0,00) and f(t) = O(e®) as t — oo for some a > 0. If fP) exists and is
continuous on an interval (a —n,b+n) C (0,00),n > 0 then for all n
sufficiently large there holds

T (£) = Il < maz{Cin "% (FP5n71/2) ,Con ™"}

where Cy = Cy(k,p),Co = Cao(k,p, f), w (f(p); 5) denotes the modulus of
continuity of f® on (a —n,b+n) and ||.|| denotes the sup-norm on [a,b].
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Proof. If uw € (a —n,b+n) and t € [a,b], we have

P () , (@ (g) — £
10,y PO 100)

(U - t)pa

where £ lies between v and t. Hence we can write

P () ®)(g) — )
PEAMUIS (FP©) - 1)

7
gt )

flu) =

(u—1)Px(uw) + F(u, t)(1—x(u)),
(3.3)

1=0

where x(u) denotes the characteristic function of (a —n,b+ n) and

p
F(u, Z

1=0

i
u—t

for all w € [0,00) and ¢ € [a, b].

Now, operating by T}, x(;t) on (3.3) and breaking the right hand side into
three parts I, Is and I3, say, corresponding to the three terms on the right
hand side of (3.3), by Lemma [5 we have I; = f(t) + O(n~*) uniformly in

t € [a,b]. Next, applying Schwarz inequality and Lemma [4/ we get

k (@ (g) — @)
bl < Z(’j)M:;(‘f bt <t)‘|u—trpx<u>;t>

r=1

A

< i() ( —t|f’+n1/2|u—t|f’“);t)

_ (f<p> —1/2)T:(1 —p/2),

uniformly in ¢ € [a, b].

The function F(u,t) for ¢ € [a,b] is bounded by Me** for some constant

M > 0 hence using Lemma 2/ we have I3 = o(n™®) uniformly in [a, b], for any
s > 0. Choosing s > k, we obtain I3 = o(n~*) uniformly in ¢ € [a, b).
Combining the estimates of Iy, Is and I3, the required result follows. O

Finally in the following theorem we show that the derivative T( pf is an
approximation process for f®) p=1,2,3, ...
Theorem 3.3. Let f € Q[0,00) and be bounded on every finite subinterval of

[0,00) admitting a derivative of order p at a fized point t € (0,00). Let
f(t) = O0(e*) as t — oo for some a > 0, then we have

Tim TO)(f58) = £ (1), (3.4)

)
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Further, if f®) exists and is continuous on (a —n,b+n) C (0,00),1 > 0 then
(3.4) holds uniformly in t € |a, b].

Proof. To prove the theorem, it suffices to show that for each r € N

lim DP (M;;(f;t)) = fP)(t),
and that it holds uniformly in the uniformity case. By the hypothesis, we
have

0
OEDY P20 0 1y 4 e, ) (u — 1), (3.5)

il

P
=0
where €(u,t) — 0 as v — t and €(u,t) = O(e*") as u — oc.

We can write
Mi(f(u)it) = My(M; ' (f(u);v);t)
= /0 W(n,t,v) M"Y f(u);v) dv.

Hence, using (3.5) we get

&P %0
MR = [T WO )M i) do
P r(i) 00 .
= 250 [t s
- / T (n,t,v) MZ " (e(u, t)(u — t)P;v) dv
0
= Il + IQ, say.

Let us estimate I; first.

Ilzzp:f (i,)(t) i (?)(—t)ij /0 h WP (n,t,0)MI (w5 v) do.

|
A
o0 . I .
Since W® (n,t,0)ME (w5 0) do = ﬁMﬁ(uj;t), we have
0
P i,
f(l)(t) i P A
I = —t) I ST ().
=2 () o

By Lemma I} it follows that M, (v/;t) is a polynomial in ¢ of degree j and
the coefficient of ¢/ is 1. Consequently, M, (u’;t),r € N is also a polynomial
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in ¢ of degree j and the coefficient of t/ is 1. Hence, as long as

dr :
0<j<p-— 1,?M£(u];t) = 0. Thus

d
f®)(t) av
I = — M (uP;
1 p! dtp n(u 7t)
f(p)(t)

= T(P!) = fP ).

To estimate Io, €(u,t) — 0 as u — ¢ implies that for a given € > 0 there
exists a d > 0 such that |e(u,t)| < € whenever 0 < |u —t| < ¢ and for

lu —t| >0, |e(u,t)||u —t|P < Me*™ for some M > 0.

Hence, using Lemma 6

G ) ff*liij\v—-nﬂj{e]ﬁ P ()M (Ju = P, (w); ) do
v=0

2i+j<p
4,720

I

IN

+ [ mwwawa%qumw»w}
0
= I3+ 14, say,

where, C1 = sup
2irj<p  |t[P
§,j20

the characteristic function of (t — d,t + 9).
Applying Cauchy Schwarz inequality three times, we get

o0 1/2
Is < €eCy Z ni<2pnyy(t)(u—nt)2j) X
v=0

2i+j<p
1,520

X [n Vi;opmy(t) (/OOO P (V)M ((u—t)%;v) dy)] 1/2,

in view of [ pp,(u) du =n"".

It is known [6] that for each t € [0,00) and m € N?,

3 LA ~[(m+1)/2]
VZO P (t) (n t) 0 (n ) (3.6)
Consequently, using Lemma 4/ we obtain

_ i /2 —p/2\ _ ‘
Iy 6012;%”710(”] )0 (n72) = co)

, M is a constant independent of u and y;s(u) is
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Now, again applying Cauchy Schwarz inequality, Lemma 2 and (3.6)) it
follows that

I, =0 (n_(p_m)/2) for any m > 0. Choosing m > p, we get I, = o (1) and
therefore in view of the arbitrariness of € > 0, we have I = o(1).

Combining the estimates of I} and Iz, we obtain (3.4). The second assertion
follows as in the proof of Theorem 3.1. O

1]
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