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Abstract. This paper studies the following singular Sturm-Liouville boundary value prob-
lem with integral boundary conditions

− (Lu)(t) = a(t)f(t, u(t)), 0 < t < 1,

αu(0)− βu′(0) =

∫ 1

0

u(s)dξ(s),

γu(1) + δu′(1) =

∫ 1

0

u(s)dη(s),

where a(t) is allowed to be singular at t = 0, 1, and f : [0, 1] × R → R is a sign-changing

continuous function and may be unbounded from below. By applying the topological degree

of a completely continuous field and the first eigenvalue and its corresponding eigenfunction

of a special linear operator, some existence results of nontrivial solutions are obtained.
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1. Introduction

In this paper, we consider the existence of nontrivial solutions for the fol-
lowing singular second-order Sturm-Liouville boundary value problem (BVP,
for short) with integral boundary conditions

− (Lu)(t) = a(t)f(t, u(t)), 0 < t < 1,

αu(0)− βu′(0) =

∫ 1

0
u(s)dξ(s),

γu(1) + δu′(1) =

∫ 1

0
u(s)dη(s),

(1.1)

where (Lu)(t) = (p(t)u′(t))′+ q(t)u(t), α, β, γ, δ ∈ R+ are constants such that
βγ+αγ+αδ > 0, ξ(s), η(s) are nondecreasing functions of bounded variation,
and the integrals in (1.1) are Riemann-Stieltjes integrals, f : [0, 1]×R→ R is
a continuous sign-changing function and f may be unbounded from below for
t ∈ [0, 1], x ∈ R. Moreover, a : (0, 1) → R+ is continuous and allowed to be
singular at t = 0, 1, in which R = (−∞,+∞),R+ = [0,+∞),R+

0 = (0,+∞).
The form of (1.1) for differential equations arise from many fields of applied

mathematics and physics, and can describe a great deal of nonlinear problems.

If p ≡ 1, q ≡ 0,
∫ 1
0 u(s)dξ(s) =

∫ 1
0 u(s)dη(s) = 0, BVP (1.1) reduces to the

two-point BVP {
−u′′(t) = f(t, u(t)), 0 < t < 1,
αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 0.

(1.2)

In the case where f is nonnegative, (1.2) has been intensively studied, see
[1, 2, 3, 4, 5]. In [6], Zhao studied the property of the positive solutions for
the following Sturm-Liouville singular boundary value problems{

− (Lu)(t) = f(t, u(t)), 0 < t < 1,

αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 0,
(1.3)

where f(t, u) : (0, 1)×R+
0 → R+

0 , may be singular at t = 0, t = 1 and/or u = 0.
The author obtained a relation between the solutions and Green’s function.
Recently second-order boundary value problems with nonlocal boundary con-
ditions, including multi-point and integral boundary conditions, have received
a great deal of attention, and many excellent results are obtained, we refer the
readers to [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] and references therein.

But all above work only considered the case of the nonlinearity taking on
nonnegative values. As to the nonlinearity f is sign-changed, we refer to
[18, 19, 20, 21, 22]. In [21], Sun and Zhang considered the singular nonlinear
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Sturm-Liouville problems{
− (Lu)(t) = h(t)f(u(t)), 0 < t < 1,

R1(u) = α1u(0) + β1u
′(0) = 0, R2(u) = α2u(1) + β2u

′(1) = 0,
(1.4)

where h is allowed to be singular at t = 0 and t = 1. Besides, the main con-
dition they assumed that there exists b > 0 such that f(t, u) ≥ −b, i.e., f is
bounded from below and is not necessary to be nonnegative. By means of the
topological degree theory, the authors established the existence of nontrivial
solutions and positive solutions of the problem (1.4). Han and Wu [22] im-
proved the condition of the nonlinear term f in [21], that is, f(u) ≥ −b−c|u|κ,
here b > 0, c > 0, κ ∈ (0, 1). Obviously, f is allowed to be unbounded from
below, however, f under control by special function F (u) = −b − c|u|κ, and
the Green function of the boundary value problem is symmetric.

Motivated by [18, 19, 20, 21, 22], the purpose of this paper is to consider the
existence of nontrivial solutions of BVP (1.1) under some weaker conditions.
The new features of this paper mainly include the following aspects. Firstly,
comparing with [20, 21, 22], the nonlinear term f of BVP (1.1) is allowed to
be sign-changing and unbounded from below with respect to t ∈ [0, 1], x ∈ R.
Secondly, comparing with [21, 22], the Green function of BVP (1.1) is not
necessarily symmetric. Thirdly, comparing with [20, 21, 22], we discuss the
boundary value problem with integral boundary conditions, i.e., BVP (1.1) in-
cluding second-order two-point, three-point, multi-point and nonlocal bound-
ary value problems as special cases. To our knowledge, there are not many
references to studied the existence of nontrivial solutions for second-order dif-
ferential equation with boundary conditions involving Riemann-Stieltjes inte-
grals except [18]. Finally, without making any monotone-type assumption, we
established the existence of one nontrivial solution of the BVP (1.1) by using
the topological degree of a completely continuous field, the first eigenvalue and
its corresponding eigenfunction of a special linear operator.

The remaining part of this paper is organized as follows. Some preliminaries
and a number of lemmas useful to the derivation of the main results are given
in Section 2, then the proofs of the theorems are given in Section 3, followed
by an example in Section 4 to demonstrate the validity of our main results.

2. Preliminaries and some lemmas

In this section, we present some preliminaries and lemmas that are useful
to the proof of our main results.

Let E = C[0, 1] be a Banach space with the maximum norm

‖u‖ = max
0≤t≤1

|u(t)|
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for u ∈ E, E∗ be the dual space of E. Define P = {u ∈ E | u(t) ≥ 0, t ∈ [0, 1]}
and Br = {u ∈ E | ‖u‖ < r}. Then P is a total cone in E, that is, E = P − P .
Let P ∗ be the dual cone of P , namely, P ∗ = {g ∈ E∗ | g(u) ≥ 0, for all u ∈ P}.

For the sake of convenience, we first give the following assumptions:

(H1) p(t) ∈ C1[0, 1], p(t) > 0, q(t) ∈ C[0, 1], q(t) ≤ 0, α, β, γ, δ ∈ R+, αγ +
αδ + βγ > 0, and the homogeneous equation with respect to (1.3),{

− (Lu)(t) = 0, 0 < t < 1,

αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 0,
(2.1)

has only the trivial solution.
(H2) a : (0, 1)→ R+ is continuous, a(t) 6≡ 0 and∫ 1

0
a(s)ds < +∞.

Let K(t, s) be the Green’s function with respect to (2.1), i.e.,

K(t, s) =
1

ω

{
ϕ1(t)ϕ2(s), 0 ≤ t ≤ s ≤ 1,

ϕ1(s)ϕ2(t), 0 ≤ s ≤ t ≤ 1.
(2.2)

Lemma 2.1 ([23, 24]). Assume that (H1) is satisfied, then the Green’s function
K(t, s) defined by (2.2) possesses the following properties:

(i) K(t, s) is continuous and symmetrical over [0, 1]× [0, 1];
(ii) K(t, s) ≥ 0, and K(t, s) ≤ K(s, s), ∀ t, s ∈ [0, 1];

(iii) ϕ1(t) ∈ C2[0, 1] is an increasing function, ϕ1(t) > 0, t ∈ (0, 1];
(iv) ϕ2(t) ∈ C2[0, 1] is an decreasing function, ϕ1(t) > 0, t ∈ [0, 1);
(v) (Lϕ1)(t) ≡ 0, ϕ1(0) = β, ϕ′1(0) = α;

(vi) (Lϕ2)(t) ≡ 0, ϕ2(1) = δ, ϕ′2(1) = −γ;
(vii) ω is a positive constant.

According to (2.1), (2.2), it is easy to verify that BVP (1.1) is equivalent
to the perturbed integral equation

u(t) =

∫ 1

0
K(t, s)a(s)f(s, u(s))ds+ φ(t)

∫ 1

0
u(s)dξ(s) + ψ(t)

∫ 1

0
u(s)dη(s)

(2.3)
where φ(t) ∈ C2([0, 1],R+) and ψ(t) ∈ C2([0, 1],R+) solve the following inho-
mogeneous boundary value problems:{

− (Lu)(t) = 0, 0 < t < 1,

αu(0)− βu′(0) = 1, γu(1) + δu′(1) = 0,
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and {
− (Lu)(t) = 0, 0 < t < 1,

αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 1.

Remark 2.2. It follows from Lemma 2.1 we know, ϕ1(t), ϕ2(t) are two linearly
independent solutions of homogeneous differential equation −(Lu)(t) = 0, then
φ(t), ψ(t) can be linear representation by ϕ1(t), ϕ2(t), respectively. By direct

calculation, we have φ(t) = p(0)
ω ϕ2(t) and ψ(t) = p(1)

ω ϕ1(t). So ψ(t), φ(t) have
the similar properties of ϕ1(t), ϕ2(t), respectively, i.e., ψ is nonnegative and
increasing on [0, 1], φ is nonnegative and decreasing on [0, 1].

Set

k1 = 1−
∫ 1

0
φ(t)dξ(t), k2 =

∫ 1

0
ψ(t)dξ(t),

k3 =

∫ 1

0
φ(t)dη(t), k4 = 1−

∫ 1

0
ψ(t)dη(t).

We also need the following assumptions concerning f and ki(i = 1, 2, 3, 4) :

(H3) k1 > 0, k4 > 0, k = k1k4 − k2k3 > 0.
(H4) f : [0, 1] × R → R is continuous, there exist nonnegative functions

b, c ∈ C[0, 1] with c(t) 6≡ 0 and one nondecreasing continuous function h :

R→ R+ satisfying lim
x→+∞

h(x)
x = 0, such that

f(t, u) ≥ −b(t)− c(t)h(u), ∀ u ∈ R.

Lemma 2.3. Assume that (H1)− (H4) hold. Then the integral equation (2.3)
is equivalent to

u(t) =

∫ 1

0
G(t, s)a(s)f(s, u(s))ds, (2.4)

where G(t, s) is the Green function for (1.1), taking the form

G(t, s) =K(t, s) +
k4φ(t) + k3ψ(t)

k

∫ 1

0
K(τ, s)dξ(τ)

+
k2φ(t) + k1ψ(t)

k

∫ 1

0
K(τ, s)dη(τ).

(2.5)

Proof. The proof is similar to Lemma 2.3 of [18], so we omit it. �
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Remark 2.4. If (H1) and (H3) hold, then for any t, s ∈ [0, 1] it is easy to
testify that

0 ≤ G(t, s) ≤MK(s, s), (2.6)

where

M = 1 +
k4φ(0) + k3ψ(1)

k

∫ 1

0
dξ(τ) +

k2φ(0) + k1ψ(1)

k

∫ 1

0
dη(τ).

Define operators F, J, T and A : E → E as follows:

(Fu)(t) = f(t, u(t)), t ∈ [0, 1], u ∈ E,

(Ju)(t) =

∫ 1

0
G(s, t)a(s)u(s)ds, t ∈ [0, 1], (2.7)

(Tu)(t) =

∫ 1

0
G(t, s)a(s)u(s)ds, t ∈ [0, 1], (2.8)

(Au)(t) = (TFu)(t) =

∫ 1

0
G(t, s)a(s)f(s, u(s))ds, t ∈ [0, 1]. (2.9)

Obviously, if u is a fixed point of A, then u is a solution of BVP (1.1) by
Lemma 2.3.

Lemma 2.5. Assume that (H1)−(H3) hold. Then linear operators J, T : E →
E, defined by (2.7) and (2.8) respectively, are completely continuous positive
linear operators.

Proof. By Lemma 2.1, there exists L > 0 such that K(t, s) ≤ L,∀ (t, s) ∈
[0, 1]× [0, 1]. From (H2) we know

∫ 1
0 K(s, s)a(s)ds ≤ L

∫ 1
0 a(s)ds < +∞. Then

by (2.5), (2.6) and the monotonicity of φ, ψ, for any t ∈ [0, 1] we have

|(Ju)(t)| ≤ ‖u‖
[ ∫ 1

0
K(s, s)a(s)ds+ L(M − 1)

∫ 1

0
a(s)ds

]
< +∞, (2.10)

|(Tu)(t)| ≤
∫ 1

0
MK(s, s)a(s)u(s)ds ≤M‖u‖

∫ 1

0
K(s, s)a(s)ds < +∞.

(2.11)
Therefore J, T : E → E are well defined. By (2.6), we have J(P ) ⊂ P, T (P ) ⊂
P . Thus, J and T are positive linear operators. Next we will show that J and
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T are completely continuous. For any natural number n (n ≥ 2), let

an(t) =


inft<s≤ 1

n
a(s), 0 ≤ t ≤ 1

n
,

a(t),
1

n
≤ t ≤ n− 1

n
,

inf n−1
n
≤s<t a(s),

n− 1

n
≤ t ≤ 1.

(2.12)

Then an : [0, 1]→ [0,+∞) is continuous and an(t) ≤ a(t), t ∈ (0, 1). Let

(Tnu)(t) =

∫ 1

0
G(t, s)an(s)u(s)ds, t ∈ [0, 1]. (2.13)

It is clearly that Tn : E → E is completely continuous. For any r > 0 and
u ∈ Br, by (2.12), (2.13) and the absolute continuity of integral, we have

lim
n→∞

‖Tnu− Tu‖ = lim
n→∞

max
t∈[0,1]

∣∣∣∣ ∫ 1

0
G(t, s)

(
a(s)− an(s)

)
u(s)ds

∣∣∣∣
≤M‖u‖ lim

n→∞

∫ 1

0
K(s, s)

(
a(s)− an(s)

)
ds

≤rM lim
n→∞

∫
e(n)

K(s, s)
(
a(s)− an(s)

)
ds

≤rM lim
n→∞

∫
e(n)

K(s, s)a(s)ds = 0,

where e(n) = [0, 1n ] ∪ [n−1n , 1]. Then by the approximating theorem of com-
pletely continuous operators, T : E → E is completely continuous. Similarly,
we can prove that J : E → E is completely continuous. �

Lemma 2.6. Assume that (H1)− (H3) hold. Then the special radius r(T ) 6=
0, r(J) 6= 0, T and J have positive eigenfunctions corresponding to their first

eigenvalues r1 = (r(T ))−1 and λ1 = (r(J))−1 respectively.

Proof. By (H2), there is t1 ∈ (0, 1) such that G(t1, t1)a(t1) > 0. Thus there
exists [α, β] ⊂ (0, 1) such that t1 ∈ (α, β) and G(t, s)a(s) > 0, for t, s ∈ [α, β].
Take ũ ∈ P such that ũ(t1) > 0 and ũ(t) = 0, t 6∈ [α, β]. Then for t ∈ [α, β],
we have

(T ũ)(t) =

∫ 1

0
G(t, s)a(s)ũ(s)ds ≥

∫ β

α
G(t, s)a(s)ũ(s)ds > 0.

So there exists a constant c > 0 such that c(T ũ)(t) ≥ ũ(t), t ∈ [0, 1]. According
to the Krein-Rutman theorem, we know that the special radius r(T ) 6= 0. Thus,
corresponding to r1 = (r(T ))−1, the first eigenvalues of T, T has a positive
eigenfunctions φ1(t), i.e.,

r1Tφ1 = φ1. (2.14)
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Similarly, it is easy to prove that the spectral radius r(J) > 0 and there exists
φ2 ∈ P, φ2(t) > 0, t ∈ (0, 1) such that

λ1Jφ2 = φ2, (2.15)

where λ1 = 1
r(J) is the first eigenvalues of the operator J. �

Let T ∗ be the dual operator of T . If there exists g ∈ P ∗ \ {θ} such that

λ1T
∗g = g. (2.16)

Choose a real number δ0 > 0 and let

P (g, δ0) =
{
u ∈ P | g(u) ≥ δ0‖u‖

}
, (2.17)

then it is easy to see that P (g, δ0) is a cone in E.

Lemma 2.7. Suppose that the following conditions are satisfied.

(C1) There exist φ1 ∈ P \ {θ}, g ∈ P ∗ \ {θ} and δ0 > 0 such that (2.14),
(2.16), (2.17) hold and T maps P into P (g, δ0),

(C2) H : E → P is a continuous operator and satisfies that

lim
‖u‖→+∞

‖Hu‖
‖u‖

= 0,

(C3) F : E → E is a bounded continuous operator and there exists u0 ∈ E
such that Fu+ u0 +Hu ∈ P, ∀ u ∈ E,

(C4) There exists v0 ∈ E and σ > 0 such that

TFu ≥ λ1(1 + σ)Tu− THu− v0, ∀ u ∈ E. (2.18)

Let A = TF . Then there exists R > 0 such that

deg(I −A,BR, θ) = 0,

where BR = {u ∈ E | ‖u‖ < R}.

Proof. We shall show that

u 6= TFu+ µϕ1, ∀ u ∈ ∂BR. (2.19)

provided that R is sufficiently large.
In fact, if (2.19) is not true, then there exist u1 ∈ ∂BR and µ1 ≥ 0 satisfying

u1 = TFu1 + µ1φ1. (2.20)
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By (2.16), (2.18) and (2.20), we have

g(u1) =g(TFu1) + µ1g(φ1) ≥ g(TFu1)

≥λ1(1 + σ)g(Tu1)− g(THu1)− g(v0)

=λ1(1 + σ)(T ∗g)(u1)− (T ∗g)(Hu1)− g(v0)

=(1 + σ)g(u1)− λ−11 g(Hu1)− g(v0).

Thus

g(u1) ≤ (σλ1)
−1g(Hu1) + σ−1g(v0). (2.21)

It follows from (C2), (2.14) and (2.21) that

g(u1 + THu1 + Tu0) =g(u1) + (gT )(Hu1) + (gT )(u0)

=g(u1) + λ−11 g(Hu1) + λ−11 g(u0)

≤(σλ1)
−1g(Hu1) + λ−11 g(Hu1) + λ−11 g(u0) + σ−1g(v0)

≤(1 + σ−1)λ−11 ‖g‖ · ‖Hu1‖+ λ−11 g(u0) + σ−1g(v0)

=l1‖Hu1‖+ l2,
(2.22)

where l1 = (1 + σ−1)λ−11 ‖g‖, l2 = λ−11 g(u0) + σ−1g(v0) are two constant.
Then (C1) implies µ1φ1 = µ1λ1Tφ1 ∈ P (g, δ0). It follows from (C3) we

know that Fu1 + u0 +Hu1 ∈ P . By (C1) and (2.20) we have

u1 + THu1 + Tu0 = T (Fu1 +Hu1 + u0) + µ1φ1 ∈ P (g, δ0).

By the definition of P (g, δ0), we have

g(u1+THu1+Tu0) ≥ δ0‖u1+THu1+Tu0‖ ≥ δ0‖u1‖−δ0‖THu1‖−δ0‖Tu0‖.
(2.23)

From (2.22) and (2.23), we have

R = ‖u1‖ ≤δ−10 g(u1 + THu1 + Tu0) + ‖THu1‖+ ‖Tu0‖
≤δ−10 l1‖Hu1‖+ δ−10 l2 + ‖T‖ · ‖Hu1‖+ ‖Tu0‖
=L1‖Hu1‖+ L2,

where L1 = δ−10 l1 + ‖T‖, L2 = δ−10 l2 + ‖Tu0‖. So

1 ≤ L1
‖Hu1‖
‖u1‖

+
L2

‖u1‖
. (2.24)

It follows (C2) that (2.24) cannot hold as R → +∞. Therefore, (2.19) holds
provided that R is sufficiently large. By virtue of the property of omitting a
direction for Leray-Schauder degree, we have deg(I −A,BR, θ) = 0. �
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3. Main Results

Theorem 3.1. Suppose that the conditions (H1)− (H4) are satisfied. If

lim inf
u→+∞

min
t∈[0,1]

f(t, u)

u
> λ1, (3.1)

lim sup
u→0

max
t∈[0,1]

∣∣∣∣f(t, u)

u

∣∣∣∣ < λ1, (3.2)

where λ1 is the first eigenvalue of the operator J defined by (2.7). Then BVP
(1.1) has at least one nontrivial solution.

Proof. First we give some properties of φ2(t) which is the positive eigenfunc-
tion of J corresponding to its first eigenvalue λ1, that is, there exist δ2 ≥ δ1 > 0
such that

δ1K(s, s) ≤ φ2(s) ≤ δ2K(s, s), ∀ s ∈ [0, 1]. (3.3)

We will show that (3.3) holds according to the following four different cases
of boundary condition, respectively.

Cases (i). If β = δ = 0, then by Lemma 2.1 and (2.5) we have G(s, 0) =
G(s, 1), s ∈ [0, 1]. It follows from (2.7) and (2.15) that φ2(0) = φ2(1) = 0,
which implies that φ′2(0) > 0, φ′2(1) < 0. We can define

Φ1(s) =


φ′2(0), s = 0,

φ2(s)

K(s, s)
, 0 < s < 1,

− φ′2(1), s = 1.

Cases (ii). If β = 0, δ > 0, then by Lemma 2.1 and (2.5) we have∫ 1

0
G(s, 1)a(s)u(s)ds > 0, G(s, 0) = 0.

It follows from (2.7) that φ2(0) = 0, φ2(1) > 0, which implies that φ′2(0) > 0.
We can define

Φ2(s) =


φ′2(0), s = 0,

φ2(s)

K(s, s)
, 0 < s ≤ 1.

Cases (iii). If β > 0, δ = 0, then by Lemma 2.1 and (2.5) we have∫ 1
0 G(s, 0)a(s)u(s)ds > 0, G(s, 1) = 0. It follows from (2.7) that φ2(0) >

0, φ2(1) = 0, which implies that φ′2(1) < 0. We can define

Φ3(s) =


φ2(s)

K(s, s)
, 0 ≤ s < 1,

− φ′2(1), s = 1.
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Cases (iv). If β > 0, δ > 0, then by Lemma 2.1 and (2.5) we have∫ 1

0
G(s, 0)a(s)u(s)ds > 0,

∫ 1

0
G(s, 1)a(s)u(s)ds > 0.

We can define

Φ4(s) =
φ2(s)

K(s, s)
, 0 ≤ s ≤ 1.

It is easy to see that Φi(i = 1, 2, 3, 4) are continuous on [0, 1] and Φi(s) > 0
for all s ∈ [0, 1]. So, there exist δi1, δi2 > 0 such that δi1 ≤ Φi(s) ≤ δi2 for all
s ∈ [0, 1], i = 1, 2, 3, 4. Let

δ1 = min
{
δ11, δ21, δ31, δ41

}
, δ2 = max

{
δ12, δ22, δ32, δ42

}
.

So, (3.3) holds. Setting

g(u) =

∫ 1

0
a(t)φ2(t)u(t)dt, ∀ u ∈ E, (3.4)

from (H2) and (3.3), we have∫ 1

0
a(t)φ2(t)u(t)dt ≤ δ2‖u‖

∫ 1

0
K(t, t)a(t)dt < +∞,

which shows that g is well defined on E. In the following we shall show that

λ1T
∗g = g. (3.5)

In fact, by (3.4), (2.15), for any t, s ∈ [0, 1], we have

λ−11 g(u) =

∫ 1

0
a(t)

(
λ−11 φ2(t)

)
u(t)dt =

∫ 1

0
a(t)

(
Jφ2

)
(t)u(t)dt

=

∫ 1

0
a(t)u(t)

∫ 1

0
G(s, t)a(s)φ2(s)dsdt

=

∫ 1

0
a(s)φ2(s)

∫ 1

0
G(s, t)h(t)u(t)dtds

=

∫ 1

0
a(s)φ2(s)

(
Tu
)
(s)ds = g(Tu) =

(
T ∗g

)
(u), ∀ u ∈ E.

(3.6)

So, (3.5) holds. Take δ0 > 0 in (2.17) such that δ1 = δ0λ1M. Next we prove
that T (P ) ⊂ P (g, δ0). From (3.3) we can obtain

φ2(s) ≥ δ0λ1MK(s, s). (3.7)



266 Weiwei Liu, Jiqiang Jiang, Lishan Liu and Yonghong Wu

For any u ∈ P , by (3.6), (3.7) and (2.11), we have

g(Tu) = λ−11 g(u) = λ−11

∫ 1

0
a(s)φ2(s)u(s)ds

≥ δ0M
∫ 1

0
K(s, s)a(s)u(s)ds ≥ δ0(Tu)(t), ∀ t ∈ [0, 1].

(3.8)

Hence, g(Tu) ≥ δ0‖Tu‖, i.e. T (P ) ⊂ P (g, δ0). Therefore, T satisfies condition
(C1) of Lemma 2.7.

Let

(Hu)(t) = c0h(u(t)), ∀ u ∈ E,
where c0 = maxt∈[0,1] c(t). It follows from (H4) we know that H : E → P is
continuous. By the monotonicity of h, we have

h(u(t)) ≤ h(‖u‖), ‖Hu‖ ≤ c0h(‖u‖), ∀ u ∈ E.
So,

lim
‖u‖→+∞

‖Hu‖
‖u‖

≤ lim
‖u‖→+∞

c0h(‖u‖)
‖u‖

≤ lim
x→+∞

c0h(x)

x
= 0,

i.e., lim
‖u‖→+∞

‖Hu‖
‖u‖ = 0. Therefore H satisfies condition (C2) in Lemma 2.7.

Take u0 ≡ b(t), then it follows from (H4) that

Fu+ u0 +Hu ∈ P, ∀ u ∈ E,
namely condition (C3) in Lemma 2.7 holds. From (3.1), there exists ε0 > 0
such that

Fu = f(t, u) ≥ λ1(1 + ε0)u, ∀ t ∈ [0, 1], (3.9)

as u > 0 sufficiently large. Combining (H4)and (3.9), there exists b0 ≥ 0 such
that

Fu ≥ λ1(1 + ε0)u− b0 −Hu, ∀ u ∈ E. (3.10)

Since T is a positive linear operator, by (3.10) we have(
TFu

)
(t) ≥ λ1(1 + ε0)

(
Tu
)
(t)− Tb0 −

(
THu

)
(t), ∀ t ∈ [0, 1]. (3.11)

So condition (C4) in Lemma 2.7 is satisfied. According to Lemma 2.7, there
exists a sufficiently large number R > 0 such that

deg(I −A,BR, θ) = 0. (3.12)

It follows from (3.2) that there exist 0 < ε1 < 1 and 0 < r < R such that for
any u ∈ E with ‖u‖ ≤ r, we have∣∣f(t, u(t))

∣∣ ≤ (1− ε1)λ1|u(t)|, ∀ t ∈ [0, 1]. (3.13)

Next we will prove that

u 6= µAu, for all u ∈ ∂Br and µ ∈ [0, 1]. (3.14)
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If there exist u1 ∈ ∂Br and µ1 ∈ [0, 1] such that u1 = µ1Au1, then by (3.6)
and (3.13), we have

g
(
|u1|
)

=g
(
|µ1Au1|

)
= µ1g

(
|Au1|

)
≤ g
(
|TFu1)|

)
=g

(∣∣∣∣ ∫ 1

0
G(t, s)a(s)f(s, u1(s))ds

∣∣∣∣)
≤(1− ε1)λ1g

(∫ 1

0
G(t, s)a(s)|u1(s)|ds

)
=(1− ε1)λ1g

(
T (|u1(t)|)

)
=(1− ε1)λ1(λ1)−1g

(
|u1(t)|

)
=(1− ε1)g

(
|u1(t)|

)
.

Therefore, g
(
|u1(t)|

)
≤ 0.

On the other hand, φ2(t) > 0 for all t ∈ (0, 1) by the maximum principle
and u1(t) attains zero on isolated points by the Sturm theorem. Hence

g
(
|u1(t)|

)
=

∫ 1

0
h(t)φ2(t) |u1(t)| dt > 0, t ∈ [0, 1].

This is a contradiction. Thus (3.14) holds.
It follows from (3.14) and the homotopy invariance of Leray-Shauder degree

that
deg(I −A,Br, θ) = 1. (3.15)

By (3.12), (3.15) and the additivity of Leray-Shauder degree, we obtain

deg(I −A,BR \Br, θ) = deg(I −A,BR, θ)− deg(I −A,Br, θ) = −1.

As a result, A has at least one fixed point on BR \ Br, namely the singular
BVP(1.1) has at least one nontrivial solution. �

Remark 3.2. The Green function of BVP (1.1) is not necessarily symmetri-
cal. In order to overcome the difficulties caused by the non-symmetry, we seek
one special linear operator J and use its first eigenvalue and its correspond-
ing eigenfunction to construct a linear continuous functional g of P ∗, then
establish a cone to solve our problem.

Corollary 3.3. Using the following condition (H ′4) instead of (H4), the con-
clusion of Theorem 3.1 remains true.

(H ′4) f(t, u) is continuous on [0, 1]×R and there exist constants b > 0, c > 0
and κ ∈ (0, 1) such that

f(t, u) ≥ −b− c|u|κ, ∀ t ∈ [0, 1], u ∈ R.
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Corollary 3.4. Using the following condition (H ′′4 ) instead of (H4), the con-
clusion of Theorem 3.1 remains true.

(H ′′4 ) f(t, u) is continuous on [0, 1] × R and there exists a nonnegative
continuous function b : [0, 1]→ R+ such that

f(t, u) ≥ −b(t), ∀ t ∈ [0, 1], u ∈ R.

Corollary 3.5. Suppose that the conditions (H1)− (H3) are satisfied. If

(H ′′′4 ) f : [0, 1] × R → R is continuous, there exist nonnegative functions
b1, c1 ∈ C[0, 1] with c1(t) 6≡ 0 and one nonincreasing continuous function

h1 : R→ R+ satisfying lim
x→−∞

h1(x)
x = 0, such that

f(t, u) ≤ b1(t) + c1(t)h1(u), t ∈ [0, 1], u ∈ R,

lim inf
u→−∞

f(t, u)

u
> λ1, uniformly on t ∈ [0, 1],

and (3.2) hold, where λ1 is the first eigenvalue of the operator J defined by
(2.7). Then BVP (1.1) has at least one nontrivial solution.

Proof. Denote f1(t, u) = −f(t,−u), t ∈ [0, 1], u ∈ R and define

(A1u)(t) =

∫ 1

0
G(t, s)a(s)f1(s, u(s))ds, t ∈ [0, 1].

It is easy to verify that the conditions of Theorem 3.1 are satisfied in which the
function f replaced by f1. By Theorem 3.1 we know that A1 has at least one
nontrivial fixed point û, i.e., A1û = û. Since f1(s, û(s)) = −f(s,−û(s)), s ∈
[0, 1], thus

−û(t) = −(A1û)(t) =

∫ 1

0
G(t, s)a(s)f(s,−û(s))ds = (A(−û))(t), t ∈ [0, 1].

So, −û is the nontrivial solution of singular BVP (1.1). �

4. An example

In this section, we construct an example to demonstrate the application of
our main result obtained in section 3.
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Example 4.1. Consider the following second-order four-point boundary value
problem 

− u′′ = a(t)f(t, u(t)), 0 < t < 1,

u(0)− u′(0) =
1

4
u
(1

3

)
+

1

9
u
(2

3

)
,

u(1) + u′(1) =
3

8
u
(1

3

)
+ u
(2

3

)
,

(4.1)

with a(t) = 1√
t(1−t)

and

f(t, u) =



n∑
i=1

(−1)iai − (3 + 2t)
√
|u| ln(|u|+ 2011)

+ (3 + 2t) ln 2012, u ∈ (−∞,−1],
n∑
i=1

aiu
i, u ∈ [−1,+∞),

where 0 < a1 < λ1 and an > 0. Then the singular BVP (4.1) has at least one
nontrivial solution.

Proof. It is obvious that a is singular at t = 0, 1 and
∫ 1
0 a(t)dt = π < +∞,

f is a continuous sign-changing function and unbounded from below. BVP
(4.1) can be regard as a boundary value problem of the form of (1.1). In this
situation, p(t) ≡ 1, q(t) ≡ 0, α = β = γ = δ = 1 and

ξ(s) =


0, s ∈

[
0,

1

3

)
,

1

4
, s ∈

[1

3
,
2

3

)
,

13

36
, s ∈

[2

3
, 1
]
,

η(s) =


0, s ∈

[
0,

1

3

)
,

3

8
, s ∈

[1

3
,
2

3

)
,

11

8
, s ∈

[2

3
, 1
]
.

Take b(t) =
∑n

i=1 ai+(3+2t) ln 2012, c(t) = 3+2t, h(u) =
√
|u| ln(|u|+2011).

Then h : R → R+ is a continuous function and h is nondecreasing on R
satisfying

lim
u→+∞

h(u)

u
= 0.

Moreover,
f(t, u) ≥ −b(t)− c(t)h(u), t ∈ [0, 1], u ∈ R.

By calculations, we get

φ(t) =
2− t

3
, ψ(t) =

1 + t

3
, t ∈ [0, 1],

k1 =
263

324
, k2 =

14

81
, k3 =

47

72
, k4 =

5

18
, k ≈ 0.112654321 > 0.
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It is easy to prove that all the conditions of Theorem 3.1 are satisfied. Con-
sequently, we infer that singular BVP (4.1) has at least one nontrivial solu-
tion. �
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