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Abstract. We introduce a new concept of abstract convex minimal spaces which is used to

establish typical results in the KKM theory. Since any minimal space can be made into a

topological space, results on abstract convex minimal spaces can be deduced from the theory

on abstract convex spaces. In this way, the KKM type theorems are used to obtain coinci-

dence theorems, the Fan-Browder type fixed point theorems, the Fan intersection theorem,

and the Nash equilibrium theorem on abstract convex minimal spaces.

1. Introduction

Many problems in nonlinear analysis can be solved by showing the nonemp-
tyness of the intersection of certain family of subsets of an underlying set.
One of the remarkable results on the nonempty intersection is the celebrated
Knaster-Kuratowski-Mazurkiewicz theorem (simply, the KKM principle) in
1929 [9], which is concerned with certain types of multimaps called the KKM
maps.

The KKM theory, first named by the author [11], is nowadays the study
of applications of various equivalent formulations of the KKM principle and
their generalizations. In the last fifteen years, the KKM theory is extended
to generalized convex (G-convex) spaces in a sequence of papers of the author
and his followers; for details, see [12-15,18-21] and references therein.
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In our previous paper [16], we introduced a new concept of abstract convex
spaces which is adequate to establish the KKM theory. With this new concept,
we generalized and simplified known results of the theory on convex spaces,
H-spaces, G-convex spaces, and others. Moreover, the KKM type theorems
were used there to obtain coincidence theorems and fixed point theorems.

Apparently motivated by the author’s works, recently, Alimohammady et
al. [1] introduced the notion of minimal G-convex spaces and obtained the
open and closed versions of the KKM principle in this new setting. Their
method is just replacing the topological structure in the relevant results by
the more general minimal structure as in [2].

Our aim in the present paper is to introduce a new concept of abstract con-
vex minimal spaces which is also useful to establish major results in the KKM
theory. With this new concept, we obtain generalizations of the KKM prin-
ciple. Since any minimal space can be made into a topological space, results
on abstract convex minimal spaces can be deduced from the theory on ab-
stract convex spaces. In this way, the KKM type theorems on abstract convex
spaces in [16] are used to obtain coincidence theorems, the Fan-Browder type
fixed point theorems, the Fan intersection theorem, and the Nash equilibrium
theorem on abstract convex minimal spaces.

Section 2 is concerned with preliminaries on abstract convex spaces in [16]
and on minimal spaces in [1,2]. In Section 3, we deduce various forms of the
KKM principle for abstract convex minimal spaces. Section 4 deals with coin-
cidence theorems and the Fan-Browder type fixed point theorems for abstract
convex minimal spaces. Finally, in Section 5, applications to the Fan intersec-
tion theorem and the Nash equilibrium theorem are obtained. Our new results
are just a few examples of the theory which generalize and unify known results
in the literature.

2. Abstract convex spaces

In this section, we recall definitions and some basic results on abstract
convex spaces given in [16] and some of their new consequences.

A multimap F : X ( Y is a function from a set X into the power set P(Y )
of Y ; that is, a function with the values F (x) ⊂ Y for x ∈ X and the fibers
F−(y) := {x ∈ X | y ∈ F (x)} for y ∈ Y . We use the term map instead of
multimap. For A ⊂ X, let F (A) :=

⋃{F (x) |x ∈ A}. For any B ⊂ Y , the
(lower) inverse of B under F is defined by

F−(B) := {x ∈ X | F (x) ∩B 6= ∅}.

Let 〈D〉 denote the set of all nonempty finite subsets of a set D.
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Definitions. An abstract convex space (E, D; Γ) consists of a nonempty set
E, a nonempty set D, and a map Γ : 〈D〉 ( E with nonempty values. We
may denote ΓA := Γ(A) for A ∈ 〈D〉.

For any D′ ⊂ D, the Γ-convex hull of D′ is denoted and defined by

coΓD′ :=
⋃
{ΓA | A ∈ 〈D′〉} ⊂ E.

[ co is reserved for the convex hull in vector spaces.]
A subset X of E is called a Γ-convex subset of (E, D; Γ) relative to D′ if for

any N ∈ 〈D′〉, we have ΓN ⊂ X, that is, coΓD′ ⊂ X. Then (X, D′; Γ|〈D′〉) is
called a Γ-convex subspace of (E, D; Γ).

When D ⊂ E, the space is denoted by (E ⊃ D; Γ). In such case, a subset X
of E is said to be Γ-convex if coΓ(X ∩D) ⊂ X; in other words, X is Γ-convex
relative to D′ := X ∩D. In case E = D, let (E; Γ) := (E, E; Γ).

An abstract convex space with a topology on E is called an abstract convex
topological space.

Examples. 1. Examples of abstract convex spaces were given in Section 5 of
[16].

2. A generalized convex space or a G-convex space (X, D; Γ) consists of a
topological space X, a nonempty set D, and a map Γ : 〈D〉 ( X such that
for each A ∈ 〈D〉 with the cardinality |A| = n + 1, there exists a continuous
function φA : ∆n → Γ(A) such that J ∈ 〈A〉 implies φA(∆J) ⊂ Γ(J).

Here, ∆n is the standard n-simplex with vertices {ei}n
i=0, and ∆J the face

of ∆n corresponding to J ∈ 〈A〉; that is, if A = {a0, a1, . . . , an} and J =
{ai0 , ai1 , . . . , aik} ⊂ A, then ∆J = co{ei0 , ei1 , . . . , eik}.

For details on G-convex spaces, see [12-15,18-21], where basic theory was
developed and lots of examples of G-convex spaces were given.

Definitions. [1,2] A family M ⊂ P(X) is called a minimal structure on a
set X if ∅, X ∈ M. In this case, (X,M) is called a minimal space. Any
element of M is called an m-open set of X and a complement of an m-open
set is called an m-closed set of X. For minimal spaces (X,M) and (Y,N ), a
function f : X → Y is said to be continuous (more precisely, m-continuous
or (M,N )-continuous) if f−1(V ) ∈M for each V ∈ N .

From now on, an abstract convex space (E, D; Γ) with a minimal structure
on E will be called an abstract convex minimal space.

Examples. 1. Any topological space is a minimal space and not conversely.
However, any minimal space can be made into a topological space; see Propo-
sition 1 below.

2. Any t.v.s. is a minimal vector space. There is some linear minimal space
which is not a t.v.s. [1].



182 Sehie Park

3. A generalized convex minimal space or a G-convex minimal space (X, D; Γ)
consists of a minimal space X, a nonempty set D, and a map Γ : 〈D〉 ( X
such that for each A ∈ 〈D〉 with the cardinality |A| = n+1, there exists a con-
tinuous function φA : ∆n → Γ(A) such that J ∈ 〈A〉 implies φA(∆J) ⊂ Γ(J).
See [1].

4. A G-convex space is a G-convex minimal space, and the converse does
not hold; for an example, see [1].

5. A φA-space (X, D; {φA}A∈〈D〉) consisting of a topological [resp., minimal]
space X, a nonempty set D, and a family of continuous functions φA : ∆n → X
for A ∈ 〈D〉 with the cardinality |A| = n + 1 and an n-simplex ∆n, is an
abstract convex topological [resp., minimal] space by putting ΓA := φA(∆n);
see [17].

It is obvious that basic facts on generalized convex spaces (e.g. in [12])
can be extended to corresponding ones on generalized convex minimal spaces.
However, we have the following:

Proposition 1. (i) A minimal space (X,M) can be made into a topological
space (X, T ).

(ii) A continuous map f : (X,M) → (Y,N ) between minimal spaces can be
regarded as a continuous map between the corresponding topological spaces.

Proof. (i) Any collection M of subsets of a set X is a subbasis for a topology
T on X.

(ii) A map f is continuous iff the inverse image f−1(N) of each member N
of the subbasis N for Y is M-open in X. ¤

Proposition 2. A φA-space (X, D; {φA}A∈〈D〉) with a minimal space (X,M)
can be regarded as the one with a topological space (X, T ).

Consequently, a G-convex minimal space can be made into a G-convex
space.

For abstract convex spaces, we can define KKM maps as in [16]:

Definitions. Let (E, D; Γ) be an abstract convex space and Z a set. For a
map F : E ( Z with nonempty values, if a map G : D ( Z satisfies

F (ΓA) ⊂ G(A) :=
⋃

y∈A

G(y) for all A ∈ 〈D〉,

then G is called a KKM map with respect to F . A KKM map G : D ( E is
a KKM map with respect to the identity function 1E .

A map F : E ( Z is said to have the KKM property and called a K-map if,
for any KKM map G : D ( Z with respect to F , the family {G(y)}y∈D has
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the finite intersection property. We denote

K(E, Z) := {F : E ( Z | F is a K-map}.
Similarly, when Z is a topological space, a KC-map is defined for closed-

valued maps G, and a KO-map for open-valued maps G. In this case, we
have

K(E, Z) ⊂ KC(E, Z) ∩ KO(E, Z).

Note that if Z is discrete then three classes K, KC, and KO are identical.
Some authors [5] use the notation KKM(E, Z) instead of KC(E,Z).

Further, when (Z,M) is a minimal space, an mKC-map is defined for m-
closed-valued maps G, and an mKO-map for m-open-valued maps G. In this
case, we have

K(E, Z) ⊂ mKC(E, Z) ∩mKO(E,Z).

Examples. 1. Every abstract convex space in our sense has a map F ∈
K(E, Z) for any nonempty set Z and for any class of KKM maps G : D ( Z
with respect to F . In fact, for each x ∈ E, choose F (x) := Z or let F (x)
contain some z0 ∈ Z.

2. Further examples are given in Section 5 of [16].

The following is known in [12,13,21]:

Lemma. Let (E,D; Γ) be a G-convex space and F : D ( E a KKM map
with closed [resp., open ] values. Then {F (z)}z∈D has the finite intersection
property.

For a KKM map on a G-convex minimal space, we have the following:

Proposition 3. [1, Theorems 3.2 and 3.5] Let (E, D; Γ) be a G-convex mini-
mal space and F : D ( E a KKM map with m-closed [resp., m-open ] values.
Then {F (z)}z∈D has the finite intersection property.

This is a direct consequence of Lemma in view of Proposition 1. Essen-
tially, the proof of Proposition 3 in [1] is the one in [12,13,21] with minor
modifications.

Usually, a KKM type theorem is a claim 1E ∈ K(E, E) for an abstract
convex space (E, D; Γ). There are a large number of works on various forms
of the KKM type theorems for convex spaces, H-spaces, or G-convex spaces
and their applications. See Section 5 of [16] and the references at the end.

Definitions. For an abstract convex minimal space (E,D; Γ), the KKM prin-
ciple is the statement 1E ∈ mKC(E, E) ∩mKO(E, E).

A minimal KKM space (or simply, mKKM space) is an abstract convex
minimal space satisfying the KKM principle.
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Example. In view of Proposition 3, a G-convex minimal space is an mKKM -
space. The converse does not hold; see [17].

3. The KKM type theorems in abstract convex spaces

We begin with the following in [16]:

Theorem 1. Let (E,D; Γ) be an abstract convex space, Z a set, and F : E (
Z a map. Then F ∈ K(E, Z) iff for any map G : D ( Z satisfying

F (ΓN ) ⊂ G(N) for anyN ∈ 〈D〉, (1.1)

we have F (E) ∩⋂{G(y) | y ∈ N} 6= ∅ for each N ∈ 〈D〉.
Remark. If Z has any minimal structure and if F ∈ mKO(E,Z) [resp.,
F ∈ mKC(E, Z)], then we have to assume G is m-open-valued [resp., m-
closed-valued].

In this section, we show that some results for abstract convex minimal
spaces can be deduced from the corresponding ones for abstract convex spaces
in Section 3 of [16].

For an abstract convex minimal space, from Theorem 1 with E = Z and
F = 1E , the following recovers the meaning of 1E ∈ mKC(E,E) or 1E ∈
mKO(E, E):

Corollary 1.1. Let (E, D; Γ) be an abstract convex minimal space. Then the
identity map 1E belongs to mKC(E, E) [resp., 1E ∈ mKO(E, E)] iff for any
map G : D ( E satisfying

(1) G has m-closed [resp., m-open ] values, and
(2) G is a KKM map,

{G(y)}y∈D has the finite intersection property.

Definitions. [1] A subset K of a minimal space (Z,M) is said to be m-
compact if any family {Aα} of m-open sets such that K ⊂ ⋃

α Aα has a finite
subfamily {Aαi} such that K ⊂ ⋃

i Aαi .
For a subset A of a minimal space (Z,M), let IntA =m-IntA :=

⋃{U ∈
M | U ⊂ A} and A = m-ClA :=

⋂{V | A ⊂ V, V c ∈ M}. Note that A is
m-closed if and only if arbitrary union of m-open sets is m-open [22].

Under an additional requirement, we have the whole intersection property
for the map-values of a KKM map:

Corollary 1.2. Let (E, D; Γ) be an abstract convex minimal space with the
identity map 1E ∈ mKC(E,E), and G : D ( E a map satisfying

(1) G has m-closed values, and
(2) G is a KKM map.
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Then {G(y)}y∈D has the finite intersection property.
Further if
(3)

⋂
z∈M G(z) is m-compact for some M ∈ 〈D〉,

then we have ⋂

y∈D

G(y) 6= ∅.

Proof. Since 1E ∈ mKC(E, E), by definition, {G(y)}y∈D has the finite in-
tersection property. Now the whole intersection property follows from the
compactness (3). ¤

Remark. Corollary 1.2 reduces to results in [12,13,21] for G-convex spaces,
to [16, Proposition 5] for an abstract convex topological spaces, and to [1,
Theorem 3.2] for G-convex minimal spaces.

Corollary 1.3. Let (E, D; Γ) be an abstract convex minimal space with the
identity map 1E ∈ mKC(E,E), and G : D ( E a map satisfying

(1)
⋂

y∈D G(y) =
⋂

y∈D G(y),
(2) G has m-closed values,
(3) G is a KKM map, and
(4)

⋂
z∈M G(z) is m-compact for some M ∈ 〈D〉.

Then we have ⋂

y∈D

G(y) 6= ∅.

Remarks. 1. Some authors call G a transfer closed map when
⋂

y∈D G(y) =⋂
y∈D G(y).
2. Corollary 1.3 reduces to results in [12,13,21] for G-convex spaces, to [16,

Proposition 5] for abstract convex topological spaces, and to [1, Theorem 3.3]
for G-convex minimal spaces.

Corollary 1.4. Let (E, D; Γ) be an abstract convex minimal space with the
identity map 1E ∈ mKO(E, E), and G : D ( E a map satisfying

(1) G has m-open values, and
(2) G is a KKM map.

Then {G(y)}y∈D has the finite intersection property.
Further if

(3)
⋂

z∈M G(z) is m-compact for some M ∈ 〈D〉, and
(4) G has m-closed values,
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then we have ⋂

y∈D

G(y) 6= ∅.

Proof. Since 1E ∈ mKO(E, E), by definition, {G(y)}y∈D has the finite in-
tersection property. Now the whole intersection property follows from the
compactness (3). ¤

Remark. Corollary 1.4 reduces to results in [12,13] for G-convex spaces, to
[16, Proposition 5] for abstract convex topological spaces, and to [1, Theorem
3.3] for G-convex minimal spaces.

The following is a basic observation:

Theorem 2. Let (E, D; Γ) be an abstract convex minimal space and Z a min-
imal space. If 1E ∈ mKC(E,E), then f ∈ mKC(E, Z) for any m-continuous
function f : E → Z. This also holds for mKO.

Proof. Let G : D ( Z be a m-closed-valued map satisfying f(ΓN ) ⊂ G(N) or
ΓN ⊂ f−1G(N) for each N ∈ 〈D〉. Since 1E ∈ mKC(E, E) and f−1G : D ( E
is m-closed-valued, {f−1G(y)}y∈D has the finite intersection property. Hence,
so does {G(y)}y∈D. Therefore, f ∈ mKC(E,Z). Similarly, we can show the
case for mKO. ¤

4. Coincidence and fixed point theorems

In the KKM theory, there exist some basic results from which we can deduce
several equivalent formulations that can be used to applications; see [12]. In
this section, we introduce some of such basic results.

For abstract convex spaces, we have the following coincidence theorem as
in [16]:

Theorem 3. Let (E, D; Γ) be an abstract convex space, Z a set, S : D (
Z, T : E ( Z maps, and F ∈ K(E,Z). Suppose that

(3.1) for each z ∈ F (E), coΓS−(z) ⊂ T−(z) [that is, T−(z) is Gamma-
convex relative to S−(z)]; and

(3.2) F (E) ⊂ S(N) for some N ∈ 〈D〉.
Then there exists an x̄ ∈ E such that F (x̄) ∩ T (x̄) 6= ∅.
Proof. For each y ∈ D, define R(y) := F (E) r S(y). Then

⋂
y∈N R(y) =

F (E)r
⋃

y∈N S(y) = ∅ by (3.2), that is, the values of the map R : D ( Z does
not have the finite intersection property. Since F ∈ K(E, Z), F (ΓM ) 6⊂ R(M)
for some M ∈ 〈D〉. Hence, there exist x̄ ∈ ΓM and z̄ ∈ F (x̄) ⊂ F (E) such
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that z̄ 6∈ R(M). Then, z̄ ∈ S(y) or y ∈ S−(z̄) for all y ∈ M . This implies
x̄ ∈ ΓM ⊂ T−(z̄) by (3.1). Therefore, z̄ ∈ F (x̄) ∩ T (x̄). ¤

Remark. If Z has a minimal structure and S has m-open [resp., m-closed]
values, then R has relatively m-closed [resp., m-open] values in F (E). Then
we can assume F ∈ mKC(E, Z) [resp., F ∈ mKO(E, Z)].

From Theorem 3, we have the following prototype of the Fan-Browder fixed
point theorem [4]:

Corollary 3.1. Let (E, D; Γ) be a minimal KKM space, and G : E ( D, H :
E ( E maps satisfying

(1) for each x ∈ E, coΓG(x) ⊂ H(x); and
(2) E = G−(N) for some N ∈ 〈D〉.
(3) G− has m-open [resp., m-closed ] values.

Then H has a fixed point x̄ ∈ E, that is, x̄ ∈ F (x̄).

Proof. In Theorem 3, let E = Z, S := G−, T := H−, and F := 1E . ¤

Remark. Corollary 3.1 is originated from [4] and one of the most useful
results in the KKM theory.

Corollary 3.2. Let (E, D; Γ) be a G-convex minimal space, and G : E (
D, H : E ( E maps satisfying (1)− (3) in Corollary 3.1. Then H has a fixed
point x̄ ∈ E, that is, x̄ ∈ F (x̄).

Proof. A G-convex minimal space is a minimal KKM space by Proposition
3. ¤

From Corollary 3.1, we deduce some new forms of the Fan-Browder type
fixed point theorems:

Corollary 3.3. Let (E,D; Γ) be a minimal KKM space and S : E ( D,
T : E ( E maps such that

(1) for each x ∈ E, coΓS(x) ⊂ T (x); and
(2) there exist D′ := {z1, z2, . . . , zn} ∈ 〈D〉 and m-open [resp., m-closed ]

subsets {Gi}n
i=1 of E such that

E =
n⋃

i=1

Gi and Gi ⊂ S−(zi) for each i.

Then T has a fixed point x∗ ∈ E.

Proof. Consider the abstract convex space (E, D′; Γ) where Γ : 〈D′〉 ( X is
actually the restriction Γ|〈D′〉 of the original Γ. Define a map G : E ( D′ by
G−(zi) = Gi for each zi ∈ D′. Note that G(x) ⊂ S(x) for each x ∈ X. Now
Corollary 3.1 with H := T works. ¤
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Remarks. 1. In Corollary 3.3, let ET := {x ∈ E | x /∈ T (x)}. Then condition
E =

⋃n
i=1 Gi in (2) can be replaced by ET =

⋃n
i=1 Gi without affecting the

conclusion of Corollary 3.3. In fact, suppose that T has no fixed point, that
is, E = ET . Then by Corollary 3.3, T has a fixed point, a contradiction.

2. For a G-convex space, Corollary 3.3 reduces to [15, Theorem 8], which
has a number of variants as shown in [15].

Corollary 3.4. Let (E, D; Γ) be a G-convex minimal space and S : E ( D,
T : E ( E maps satisfying (1) − (2) in Corollary 3.3. Then T has a fixed
point x∗ ∈ E.

Popular generalizations of the Fan-Browder fixed point theorem have the
form of Corollary 3.3 for E = D and S = T as follows:

Corollary 3.5. Let (E; Γ) be an m-compact minimal KKM space and T :
E ( E a map satisfying

(1) for each x ∈ E, T (x) is nonempty Γ-convex; and
(2) for each y ∈ E, T−1(y) is m-open.

Then T has a fixed point x∗ ∈ E.

5. The nash equilibrium theorem

In this section, from a Fan-Browder type fixed point result, we deduce
the Fan intersection theorem and the Nash equilibrium theorem for abstract
convex minimal spaces.

Given a cartesian product X =
∏n

i=1 Xi of sets, let Xi =
∏

j 6=i Xj and
πi : X → Xi, πi : X → Xi be the projections; we write πi(x) = xi and
πi(x) = xi. Given x, y ∈ X, we let

(yi, x
i) = (x1, . . . , xi−1, yi, xi+1, . . . , xn).

From Corollary 3.5, we have the following Fan type intersection theorem:

Theorem 4. Let X =
∏n

i=1 Xi, (X, Γ) be an m-compact minimal KKM space,
and A1, A2, . . . , An be n subsets of X such that

(4.1) for each x ∈ X and i = 1, . . . , n, the set Ai(x) := {y ∈ X | (yi, x
i) ∈

Ai} is Γ-convex and nonempty;
(4.2) for each y ∈ X and i = 1, . . . , n, the set Ai(y) := {x ∈ X | (yi, x

i) ∈
Ai} is m-open; and

(4.3) any finite intersection of m-open sets in X is m-open.
Then

⋂n
i=1 Ai 6= ∅.

Proof. Define a map T : X ( X by T (x) :=
⋂n

i=1 Ai(x) for x ∈ X. Then
each T (x) is Γ-convex being an intersection of Γ-convex sets by (4.1). For
each x ∈ X and each i, there exists a y(i) ∈ Ai(x) by (4.1), or (y(i)

i , xi) ∈ Ai.
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Hence, we have (y(1)
1 , . . . , y

(n)
n ) ∈ ⋂n

i=1 Ai(x). This shows T (x) 6= ∅. Moreover,
T−(y) =

⋂n
i=1 Ai(y) is m-open for each y ∈ X by (4.2) and (4.3). Now, the

conclusion follows from Corollary 3.5. ¤

Remarks. 1. If each Xi is a compact G-convex space, so is X.
2. In view of Theorem 3, condition (4.2) can be replaced by the following:

X =
⋃

y∈X

Int

(
n⋂

i=1

Ai(y)

)
. (4.2)′

Particular Forms. For a compact G-convex space (X, Γ), Theorem 4 reduces
to [14, Theorem 4.6], which includes the following:

1. Ky Fan [6, Theorem 2]: Xi are compact convex subsets of topological
vector spaces in Theorem 4.

2. Bielawski [3, Proposition (4.12) and Theorem (4.15)]: Theorem 4 for X
having a finitely local convexity, which is a particular type of his simplicial
convexity.

3. Kirk, Sims, and Yuan [8, Theorem 5.2]: Theorem 4 for hyperconvex
metric spaces, which are of extremely particular type of G-convex spaces.

From Theorem 4, we deduce the following Nash equilibrium theorem for
abstract convex spaces:

Theorem 5. Let X =
∏n

i=1 Xi, (X, Γ) be an m-compact minimal KKM space,
and f1, . . . , fn : X → R continuous real functions such that

(5.1) any finite intersection of m-open sets in X is m-open; and
(5.2) for each x ∈ X, each i = 1, . . . , n, and each r ∈ R, the set {(yi, x

i) ∈
X | fi(yi, x

i) > r} is Γ-convex.

Then there exists a point x ∈ X such that

fi(x) = max
yi∈Xi

fi(yi, x
i) for i = 1, . . . , n.

Proof. Let ε > 0 and, for each i, let

Aε
i = {x ∈ X | fi(x) > max

yi∈Xi

fi(yi, x
i)− ε}.

Then the sets Aε
1, . . . , A

ε
n satisfy conditions (4.1)-(4.3) of Theorem 4, and hence⋂n

i=1 Aε
i 6= ∅. Then Hε =

⋂n
i=1 Aε

i is a nonempty m-compact set. Since
Hε1 ⊂ Hε2 for ε1 < ε2, we have

⋂
ε>0 Hε 6= ∅. Then x ∈ ⋂

ε>0 Hε satisfies the
conclusion. ¤



190 Sehie Park

Particular Forms. For a compact G-convex space (X, Γ), Theorem 5 reduces
to [14, Theorem 4.7], which includes the following:

1. Nash [10]: Each Xi is a compact convex subset of a Euclidean space in
Theorem 5.

2. Fan [7, Theorem 4]: Xi are compact convex subsets of real Hausdorff
topological vector spaces in Theorem 5.

3. Bielawski [3, Theorem (4.16)]: Theorem 5 for X having a finitely local
convexity.

4. Kirk, Sims, and Yuan [8, Theorem 5.3]: Theorem 5 for hyperconvex
metric spaces.
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