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PARABOLIC AND HYPERBOLIC SYSTEMS
DETERMINED BY COERCIVE OPERATOR

VALUED MEASURES
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School of Information Technology and Engineering and Department of Mathematics,
University of Ottawa, Ottawa, Canada

Abstract. In this paper we consider a class of distributed parameter systems governed by

parabolic and hyperbolic partial differential equations containing operators which are mea-

sures. We prove existence, uniqueness and regularity properties of weak solutions. This

covers the important and well established class of systems considered by J.L Lions as spe-

cial case. Control problems with quadratic cost are treated for parabolic problems only.

Following similar technique these results can be extended to hyperbolic systems also.

1. Introduction

In two recent papers [1,2] the author studied systems governed by opera-
tor valued measures under the assumption that they are countably additive
in the uniform operator topology. This assumption has been also used in
the semigroup setting [9] where the principal operator is assumed to be the
infinitesimal generator C0-semigroups and the perturbing operator is a mea-
sure. The objective of this paper is to study abstract parabolic and hyperbolic
partial differential equations where the principal operator itself is an operator
valued measure which is assumed to be countably additive only in the weak op-
erator topology. We use the classical Galerkin technique to establish existence
and uniqueness of weak solutions and also study the regularity properties. We
consider a control problem with quadratic cost functional and present a result
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on the existence of optimal controls. Further we also present necessary condi-
tions of optimality. These results are expected to be useful also in structural
control theory as developed in [1].

2. Preliminaries

Function Spaces: Let H be a real separable Hilbert space with scalar prod-
uct and norms denoted by (v, w) and |v| ≡

√
(v, v) respectively for v, w ∈ H.

Let V be a linear subspace of the Hilbert space H carrying the structure of a
Hilbert space with the scalar product denoted by (v, w) ≡ (v, w)V and norm
denoted by ‖ v ‖V with V ∗ denoting its topological dual. Identifying H with
its own dual and assuming that V is dense in H, we have the inclusion

V ↪→ H ↪→ V ∗

where the injections are continuous and dense. The duality pairing between
v ∈ V and w ∈ V ∗ is denoted by

< v, w >≡< v,w >V,V ∗ .

In case w ∈ H, this reduces to the scalar product in H. We assume that there
exists a complete system of basis vectors {vi} ⊂ V which is orthogonal in
V and V ∗ and ortho-normal in H and that they span all the three spaces
{V, H, V ∗} known as the Gelfand triple. For more details on these spaces see
[6,3].

Let I ≡ [0, T ] be an interval with T < ∞ and let Σ ≡ σ(I) denote the
sigma algebra of subsets of the set I. Let B(I, H) denote the vector space of
bounded Σ measurable functions on I with values in H. Furnished with the
sup norm topology, this is a Banach space. Let µ be any countably additive
positive measure on Σ having bounded total variation on I. For any of the
spaces X ≡ {V,H, V ∗} and 1 ≤ p ≤ ∞, we let Lp(µ,X) denote the Lebesgue-
Bochner space of measurable functions on I with values in X satisfying

∫

I
‖ f(s) ‖p

X µ(ds) < ∞.

Strictly speaking this is the equivalence class of µ measurable X valued func-
tions whose X-norms are p−th power integrable. Furnished with the standard
norm topology this is a Banach space. By Lp(µ) we denote the Banach space
of scalar valued p-th power µ integrable functions defined on the interval I.
By BV (I,X) we denote the vector space of functions, defined on I and taking
values from the Banach space X, having bounded total variation. Furnished
with total variation norm this is a Banach space.
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Vector Measures: Let F be a Banach space and I ≡ [0, T ] a bounded
interval with Σ ≡ σ(I) the sigma algebra of subsets of the set I. Let Mc(Σ, F )
denote the space of bounded countably additive vector measures defined on the
sigma algebra Σ with values in the Banach space F. This is furnished with the
topology induced by the total variation norm. That is, for each ν ∈Mc(Σ, F ),
we write

|ν| ≡ |ν|(I) ≡ sup
π
{
∑
σ∈π

‖ ν(σ) ‖F }

where the supremum is taken over all partitions π of the interval I into a finite
number of disjoint members of Σ. With respect to this topology, Mc(Σ, F )
is a Banach space. For any σ ∈ Σ, denote the variation of ν on σ by |ν|(σ).
Since ν is countably additive and bounded, this defines a countably additive
bounded positive measure on Σ see [7, Proposition 9,p3]. In case F = R, the
real line, we have the space of real valued signed measures. We denote this
simply by Mc(Σ) in place of Mc(Σ, R). Clearly for ν ∈ Mc(Σ), |ν|(·) is also
a countably additive bounded positive measure. For detailed study of vector
measures see [7].

Operator Valued Measures: Let E and F be any pair of Banach spaces and
L(E,F ) the space of bounded linear operators from E to F. Let τu, τs, τw de-
note the uniform, strong and weak operator topologies respectively on L(E, F )
and let Lu(E, F ),Ls(E, F ),Lw(E, F ) denote the corresponding locally convex
linear topological spaces. It is well known that Lu(E, F ) is a Banach space,
Ls(E, F ) is a locally convex sequentially complete topological vector space.
This later fact is a consequence of Banach-Steinhaus theorem and uniform
boundedness principle. The space Lw(E, F ) is also a locally convex topologi-
cal vector space.

A set function Φ mapping Σ to L(E, F ) is said to be an operator valued
measure if for each σ ∈ Σ, Φ(σ) ∈ L(E,F ) and Φ(∅) = 0 the zero oper-
ator. We denote by Mc(Σ,Lu(E, F )), Mc(Σ,Ls(E, F )) and Mc(Σ,Lw(E,F ))
the space of operator valued measures which are countably additive in the uni-
form operator topology, strong operator topology, and weak operator topology
respectively having bounded total variation, and bounded semivariations re-
spectively.

Now we are prepared to undertake the study of dynamic systems and con-
trol.

3. Linear parabolic systems

First let us recall the classical model of J.L Lions

ẋ + Ax = f, x(0) = ξ, t ∈ I. (1)
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Suppose the operator A satisfy the following properties: there exist constants
c > 0, λ ≥ 0 and α > 0 such that

(A1): < Av,w >V ∗,V ≤ c ‖ v ‖V ‖ w ‖V ∀ v, w ∈ V

(A2): < Av, v > + λ |v|2H ≥ α ‖ v ‖2
V ∀ v ∈ V.

Clearly the assumption (A1) implies that A ∈ L(V, V ∗). Assumption (A2)
implies that A is coercive in the sense that

lim
‖v‖V →∞

< Av, v >

‖ v ‖V
= +∞.

The following result is due to Lions and well known [6,3,4].

Theorem 3.1. Suppose A satisfy the assumptions (A1) and (A2). Then for
every ξ ∈ H and f ∈ L2(I, V ∗), system (1) has a unique weak solution x ∈
C(I,H). Further ẋ ∈ L2(I, V ∗).

Proof. For detailed proof see [6] and [4]. ¤
This result is classical and has been extensively used in the study of optimal

control of systems governed by partial differential equations [3,4,6] of parabolic
and also hyperbolic types. In case f ∈ L2(I,H) one can also use semigroup
theory (see [5]) to construct a unique mild solution given by

x(t) = S(t)ξ +
∫ t

0
S(t− r)f(r)dr, t ∈ I,

where S(t), t ≥ 0, is the C0 semigroup in H generated by AH , the part of
A in H. In case f ∈ L2(I, V ∗) one can use continuity and density of the
embedding H ↪→ V ∗ to prove that there is a sequence {fn} ∈ L2(I, H) that
converges to f ∈ L2(I, V ∗) strongly in the norm topology of L2(I, V ∗) and
that the corresponding mild solutions converge weakly to the weak solution of
the original Cauchy problem with f ∈ L2(I, V ∗).

Our objective in this section is to prove a result analogous to that of The-
orem 3.1 for systems (with measures) of the form

dx + A(dt)x = f(t)α(dt), t ∈ I, x(0) = ξ ∈ H, (2)

where the operator A is a measure, that is, a set function A : Σ −→ L(V, V ∗),
and α(·) is a countably additive positive measure having bounded variation.
We introduce the following assumptions:

(M1): A : Σ −→ L(V, V ∗) is a weakly countably additive bounded operator
valued measure in the sense that for each v, w ∈ V , the scalar valued measure

σ 3 Σ −→< A(σ)v, w >
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is countably additive having bounded variation. In other words A ∈ Mc(Σ,
Lw(V, V ∗)).

(M2): there exist two countably additive nonnegative measures λ(·) and
β(·) having bounded variation on I so that

| < A(σ)v, w > | ≤ β(σ) ‖ v ‖V ‖ w ‖V ∀ σ ∈ Σ, v, w ∈ V, (3)
< A(σ)v, v > +λ(σ) |v|2H ≥ α(σ) ‖ v ‖2

V ∀ σ ∈ Σ. (4)

We wish to prove existence and uniqueness of weak solutions for the system
(2). For this purpose we need the following Lemma giving a-priori bounds.

Lemma 3.2. Suppose the operator valued measure A(·) satisfy the assump-
tions (M1) and (M2) and ξ ∈ H and f ∈ L2(α, V ∗). Then if x is any solution
of equation (2) we have x ∈ B(I,H) ∩ L∞(I, H) ∩ L2(α, V ).

Proof. If x is any solution of the evolution equation (2), x must satisfy the
following identity
∫ t

0
< dx(s), x(s) > +

∫ t

0
< A(ds)x(s), x(s) > =

∫ t

0
< f(s), x(s) > α(ds), (5)

for all t ∈ I. Using elementary distribution theory one can easily verify that
< dx(t), x(t) >= (1/2)d(|x(t)|2H). Hence it follows from equation (5) that

|x(t)|2H − |ξ|2H + 2
∫ t

0
< A(ds)x(s), x(s) >

= 2
∫ t

0
< f(s), x(s) > α(ds), t ∈ I. (6)

Using assumption (M2), it follows from the above expression that

|x(t)|2H + 2
∫ t

0
‖ x(s) ‖2

V α(ds)

≤ |ξ|2H + 2
∫ t

0
|x(s)|2Hλ(ds) + 2

∫ t

0
‖ f(s) ‖V ∗‖ x(s) ‖V α(ds), t ∈ I. (7)

For any ε > 0, it follows from Cauchy inequality that

2
∫ t

0
‖ f(s) ‖V ∗‖ x(s) ‖V α(ds)≤(1/ε)

∫ t

0
‖ f(s) ‖2

V ∗ α(ds)+ε

∫ t

0
‖ x(s) ‖2

V α(ds).

Using this expression in (7) for ε = 1, we obtain

|x(t)|2H +
∫ t

0
‖ x(s) ‖2

V α(ds) ≤ |ξ|2H + 2
∫ t

0
|x(s)|2H λ(ds)

+
∫ t

0
‖ f(s) ‖2

V ∗ α(ds), t ∈ I. (8)
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Define

C ≡ |ξ|2H +
∫ T

0
‖ f(s) ‖2

V ∗ α(ds).

Since ξ ∈ H and f ∈ L2(α, V ∗) it is clear that 0 < C < ∞. In view of this
observation we have,

|x(t)|2H +
∫ t

0
‖ x(s) ‖2

V α(ds) ≤ C + 2
∫ t

0
|x(s)|2H λ(ds), t ∈ I. (9)

Then it follows from a generalized Gronwall inequality [8] valid for arbitrary
positive measures (not just Lebesgue measure) that

|x(t)|2H ≤ C exp 2λ([0, t]) ≤ C exp{2λ(I)}. (10)

Since by assumption λ(I) < ∞ it follows from the above inequality that x ∈
B(I, H)∩L∞(I, H). Denoting the bound by b ≡ C exp{2λ(I)} and substituting
it in (8) we obtain

|x(t)|2H +
∫ t

0
‖ x(s) ‖2

V α(ds)

≤ |ξ|2H + 2bλ(I) +
∫ t

0
‖ f(s) ‖2

V ∗ α(ds), t ∈ I. (11)

Since f ∈ L2(α, V ∗) it follows from this estimate that x ∈ L2(α, V ). Combining
all these facts we have

x ∈ B(I,H) ∩ L∞(I, H) ∩ L2(α, V ). (12)

This completes the proof of the Lemma. ¤
Remark 3.3. It is interesting to note that the measure λ appearing in as-
sumption (M2) need not be nonnegative. It suffices if it is a signed measure
having bounded total variation on bounded intervals.

We are now ready to prove one of our main results of this section. First we
introduce the following definition.

Definition 3.4. An element x ∈ B(I, H)∩L∞(I, H)∩L2(α, V ) is said to be
a weak solution of the evolution equation (2) if x(0) = ξ and

−
∫

I
< x(t), ϕ̇(t)v > dt +

∫

I
< x(t), ϕ(t)A(dt)v >

=
∫

I
< f(t), ϕ(t)v > α(dt),

for every v ∈ V and every ϕ ∈ C1
0 (0, T ).
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Theorem 3.5. Consider the system (2) and suppose that the operator valued
measure A is symmetric and satisfies the assumptions (M1) and (M2). Then
for every ξ ∈ H and f ∈ L2(α, V ∗), the system (2) has a unique weak solution
x ∈ B(I, H) ∩ L∞(I, H) ∩ L2(α, V ).

Proof. The proof is based on the method of projection, that is, Galerkin ap-
proach. Define

xn(t) ≡
n∑

i=1

zn
i (t)vi, t ∈ I, (13)

xn(0) =
n∑

i=1

zn
i,0vi (14)

where zn
i,0 = (ξ, vi), i = 1, 2, · · · , n are the Fourier coefficients of ξ with respect

to the basis {vi} introduced in section 2 and {zn
i , i = 1, 2, · · · , n} are scalar

valued functions satisfying the following system of equations

dzn
i +

n∑

j=1

< A(dt)vi, vj > zn
j =< f(t), vi > α(dt), i = 1, 2, · · · , n (15)

zn
i (0) = zn

i,0, i = 1, 2, · · · , n. (16)

This is a system of finite dimensional (n-dimensional) differential equations
which can be written as a system in Rn as follows:

dZn + M(dt)Zn = fnα(dt), Zn(0) = Zn
0 , t ∈ I (17)

where

M(·) ≡ {mi,j(·) ≡< A(·)vi, vj >, i, j = 1, 2, · · · , n}
is a matrix valued countably additive measure, Zn ≡ {zn

i , i = 1, 2 · · · , n} is
the Rn valued function representing the solution of the initial value problem
(17) if one exists. We write equation (17) as an integral equation,

Zn(t) = Zn
0 +

∫ t

0
fn(s)α(ds)−

∫ t

0
M(ds)Zn(s),

≡ ψn(t) +
∫ t

0
−M(ds)Zn(s)

≡ (GZn)(t), t ∈ I. (18)

For convenience we have introduced the operator G to represent the expression
on the righthand side of the integral equation. This is a fixed point problem.
We show that G has a unique fixed point in B(I, Rn). First note that, since
f ∈ L2(α, V ∗), we have fn ∈ L2(α,Rn) and hence ψn ∈ B(I, Rn). Now recall
that σ −→ A(σ) is a weakly countably additive operator valued measure
having bounded variation. Thus the matrix valued measure σ 3 Σ −→ M(σ)
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is countably additive having bounded total variation. Further, it follows from
a well known result [7, Diestel and Uhl Jr] that a bounded vector measure
is countably additive if and only if its variation is countably additive. Hence
we may conclude that the scalar valued measure µ(·) ≡ |M |(·) induced by
the variation of the vector measure M(·) is a nonnegative countably additive
measure. From these facts we conclude that G : B(I,Rn) −→ B(I, Rn). We
now show that it has a unique fixed point in B(I, Rn). For y, z ∈ B(I,Rn)
define

ρt(y, z) ≡ sup{|y(s)− z(s)|Rn , 0 ≤ s ≤ t}, ρ(x, y) ≡ ρT (y, z).

Clearly it follows from the definition of the operator G and the measure µ that

|(Gy −Gz)(t)|Rn ≤
∫ t

0
|y(s)− z(s)||M |(ds) =

∫ t

0
|y(s)− z(s)|µ(ds), t ∈ I

and hence

ρt(Gy,Gz) ≤
∫ t

0
ρs(y, z)µ(ds), t ∈ I. (19)

Since µ is a nonnegative countably additive measure having bounded variation
on I, the function m given by m(t) ≡ µ([0, t)) is a nonnegative nondecreasing
function of bounded variation on I. By repeated substitution of the expression
(19) into itself and using the function m, after k iterations one arrives at the
following expression

ρt(Gky, Gkz) ≤ (
mk(t)/k!

)
ρt(y, z), t ∈ I. (20)

Clearly this leads to the following inequality,

ρt(Gky, Gkz) ≤ (
mk(T )/k!

)
ρ(y, z), t ∈ I. (21)

From this expression we conclude that for k ∈ N sufficiently large, the k-th
iterate Gk of G is a contraction in the metric space B(I,Rn) endowed with the
metric ρ. Hence by Banach fixed point theorem both Gk as well as G has one
and the same fixed point in B(I,Rn). Thus we have proved that the system
(18) or equivalently the system (17) has a unique solution Zn ∈ B(I,Rn)
for each n ∈ N. Thus the sequence {xn} given by the expression (13) is well
defined V -valued Borel measurable functions. Using this it is easy to verify
that equation (15) is equivalent to the following equation

< dxn, vi > + < A(dt)vi, x
n >=< f(t), vi > α(dt), i = 1, 2, · · · , n. (22)
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Multiplying on either side of this identity by zi and summing up to i = n and
then integrating, we obtain

∫ t

0
< dxn(s), xn(s) > +

∫ t

0
< A(ds)xn(s), xn(s) >

=
∫ t

0
< f(s), xn(s) > α(ds), n ∈ N, (23)

which is identical to equation (5). Hence, it follows from Lemma 3.2 that the
sequence {xn} must satisfy the a-priori estimate (11), that is,

|xn(t)|2H +
∫ t

0
‖ xn(s) ‖2

V α(ds)

≤ |ξ|2H + 2bλ(I) +
∫ t

0
‖ f(s) ‖2

V ∗ α(ds), t ∈ I. (24)

From this we conclude that {xn} is a bounded sequence in B(I, H)∩L∞(I, H)∩
L2(α, V ). Since L2(α, V ) is a reflexive Banach space and L∞(I, H) is the dual
of L1(I, H), there exists a subsequence of the sequence {xn}, relabeled as the
original sequence, and an element xo ∈ L∞(I, H) ∩ L2(α, V ) such that

xn w−→ xo in L2(α, V ) (25)

xn w∗−→ xo in L∞(I, H). (26)

Since λ(I) < ∞, xo ∈ B(I,H) also. Now take a ϕ ∈ C1
0 (0, T ), the space of

C1 functions with compact support, and multiply on either side of (22) and
integrate by parts giving

−
∫

I
< xn(t), ϕ̇(t)vi > dt +

∫

I
< xn(t), A(dt)ϕ(t)vi >

=
∫

I
< f(t), ϕ(t)vi > α(dt). (27)

Using the convergence properties (25), (26) and letting n → ∞ in the above
identity we arrive at the following expression,

−
∫

I
< xo(t), ϕ̇(t)vi > dt +

∫

I
< xo(t), ϕ(t)A(dt)vi >

=
∫

I
< f(t), ϕ(t)vi > α(dt), (28)

which holds for all i ∈ N. Since {vi} is a basis for V, we conclude from this
that
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−
∫

I
< xo(t), ϕ̇(t)v > dt +

∫

I
< xo(t), ϕ(t)A(dt)v >

=
∫

I
< f(t), ϕ(t)v > α(dt), (29)

for all v ∈ V and all ϕ ∈ C1
0 (0, T ). Thus xo satisfies the evolution equation

dx + A(dt)x = f(t)α(dt), t ∈ (0, T ) (30)

in the sense of distribution. In order to prove that xo is a weak solution of
(30) in the sense of definition 3.4 we must verify that xo(0) = ξ. We choose
a ϕ ∈ C1 with ϕ(0) arbitrary and then scalar multiply on either side of the
evolution equation (30) by ϕ(·)vi ∈ C1(I, V ) and integrate over the interval
[0, t] to obtain

(xo(t), ϕ(t)vi)− (xo(0), ϕ(0)vi)−
∫ t

0
< xo(s), ϕ(s)A(ds)vi >

=
∫ t

0
< f(s), ϕ(s)vi > α(ds), t ∈ I.

By considering projection on to the linear subspace spanned by {vj , 1 ≤ j ≤
n}, it is clear that xn (see equation (22)) must satisfy a similar expression
given by

(xn(t), ϕ(t)vi)− (xn(0), ϕ(0)vi)−
∫ t

0
< xn(s), ϕ(s)A(ds)vi >

=
∫ t

0
< f(s), ϕ(s)vi > α(ds), t ∈ I, 1 ≤ i ≤ n.

Subtracting one from the other we obtain the following identity

(xn(t)−xo(t), ϕ(t)vi)+(xo(0)− xn
0 , ϕ(0)vi)+

∫ t

0
<xo(s)−xn(s), viϕ̇(s)>

+
∫ t

0
< ϕ(s)A(ds)vi, x

n(s)− xo(s) >= 0. (31)

Recalling the convergence properties (25)-(26) and letting n → ∞ it follows
from the above expression that

lim
n→∞(xo(0)− xn

0 , ϕ(0)vi) = 0 ∀ i ∈ N

and hence for all v ∈ V. Since ϕ ∈ C1 is arbitrary, and {vi} is a basis for all
the members of the triple {V,H, V ∗}, and xn

0 converges strongly to ξ in H, we
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conclude that

xo(0) = lim
n→∞xn

0 = ξ. (32)

Thus by definition, xo is a weak solution of the evolution equation (2). Assum-
ing that there are two such solutions xo, yo ∈ B(I, H) ∩ L∞(I, H) ∩ L2(α, V )
with the same data ξ and f , it is easy to verify that the difference zo must
satisfy the identity

−
∫

I
< zo(t), ϕ̇(t)v > dt+

∫

I
< zo(t),ϕ(t)A(dt)v >= 0, ∀ ϕ∈C1

0 , v∈V. (33)

Since this holds for all ϕ ∈ C1
0 (I) and all v ∈ V, and V is dense in H, we have

zo = 0. An alternative argument is that the identity (33) implies that zo is a
distribution solution of equation

dzo + A(dt)zo = 0, zo(0) = 0, t ≥ 0.

Hence

|zo(t)|2H + 2
∫ t

0
‖ zo(s) ‖2

V α(ds) ≤ 2
∫ t

0
|zo(s)|2Hλ(ds), t ≥ 0.

Thus the conclusion follows from Gronwall inequality. This ends the proof. ¤
It is known from the classical results not involving measures that the so-

lution x ∈ C(I, H) and that ẋ ∈ L2(I, V ∗). This is not true in our case. We
have seen in the above results that x ∈ B(I,H)∩L∞(I, H)∩L2(α, V ). In the
following result we prove an additional regularity of the solution.

Proposition 3.6. Suppose the assumptions of Theorem 3.5 hold and that
the measure β is absolutely continuous with respect to the measure α having
Radon-Nikodym derivative h ∈ L2(α) such that β(D) =

∫
D h(t)α(dt) for every

D ∈ Σ. Then the weak solution of equation (2) belongs to BV (I, V ∗).

Proof. Let x denote the weak solution of the system (2) and define the func-
tional

`(ϕ) ≡
∫

I
< ϕ(t), dx(t) >V,V ∗ . (34)

We show that this is a bounded linear functional on C(I, V ). Clearly it follows
from the definition of weak solution that

`(ϕ) =
∫

I
− < A(dt)ϕ(t), x(t) > +

∫

I
< ϕ(t), f(t) >V,V ∗ α(dt). (35)

Thus it follows from the assumption (M2-3) that

|`(ϕ)| ≤
∫

I
‖ x(t) ‖V ‖ ϕ(t) ‖V β(dt) +

∫

I
‖ ϕ(t) ‖V ‖ f(t) ‖V ∗ α(dt). (36)
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Now using the RND of the measure β with respect to the measure α and
noting that it is nonnegative, we have

|`(ϕ)| ≤
∫

I
‖ x(t) ‖V ‖ ϕ(t) ‖V h(t)α(dt) +

∫

I
‖ ϕ(t) ‖V ‖ f(t) ‖V ∗ α(dt)

≤ ‖ ϕ ‖C(I,V )

{
‖ x ‖L2(α,V )‖ h ‖L2(α) + ‖ f ‖L2(α,V ∗)

√
α(I)

}

≤ bx ‖ ϕ ‖C(I,V ), ∀ ϕ ∈ C(I, V ), (37)

where bx, given by the expression within the braces, is a finite positive number.
Hence ` ∈ (C(I, V ))∗ ⊆ Mc(Σ, V ∗). In other words the variation of x induces
a measure µx ∈ Mc(Σ, V ∗) which implies that x ∈ BV (I, V ∗). This completes
the proof. ¤

4. Linear hyperbolic systems

In this section we wish to consider briefly a class of linear hyperbolic systems
described by the following evolution equation

dẋ + Axdt + B(dt)ẋ = f(t)ν(dt), t ∈ I,

x(0) = x0, ẋ(0) = x1, (38)

in a separable Hilbert space H.

We introduce the following assumptions:

(H1): A ∈ L(V, V ∗) is symmetric and coercive satisfying

< Av, v >≥ γ ‖ v ‖2
V , ∀ v ∈ V

for some γ > 0 so that the positive square root of the operator A, denoted by√
A is well defined and it maps V to H.
(H2): The set function ν is a countably additive bounded nonnegative mea-

sure (defined on Σ ≡ σ(I)) having bounded total variation on I.
(H3): The operator valued measure B : Σ −→ L(V, V ∗) is countably addi-

tive in the weak operator topology satisfying

< B(σ)h, h >V ∗,V≥ ν(σ)|h|2V ∀ σ ∈ Σ and ∀h ∈ V.

We prove the following a-priori bound.
Lemma 4.1. Suppose the hypotheses (H1)-(H3) hold. Then any solution, if
one exists, of the system (38) corresponding to any x0 ∈ V, x1 ∈ H and f ∈
L2(ν, V ∗), must be bounded satisfying x ∈ L∞(I, V ), ẋ ∈ L∞(I, H)∩L2(ν, V ).
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Proof. Suppose x is a weak solution of equation (38) with distributional deriv-
ative denoted by ẋ. Scalar multiplying equation (38) by ẋ and then integrating
by parts over the interval [0, t], one can easily verify that

{|ẋ(t)|2H+ < Ax(t), x(t) >}+ 2
∫ t

0
< B(ds)ẋ(s), ẋ(s) >V ∗,V

= {|x1|2H+ < Ax0, x0 >}+ 2
∫ t

0
< f(s), ẋ(s) > ν(ds), t ∈ I. (39)

Using hypothesis (H3) in the above expression we obtain

{|ẋ(t)|2H+ < Ax(t), x(t) >}+ 2
∫ t

0
|ẋ(s)|2V ν(ds)

≤ {|x1|2H+ < Ax0, x0 >}+ 2
∫ t

0
< f(s), ẋ(s) > ν(ds), t ∈ I. (40)

By virtue of Cauchy inequality applied to the last integral it follows from this
that

{|ẋ(t)|2H+ < Ax(t), x(t) >}+
∫ t

0
|ẋ(s)|2V ν(ds)

≤ {|x1|2H+ < Ax0, x0 >}+
∫ t

0
|f(s)|2V ∗ν(ds), t ∈ I. (41)

Thus it follows from hypothesis (H1) and the above a-priori estimate that

x ∈ L∞(I, V ), ẋ ∈ L∞(I,H) ∩ L2(ν, V ).

This completes the proof. ¤
Since A ∈ L(V, V ∗), and it is assumed to be symmetric and positive, the two

norms |·|V and |·|D(
√

A) are equivalent. Hence the solution x ∈ L∞(I, D(
√

A))
also.

Now we can prove the existence of solutions.

Theorem 4.2. Suppose the assumptions of Lemma 4.1 hold. Then for every
x0 ∈ V, x1 ∈ H and f ∈ L2(ν, V ∗), the hyperbolic system has a unique weak
solution x satisfying x ∈ L∞(I, V ) and ẋ ∈ L∞(I,H) ∩ L2(ν, V ).

Proof. Again by a weak solution we mean any x from L∞(I, V ) with ẋ ∈
L∞(I, H) ∩ L2(ν, V ), that satisfies the identity

−
∫

I
(ẋ, ϕ̇)Hdt +

∫

I
< Aϕ(t), x(t) >V ∗,V dt +

∫

I
< ẋ,B∗(dt)ϕ(t) >V,V ∗

=
∫

I
< f(t), ϕ >V ∗,V ν(dt) ∀ ϕ ∈ C1

0 (I, V )



206 N. U. Ahmed

and the initial conditions x(0) = x0 ∈ V, ẋ(0) = x1 ∈ H. The proof is based
on the same principle as in the parabolic case. So we give only an outline.
By use of the projection onto finite dimensional subspaces spanned by {vi, i =
1, 2, · · · , n}, n ∈ N, one arrives at a second order (in t) evolution equation on
Rn. This is then written in the standard way as a first order evolution equation
on R2n which is then formulated as an integral equation. Existence of solution
of theses finite dimensional problems is proved by fixed point theorem as in
the parabolic case. Then using these solutions one constructs the sequence
of solutions {xn, ẋn} for the finite dimensional projections of the (original)
infinite dimensional evolution equation. Using the a-priori bounds established
in Lemma 4.1, and the facts that V is reflexive and H is Hilbert, one obtains
the following convergence results

xn w−→ xo in L2(I, V ), xn w∗−→ xo in L∞(I, V )

ẋn w−→ ẋo in L2(ν, V ), ẋn w∗−→ ẋo in L∞(I,H).

Then using the definition of weak solution and following similar steps as in
Theorem 3.5 one can conclude that the system (38) has a unique weak solution.
This completes the proof. ¤
Remark 4.3. Again as in Proposition 3.6, one can verify that ẋ ∈ BV (I, V ∗).

Physical implication of the hypothesis (H3) is that the Operator valued
measure B(·) is a damping operator providing dissipation of energy. To al-
low for negative damping, hypothesis (H3) can be replaced by the following
assumption,

(Ĥ3) : The operator valued measure B : Σ −→ L(V, V ∗) is countably
additive in the weak operator topology satisfying

< B(σ)h, h > +ν(σ)|h|2V ≥ 0 ∀ σ ∈ Σ and ∀h ∈ V.

Disregarding questions of stability, for any finite time interval I the following
result holds.

Corollary 4.4. Under the modified assumption, the conclusions of Theorem
4.2 remain valid.

Remark 4.5. The system model (38) can be extended to cover stiffness op-
erators represented by C as follows,

dẋ + Axdt + C(dt)x + B(dt)ẋ = f(t)ν(dt), t ∈ I,

x(0) = x0, ẋ(0) = x1.

For a semigroup treatment of this system the reader is referred to the recent
paper of the author [2].
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5. Optimal control

Here we prove some results on optimal control for the parabolic system of
section 3. Let U be a Hilbert space and L2(α,U) the space of α-measurable
U valued functions whose norms are square integrable. Consider the Control
system

dx + A(dt)x = B(t)u(t)α(dt), x(0) = ξ, t ∈ I, (42)

with the cost functional given by

J(u) ≡ (1/2)
∫

I
< Qx, x >V ∗,V α(dt) + (1/2)

∫

I
< Ru, u >U α(dt) (43)

where Q ∈ L∞(I,L+
n (V, V ∗)) and R ∈ L∞(I,L+(U)). In other words, for each

t ∈ I, Q(t) is a positive nuclear operator from V to V ∗ and R(t) is a positive
self adjoint operator in the Hilbert space U. Let Uad ⊂ L2(α, U) denote the
class of admissible controls. The problem is to find a control uo ∈ Uad that
minimizes the cost functional (43).

We present the following existence result.
Theorem 5.1. (Existence) Suppose the operator valued measure A(·) and the
scalar measure α(·) satisfy the assumptions of Theorem 3.5, and B is a bounded
operator valued function uniformly (uniform operator topology) α measurable
on I with values in L(U, V ∗). Let Q ∈ L∞(I,L+

n (V, V ∗)), R ∈ L∞(I,L+(U))
be symmetric, and suppose Uad is a closed bounded convex subset of L2(α, U).
Then there exists an optimal control uo ∈ Uad minimizing the cost functional
(43).

Proof. Since Uad is a closed bounded convex subset of L2(α,U) it is weakly
(sequentially) compact. Thus it suffices to verify that u −→ J(u) is weakly
lower semicontinuous. Let {un} ∈ Uad and {xn} ∈ B(I,H) ∩ L∞(I,H) ∩
L2(α, V ) be the corresponding weak solutions of the system (42). Suppose
un w−→ uo in L2(α,U). Since the set of admissible controls is bounded, it
follows from uniform measurability of B that the set {Bun} is a bounded
set in L2(α, V ∗). Thus the sequence of weak solutions is also contained in a
bounded subset of B(I, H)∩L∞(I,H)∩L2(α, V ). Then there exists a unique
xo ∈ B(I, H)∩L∞(I, H)∩L2(α, V ) so that along a subsequence, if necessary,

xn w−→ xo in L2(α, V ) (44)

xn w∗−→ xo in L∞(I, H). (45)

Using the definition of weak solution (see Definition 3.4) it is easy to verify
that xo is the weak solution corresponding to the control uo. Since the cost
functional is given by sum of two quadratic functionals and such functionals
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are weakly lower semi continuous, it follows from weak convergence of un to
uo and (43), (44) and (45) that

J(uo) ≤ lim inf
n→∞ J(un).

Hence J is weakly lower semicontinuous on Uad. Since Uad is weakly compact
and J is weakly lower semicontinuous, J attains its infimum on Uad. This
completes the proof. ¤

The following Corollary shows that if the cost functional is radially un-
bounded, that is, lim‖u‖→∞ J(u) = +∞, then it is not necessary for the set
Uad to be weakly compact or even bounded.

Corollary 5.2. (Existence) Suppose the operator valued measure A(·), the
scalar measure α(·) satisfy the assumptions of Theorem 5.1 and B is a bounded
operator valued function uniformly (uniform operator topology) α measurable
on I with values in L(U, V ∗). Let Q ∈ L∞(I,L+

n (V, V ∗)) symmetric, and sup-
pose there exists an r > 0 so that (R(t)w,w)U ≥ r ‖ w ‖2

U for all t ∈ I and
Uad = L2(α,U). Then there exists an optimal control uo ∈ Uad for the problem
(43).

Proof. Since J(u) ≥ 0, its radial unboundedness implies that any minimiz-
ing sequence must be necessarily bounded. Now any bounded sequence in a
reflexive Banach space is relatively weakly sequentially compact. Hence the
assertion follows from the fact that J is weakly lower semi continuous. ¤

Theorem 5.3. (Optimality Conditions) Suppose the assumptions of Theo-
rem 5.1 hold. Then for uo ∈ Uad to be optimal, it is necessary (and sufficient)
that there exists a ψ ∈ B(I,H) ∩ L∞(I, H) ∩ L2(α, V ) such that

∫

I
< B∗(t)ψ(t) + R(t)uo(t), u(t)− uo(t) >U α(dt) ≥ 0 ∀ u ∈ Uad. (46)

The function ψ can be chosen as the weak solution of

−dψ + A∗(dt)ψ = Q(t)xo(t)α(dt), ψ(T ) = 0 (47)

where xo is the weak solution of

dxo + A(dt)xo = B(t)uo(t) α(dt), x(0) = ξ. (48)

Proof. The proof is based on variational principle. Letting {uo, xo} ∈ L2(α, U)
×B(I, H)∩L2(α, V ) denote the optimal pair, it follows from convexity of the
admissible controls and symmetry of Q and R that the Gateaux differential of



Operator Valued Measures in Partial Differential Equations and Control 209

J at uo in the direction u− uo is given by

dJ(uo, u− uo) =
∫

I
< Qxo, y >V ∗,V α(dt)

+
∫

I
< Ruo, u− uo >U α(dt) ≥ 0, (49)

where y ∈ B(I, H)∩L2(α, V ) is the weak solution of the variational equation

dy + A(dt)y = B(t)(u(t)− uo(t)) α(dt), y(0) = 0. (50)

From this equation it is clear that the map Bu −→ y is continuous from
L2(α, V ∗) to B(I, H) ∩ L2(α, V ). Since Q ∈ L∞(I,L+

n (V, V ∗)) and xo ∈
L2(α, V ) we have Qxo ∈ L2(α, V ∗). Hence the map y −→ ∫

I < Qxo, y > α(dt)
is a continuous linear functional on L2(α, V ). This implies that the the com-
position map

B(u− uo) −→ y −→
∫

I
< Qxo, y >V ∗,V α(dt)

is a continuous linear functional on the Banach space L2(α, V ∗). Then by Reisz
representation theorem there exists a ψ ∈ (L2(α, V ∗))∗ such that

∫

I
< Qxo, y >V ∗,V α(dt) =

∫

I
< ψ,B(u− uo) >V,V ∗ α(dt). (51)

Since V is a reflexive Banach space, (L2(α, V ∗))∗ = L2(α, V ) and thus ψ ∈
L2(α, V ). Substituting (51) into equation (49) we obtain

∫

I
< B∗ψ + Ruo, u− uo >U α(dt) ≥ 0, ∀ u ∈ Uad. (52)

This is precisely the necessary condition (46). Now by virtue of the varia-
tional equation (50), the expression (51) can be rewritten as follows

∫

I
< Qxo, y >V ∗,V α(dt) =

∫

I
< ψ, B(u− uo) >V,V ∗ α(dt)

=
∫

I
< ψ, dy + A(dt)y >V,V ∗ . (53)

Since y(0) = 0, by integration by parts, it follows from the above expression
that ∫

I
< Qxo, y >V ∗,V α(dt) = < ψ(T ), y(T ) >

+
∫

I
< −dψ + A∗(dt)ψ, y >V ∗,V . (54)
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Taking ψ(T ) = 0, it follows from this that ψ, whose existence was proved
above, can be chosen as the weak solution of the following evolution equation,

−dψ + A∗(dt)ψ = Qxoα(dt), ψ(T ) = 0. (55)

Thus we have derived the adjoint equation (47). Since the adjoint equation is
similar to the system equation, the results of Theorem 3.5 apply and we con-
clude that equation (55) has a unique weak solution ψ ∈ B(I, H) ∩ L2(α, V ).
Equation (48) is the system equation given. This completes the proof of nec-
essary conditions. Proof of sufficient condition is straightforward. Let the
control-solution pair {uo, xo} satisfy the necessary conditions given by the ex-
pressions (46-48). Let x denote the solution of the evolution equation (42)
corresponding to an arbitrary control u ∈ Uad. Using these control-solution
pairs, it follows from the expression for the cost functional given by (43) that

J(u)− J(uo) ≥
∫

I
< Qxo, x− xo >V ∗,V α(dt) +

∫

I
< Ruo, u− uo >U α(dt).

Now using the solution of the adjoint equation (47) in the above inequality we
arrive at the following inequality

J(u)− J(uo) ≥
∫

I
< B∗(t)ψ(t) + R(t)uo(t), u(t)− uo(t) >U α(dt).

By virtue of the necessary condition (46) the righthand expression is nonneg-
ative. Hence J(u) ≥ J(uo) for all u ∈ Uad proving that uo is optimal. ¤

From the above result one can easily derive the following operator Riccati
equation in its weak form,

< dKv,w > = < Kv, A(dt)w > + < A(dt)v, Kw >

+ < R−1B∗Kv, B∗Kw > α(dt)− < Qv, w > α(dt),(56)
K(T ) = 0

for all v, w ∈ V.

Remark 5.4. (Feedback Control) If the assumptions of Corollary 5.2 hold,
then it follows from the necessary condition (46) that

uo(t) = −R−1(t)B∗(t)ψ(t), t ∈ I.

Further, if the operator Riccati equation (57) has a weak solution, one can
construct the optimal feedback control uo(t) = −R−1(t)B∗(t)K(t)xo(t), t ∈ I.

Remark 5.5. We leave the question of existence of solutions of the operator
Riccati equation (57) as an open problem.
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So far we have considered control problems involving the parabolic system
(2). Following the same technique as in the parabolic case, one can prove
similar necessary conditions of optimality for the hyperbolic system

dẋ + Axdt + C(dt)x + B(dt)ẋ = f(t)ν(dt), t ∈ I,

x(0) = x0, ẋ(0) = x1.

6. An example

We present a simple example related to transport of pollutants in a region
Ω ⊂ R3, for example, an aquatic system or the atmosphere or both. This can
be described by a partial differential equation of the form

(∂/∂t)C −5 · (δ 5 C) +5 · (vC) = S (57)

where C denotes the concentration of pollutants as a function of time and
space, C = C(t, ξ) t ≥ 0 and ξ ∈ Ω ⊂ R3, where Ω is the region of concern
and S is the source. Here we have used 5 · w ≡ div w for any vector w. The
parameter δ represents the diffusivity of the medium, v is the velocity of the
medium (wind or water) carrying the pollutants. In case these are measurable
functions of time and space one can introduce the abstract differential operator
A(t) as follows. Suppose Ω is an open bounded connected domain having
smooth boundary ∂Ω and assume the Drichlet boundary condition and take
H ≡ L2(Ω), V = H0(Ω) with the corresponding dual V ∗ = H−1(Ω). Clearly
the injections V ↪→ H ↪→ V ∗ are continuous and even compact. Define the
bilinear functional

a(t, ϕ, ψ) ≡
∫

Ω
{δ(5ϕ,5ψ) +5 · (vϕ) ψ}dξ, ϕ, ψ ∈ V.

Then from this bilinear form one can construct the operator A(t) through the
identity

a(t, ϕ, ψ) ≡< A(t)ϕ,ψ >V ∗.V .

This will be the classical formulation if the coefficients are measurable func-
tions of time and space. Let I ≡ [0, T ] denote the time interval of concern and
Σ ≡ σ(I) the sigma algebra of Borel subsets of the set I. In the classical case
the parameters δ : I × Ω −→ R+ and v : I × Ω −→ R3 are defined pointwise,
whereas there are physical situations where it is more appropriate to consider
them as set functions such as

δ : Σ× Ω −→ R+ and v : Σ× Ω −→ R3.

This arises naturally if the environment experiences violent activities such as
twisters, tornados,cyclones,tsunami etc. In this situation the more appropriate
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bilinear form a is given by

a : Σ× V × V −→ R

which is a set function in the first argument and linear in the second and
third arguments defined on V × V and taking values a(σ, ϕ, ψ). Assuming
δ : Σ × Ω −→ R+ and v : Σ × Ω −→ R3 bounded, with v(σ, ·) ∈ C1(Ω̄), one
can justify the assumption for existence of two countably additive bounded
nonnegative measures on Σ denoted by α(·) and λ(·) such that

a(σ, v, v) + λ(σ)|v|2V ≥ α(σ) ‖ v ‖2
V ∀ σ ∈ Σ, v ∈ V.

Let x(t) ≡ C(t, ·) denote the H valued function representing the state. Since
the source is also a part of the ecology, it is natural to consider it as a vector
valued measure ϑ : Σ −→ V ∗ and hence the appropriate model for such a
system is given by the abstract evolution equation

dx + A(dt)x = ϑ(dt), x(0) ≡ C(0, ·). (58)

Since V, and hence V ∗, has reflexive structure, both have Radon-Nikodym
property. The source being a part of the ecology, it is natural for the source
measure ϑ to be α continuous. Thus there exists an f ∈ L1(α, V ∗) such that
dϑ = fdα. In other words, f is the Radon-Nikodym derivative of ϑ with
respect to the measure α. Since for the example considered here, V as well as
V ∗ have Hilbertian structure, we may take f to be an element of L2(α, V ∗).
Thus the evolution equation (58) is similar to our abstract model

dx + A(dt)x = f(t)α(dt), x(0) ≡ C(0, ·). (59)

Hence we conclude that all the results presented in this paper apply to this
ecological system. An interesting control problem for the transport system
may be posed as follows: Consider the controlled system

dx + A(dt)x = f(t)α(dt) + u(t)α(dt), x(0) ≡ C(0, ·), (60)

and let Γ ⊂ H be a closed convex set. The objective is to drive the pollution
level to the target set Γ with minimum possible cost. In other words find a
control that minimizes the objective functional given by

J(u) ≡ d(xu(T ),Γ) + (1/2)
∫

I
(Qu, u)Uα(dt), (61)

where d(x,Γ) denotes the distance of x ∈ H from the set Γ ⊂ H. For this
problem, one can prove existence of optimal controls and develop necessary
conditions of optimality. We will not pursue this further.

Remark 6.1. The results presented in this paper can be easily extended
to semilinear problems with f = f(t, x) mapping H to H and satisfying
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|(f(t, x), x)| ≤ a + b|x|2H . The same conclusion holds if f : I × V −→ V ∗
and

| < f(t, x), x >V ∗,V | ≤ K(1 + |x|2V )
for some K ∈ (0, 1). More general f requires further research.
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