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Abstract. By means of the coincidence degree theory of Mawhin, the existence of solutions

for higher order multiple point boundary value problem at resonance is investigated. The

interesting thing is that the nonlinear term may be noncontinuous.

1. Introduction

The existence of solutions for boundary value problems at resonance has
been studied by many authors, we refer the reader to [1-14] and references
cited therein. Lu [1], Liu [2] and Du [3] proved the existence of solutions for
the following problem:

x(n)(t) = f(t, x(t), x′(t), . . . , x(n−1)(t)) + e(t), t ∈ (0, 1),
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under the following boundary conditions, respectively:

x′(0) = x′′(0) = · · · = x(n−1)(0) = 0, x(1) =
m−2∑
i=1

αix(ξi);

x′(0) = x′′(0) = · · · = x(n−1)(0) = 0, x(1) =
1∫
0

x(s)dy(s);

x′(0) = x′′(0) = · · · = x(n−1)(0) = 0, x(0) =
m−2∑
i=1

αix(ξi), x(1) = x(η),

where f is continuous.
Motivated by their results, we study the existence of solutions for the fol-

lowing boundary value problem at resonance:

x(n)(t) = f(t, x(t), x′(t), . . . , x(n−1)(t)), t ∈ (0, 1), (1.1)

x(0) = x(η), x′(0) = x′′(0) = · · · = x(n−2)(0) = 0, x(n−1)(1) =
m−2∑

i=1

αix
(n−1)(ξi),

(1.2)
where n ≥ 2, m ≥ 3, f(t, x(t), x′(t), . . . , x(n−1)(t)) ∈ L1[0, 1] for any x(t) ∈
Cn−1[0, 1], 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, 0 < η < 1, αi ∈ R. Using the
coincidence degree theory of Mawhin, we will prove the existence of solution
for the problem (1.1)-(1.2). The interesting thing is that the nonlinear term
f may be noncontinuous.

2. Some preliminaries

In order to obtain our results, we introduce some notations and an abstract
existence theorem by Mawhin, which can be seen in [15].

Let X and Y be Banach spaces, L : domL ⊂ X → Y be a Fredholm
operator of index zero, P : X → X, Q : Y → Y be projectors such that

ImP = KerL, KerQ = ImL, X = KerL⊕KerP, Y = ImL⊕ ImQ.

It follows from

L |domL
⋂

KerP : domL
⋂

KerP → ImL

that L is invertible. We denote the inverse of L by KP .
Suppose Ω is an open bounded subset of X and domL

⋂
Ω 6= ∅. The

map N : X → Y will be called L-compact on Ω if QN(Ω) is bounded and
KP (I −Q)N : Ω → X is compact.

Theorem 2.1. [15] Assume that X, Y are two Banach spaces, L is a Fredholm
operator with index zero and N is L-compact on Ω. Moreover assume that
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(A1) Lx 6= λNx, ∀λ ∈ (0, 1) and x ∈ (domL \KerL)
⋂

∂Ω.
(A2) Nx /∈ ImL, ∀x ∈ KerL

⋂
∂Ω.

(A3) deg{QN |KerL, Ω
⋂

KerL, 0} 6= 0.
Then the equation Lx = Nx has at least one solution in domL

⋂
Ω .

3. Main results

Let X = Cn−1[0, 1] with norm ‖x‖ = max{‖x‖∞, ‖x′‖∞, . . . , ‖x(n−1)‖∞},
where ‖x‖∞ = max

t∈[0,1]
|x(t)| and Y = L1[0, 1] with norm ‖ · ‖1. L : domL ⊂

X → Y is defined as Lx = x(n)(t), where

domL = {x|x(n−1)(t) is absolutely continuous on [0, 1], x(0) = x(η),

x′(0) = x′′(0) = · · · = x(n−2)(0) = 0, x(n−1)(1) =
m−2∑

i=1

αix
(n−1)(ξi)}.

Let N : X → Y be defined as

Nx(t) = f(t, x(t), x′(t), . . . , x(n−1)(t)).

Then x(t) is a solution of the problem (1.1)-(1.2) if and only if it satisfies
x ∈ domL and Lx = Nx.

If x(t), y(t) ∈ Y , and x(t) a.e.= y(t), we define x(t) = y(t).

Theorem 3.1. Suppose f : [0, 1]×Rn → R maps bounded subset into bounded
subset, and f(t, x(t), x′(t), . . . , x(n−1)(t)) ∈ L1[0, 1] for any x(t) ∈ X. In addi-
tion, suppose the following conditions are satisfied:

(H1) a = 1−
m−2∑

i=1

αiξi − η

n
(1−

m−2∑

i=1

αi) 6= 0;

(H2) There is a constant M > 0 such that for any x ∈ domL \KerL, if
|x(t)| > M for all t ∈ [0, 1], then

∫ 1

0
Nx(s)ds−

m−2∑

i=1

αi

∫ ξi

0
Nx(s)ds− (1−

m−2∑

i=1

αi)
∫ η

0
(1− s

η
)n−1Nx(s)ds 6= 0;

(H3) There exist functions b(t), r(t) ∈ L1[0, 1] and gi(t, x) : [0, 1]×R → R
with gi(t, x(t)) ∈ L1[0, 1] for any x(t) ∈ C[0, 1] such that:

|f(t, x1, x2, . . . , xn)| ≤
n∑

i=1

gi(t, xi) + b(t)|xk|θ + r(t).

(t, x1, x2, . . . , xn) ∈ [0, 1]×Rn, 1 ≤ k ≤ n, 0 ≤ θ < 1,
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where gi(t, x) maps bounded subset of [0, 1]×R into bounded subset of R and

lim sup
|x|→∞

gi(t, x)
|x| = ri ∈ [0, 1), i = 1, 2, . . . , n with

n∑

i=1

ri < 1;

(H4) There is a constant M∗ > 0 such that for any |c| > M∗ either

c[
∫ 1

0
Ncds−

m−2∑

i=1

αi

∫ ξi

0
Ncds− (1−

m−2∑

i=1

αi)
∫ η

0
(1− s

η
)n−1Ncds] > 0,

or

c[
∫ 1

0
Ncds−

m−2∑

i=1

αi

∫ ξi

0
Ncds− (1−

m−2∑

i=1

αi)
∫ η

0
(1− s

η
)n−1Ncds] < 0.

Then, the problem (1.1)-(1.2) has at least one solution x(t) ∈ domL.

In order to prove Theorem 3.1, we first give some lemmas.

Lemma 3.2. If (H1) holds, then
(1̇) L : domL → Y is a Fredholm operator of index zero and the projector

Q : Y → Y can be defined as

Qy =
1
a
[
∫ 1

0
y(s)ds−

m−2∑

i=1

αi

∫ ξi

0
y(s)ds− (1−

m−2∑

i=1

αi)
∫ η

0
(1− s

η
)n−1y(s)ds]

and the inverse of L : domL
⋂

KerP → ImL can be written by

KP y =
∫ t

0

(t− s)n−1

(n− 1)!
y(s)ds− tn−1

(n− 1)!

∫ η

0
(1− s

η
)n−1y(s)ds;

(1̇1̇) N is L−compact on Ω, if Ω ⊂ X is an open bounded subset with
Ω

⋂
domL 6= ∅.

Proof. (1̇) It is clear that

KerL = {x ∈ domL|x = c, c ∈ R}.
We will show that

ImL = {y ∈ Y |
∫ 1

0
y(s)ds−

m−2∑

i=1

αi

∫ ξi

0
y(s)ds

−(1−
m−2∑
i=1

αi)
∫ η

0
(1− s

η
)n−1y(s)ds = 0}.
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In fact, if x(n)(t) = y(t), x(t) ∈ domL, we can easily get that y(t) satisfies
∫ 1

0
y(s)ds−

m−2∑

i=1

αi

∫ ξi

0
y(s)ds− (1−

m−2∑

i=1

αi)
∫ η

0
(1− s

η
)n−1y(s)ds = 0. (3.1)

On the other hand, if y(t) ∈ Y satisfies (3.1), we take

x(t) =
∫ t

0

(t− s)n−1

(n− 1)!
y(s)ds− tn−1

(n− 1)!

∫ η

0
(1− s

η
)n−1y(s)ds + c,

where c ∈ R. Then, x(t) ∈ domL and x(n)(t) = y(t).
We will show that ImL is a closed subset of Y . Taking yn ∈ ImL ⊂ Y, yn →

y ∈ Y , we have

|
∫ 1

0
y(s)ds−

m−2∑

i=1

αi

∫ ξi

0
y(s)ds− (1−

m−2∑

i=1

αi)
∫ η

0
(1− s

η
)n−1y(s)ds|

= |
∫ 1

0
(y(s)− yn(s))ds−

m−2∑

i=1

αi

∫ ξi

0
(y(s)− yn(s))ds

−(1−
m−2∑
i=1

αi)
∫ η

0
(1− s

η
)n−1(y(s)− yn(s))ds|

≤ 2(1 +
m−2∑
i=1

αi)‖y − yn‖1 → 0, n →∞.

So, y ∈ ImL. i.e. ImL is closed.
Let Q : Y → Y be defined as

Qy =
1
a
[
∫ 1

0
y(s)ds−

m−2∑

i=1

αi

∫ ξi

0
y(s)ds− (1−

m−2∑

i=1

αi)
∫ η

0
(1− s

η
)n−1y(s)ds].

We have Qy ∈ R and Q(y−Qy) = 0 for y ∈ Y . i.e. y−Qy ∈ ImL. Considering
ImL ∩R = {0}, we get Y = ImL⊕R. Thus, we have

dim KerL = dim R = co dim ImL = 1.

This implies that L is a Fredholm operator of index zero.
Let P : X → X be defined as

Px = x(0).

Then the inverse KP : ImL → domL
⋂

KerP of L can be written by

KP y =
∫ t

0

(t− s)n−1

(n− 1)!
y(s)ds− tn−1

(n− 1)!

∫ η

0
(1− s

η
)n−1y(s)ds.

In fact, for y ∈ ImL, we have

(LKP )y(t) = (KP y)(n) = y(t).
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On the other hand, for x ∈ domL
⋂

KerP we have

(KP L)x(t) = KP x(n)(t)

=
∫ t

0

(t− s)n−1

(n− 1)!
x(n)(s)ds− tn−1

(n− 1)!

∫ η

0
(1− s

η
)n−1x(n)(s)ds

= x(t).

So, KP = (L|domL∩KerP )−1.
(1̇1̇) Since Ω ⊂ X is bounded, we can easily get that QN(Ω) is bounded.

Using the Ascoli-Arzela theorem, we can prove that KP (I −Q)N : Ω → X is
compact. Thus N is L−compact on Ω.

¤

Lemma 3.3. If conditions (H2) and (H3) hold, then the set Ω1 = {x ∈
domL \KerL|Lx = λNx for some λ ∈ (0, 1)} is bounded .

Proof. Taking x ∈ Ω1, from x′(0) = x′′(0) = · · · = x(n−2)(0) = 0, we get

x(i)(t) =
∫ t

0
x(i+1)(s)ds, i = 1, 2, . . . , n− 2.

So, we have

‖x(i)‖∞ ≤ ‖x(i+1)‖1 ≤ ‖x(i+1)‖∞, i = 1, 2, . . . , n− 2. (3.2)

From x(0) = x(η), and x′(0) = x′′(0) = · · · = x(n−2)(0) = 0, we can get
that there exists a t0 ∈ (0, η) satisfying x(n−1)(t0) = 0. So, we have

x(n−1)(t) =
∫ t

t0

x(n)(s)ds.

This implies

‖x(n−1)‖∞ ≤ ‖x(n)‖1. (3.3)

From Lx = λNx, we get Nx ∈ ImL. Therefore, we have
∫ 1

0
Nx(s)ds−

m−2∑

i=1

αi

∫ ξi

0
Nx(s)ds− (1−

m−2∑

i=1

αi)
∫ η

0
(1− s

η
)n−1Nx(s)ds = 0.

By (H2), there is a t1 ∈ [0, 1] such that x(t1) ≤ M. From x(t) = x(t1) +∫ t
t1

x′(s)ds, we can get

‖x‖∞ ≤ M + ‖x′‖1 ≤ M + ‖x′‖∞. (3.4)

From (3.2)-(3.4), we get

‖x(i)‖∞ ≤ ‖x(n)‖1, i = 1, 2, . . . , n− 1, (3.5)

‖x‖∞ ≤ M + ‖x(n)‖1. (3.6)
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By (H3), we can get that there exist constants δ > 0 and ε > 0 such that
n∑

i=1
(ri + ε) < 1 and

gi(t, x) < (ri + ε)|x|, for t ∈ [0, 1], |x| > δ, i = 1, 2, . . . , n.

Since gi(t, x) : [0, 1]×R → R, i = 1, 2, . . . , n map bounded subset into bounded
subset, there is a constant M0 > 0 such that

gi(t, x) ≤ M0, for (t, x) ∈ [0, 1]× [−δ, δ], i = 1, 2, . . . , n.

It follows from Lx = λNx and (H3) that

‖x(n)‖1 ≤
∫ 1

0
|f(s, x(s), x′(s), . . . , x(n−1)(s))|ds

≤
n∑

i=1

∫ 1

0
gi(s, x(i−1)(s))ds + ‖b‖1 · ‖x(k−1)‖θ

∞ + ‖r‖1

=
n∑

i=1

[
∫

4i,1

gi(s, x(i−1)(s))ds +
∫

4i,2

gi(s, x(i−1)(s))ds]

+‖b‖1 · ‖x(k−1)‖θ∞ + ‖r‖1

≤
n∑

i=1

(ri + ε)‖x(i−1)‖∞ + nM0 + ‖b‖1 · ‖x(k−1)‖θ
∞ + ‖r‖1.

This, together with (3.5)-(3.6), implies

‖x(n)‖1 ≤ ‖b‖1

1−
n∑

i=1
(ri + ε)

‖x(n)‖θ
1 +

nM0 + ‖r‖1 + (r1 + ε)M + c

1−
n∑

i=1
(ri + ε)

,

where

c =
{

0, 1 < k ≤ n,

‖b‖1M
θ, k = 1.

So, Ω1 is bounded.
¤

Lemma 3.4. If (H4) holds, then Ω2 = {x|x ∈ KerL, Nx ∈ ImL} is bounded.

Proof. By x ∈ Ω2, we get x = c and
∫ 1

0
Ncds−

m−2∑

i=1

αi

∫ ξi

0
Ncds− (1−

m−2∑

i=1

αi)
∫ η

0
(1− s

η
)n−1Ncds = 0.

From (H4), we get |c| ≤ M∗. So, Ω2 is bounded.
¤
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Lemma 3.5. If either the first part of (H4) holds and a > 0, or the second
part of (H4) holds and a < 0, then

Ω3 = {x ∈ KerL|λJx + (1− λ)QNx = 0, λ ∈ [0, 1]}
is bounded;

If either the first part of (H4) holds and a < 0, or the second part of (H4)
holds and a > 0, then

Ω3 = {x ∈ KerL| − λJx + (1− λ)QNx = 0, λ ∈ [0, 1]}
is bounded, where J : KerL → ImQ is a linear isomorphism given by J(c) =
c, ∀c ∈ R.

Proof. Suppose the first part of (H4) holds and a > 0. For x ∈ KerL and
λJx = (1− λ)QNx we have

λc = −1− λ

a
[
∫ 1

0
Ncds−

m−2∑

i=1

αi

∫ ξi

0
Ncds− (1−

m−2∑

i=1

αi)
∫ η

0
(1− s

η
)n−1Ncds].

(3.7)
If λ = 0, by (H4), we get |c| ≤ M∗. If λ = 1, then c = 0. For λ ∈ (0, 1), if

|c| > M∗, multiplying two sides of (3.7) by c, we get

λc2 = −1− λ

a
c · [

∫ 1

0
Ncds−

m−2∑

i=1

αi

∫ ξi

0
Ncds

−(1−
m−2∑
i=1

αi)
∫ η

0
(1− s

η
)n−1Ncds] < 0.

A contradiction. So, |c| ≤ M∗. i.e. Ω3 is bounded.
Similarly, we can get that Ω3 is bounded under the other conditions. ¤

Proof of Theorem 3.1. Let Ω be an open bounded ball centered at zero

of X such that Ω ⊃
3⋃

i=1
Ωi. By Lemma 3.2, L is a Fredhold operator of index

zero and N is L−compact on Ω. By Lemma 3.3, Lemma 3.4 and Ω ⊃ Ω1
⋃

Ω2,
we have Lx 6= λNx for x ∈ (domL \KerL)

⋂
∂Ω, λ ∈ (0, 1) and Nx /∈ ImL

for x ∈ KerL
⋂

∂Ω.
Now, let H(x, λ) = ±λJx + (1 − λ)QNx. By Lemma 3.5 and Ω ⊃ Ω3, we

get H(x, λ) 6= 0 for (x, λ) ∈ (KerL
⋂

∂Ω) × [0, 1]. Therefore, by homotopy
property of degree, we get

deg(QN |KerL, Ω
⋂

KerL, 0) = deg(H(·, 0), Ω
⋂

KerL, 0)
= deg(H(·, 1), Ω

⋂
KerL, 0)

= deg(J, Ω
⋂

KerL, 0) 6= 0.
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It follows from Theorem 2.1 that Lx = Nx has at least one solution in
domL

⋂
Ω, which is a solution of the problem (1.1)-(1.2).
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