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Abstract. In this paper, we consider and study a class of generalized mixed variational in-

clusions with fuzzy mappings involving H-monotone operator in real Hilbert spaces. By using

the resolvent operator technique, we construct the iterative algorithm for finding approxi-

mate solutions of generalized mixed variational inclusions with fuzzy mappings. Further,

we prove the existence of solutions for this class of problems and discuss the convergence of

iterative sequences generated by iterative algorithm.

1. Introduction

Variational inequality theory has become very effective and powerful tool
for studying a wide range of problems arising in differential equations, mechan-
ics, management sciences, operations research, contact problems in elasticity,
general equilibrium problems in economics and transportation, optimization
and control problems etc. Hassouni and Moudafi [11] introduced and studied a
class of mixed type variational inequalities with single-valued mappings, which
was called variational inclusions. Since then, many authors have obtained im-
portant extensions and generalizations of the results [11] in different directions,
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see [1, 8, 13, 14, 18, 19]. Verma [16, 17] introduced and studied some system
of variational inequalities and iterative algorithms to compute approximate
solutions. Fang and Huang [9, 10] introduced a class of H-monotone opera-
tors and studied a new class of variational inclusions involving H-monotone
operators.

In 1989, Chang and Zhu [6] introduced and studied a class of variational
inequality for fuzzy mappings. Recently, various classes of variational inequal-
ities and inclusions for fuzzy mappings were considered by Chang [4], Chang
and Huang [5], Ding and Park [7] and Lee et al. [14].

In this paper, under assumptions that H is strongly monotone continuous
and single-valued, we first prove that a multivalued operator is H-monotone
if and only if it is maximal monotone. Subsequently, we define the resolvent
operator associated with a strongly H-monotone operator, prove its Lipschitz
continuity and estimate its Lipschitz constant. Further we study the varia-
tional inclusions for fuzzy mappings with strongly H-monotone operators, and
suggest and analyze some iterative algorithms for finding approximate solu-
tions of generalized mixed variational inclusions for fuzzy mappings. Further
we prove the existence of solutions for this class of problems and discuss the
convergence of iterative sequences generated by these iterative algorithms.

2. Preliminaries

Throughout in this paper, we assume thatH is a real Hilbert space endowed
with norm ‖ ·‖ and inner product 〈·, ·〉 respectively. Let 2H denotes the family
of all nonempty subsets of H, CB(H) the family of all nonempty closed and
bounded subsets of H, D(·, ·) the Hausdorff metric on CB(H) defined by

D(A, B) = max

{
sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)

}
; A,B ∈ CB(H).

We denote the collection of all fuzzy sets of H by F(H) = {µ : H → I =
[0, 1]}. A mapping F : H → F(H) is called a fuzzy mapping on H. If F is a
fuzzy mapping then F (x) (in the sequel we shall denote by Fx) a fuzzy set on
H and Fx(y) is the membership function of y in Fx.

Let M ∈ F(H), q ∈ [0, 1]. The set (M)q = {x ∈ H : µ(x) ≥ q} is called
a q-cut set of M . A fuzzy mapping F : H → F(H) is said to be closed if
for any x ∈ H the function Fx(y) is upper semicontinuous with respect to y,
i.e., for any given point y0 ∈ H and any net {yα} ⊂ H, when yn → y0, we
have Fx(y0) ≥ lim

α
supFx(yα). Let F, G,E : H → F(H) be the closed fuzzy

mappings satisfying the following condition:

Condition (S). There exist functions a, b, c : H → [0, 1] such that for all
x ∈ H, we have (Fx)a(x), (Gx)b(x), (Ex)c(x) ∈ CB(H) by F̃ (x) = (Fx)a(x),
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G̃(x) = (Gx)b(x) and Ẽ(x) = (Ex)c(x). In the sequel F̃ , G̃ and Ẽ are called
the multivalued mappings induced by the fuzzy mappings F, G,E respectively.
More precisely, let N : H × H → H be single-valued mapping and F, G,E :
H → F(H) the fuzzy mappings.

Find u, x, y, z ∈ H such that Fu(x) ≥ a(u), Gu(y) ≥ b(u), Eu(z) ≥ c(u),

0 ∈ N(x, y) + M(u, z) (2.1)

where M : H ×H → 2H is a multivalued mapping such that for each t ∈ H,
M(·, t) : H → 2H is maximal H-monotone, then the problem (2.1) is called
generalized mixed variational inclusion for fuzzy mappings.

We need the following pertinent definitions and concepts.

Definition 2.1. Let T, H : H → H be two single-valued operators, T is said
to be

(i) monotone if

〈Tu− Tv, u− v〉 ≥ 0, for all u, v ∈ H,

(ii) strictly monotone if T is monotone and

〈Tu− Tv, u− v〉 = 0 ⇔ u = v,

(iii) strongly monotone if there exists some constant r > 0 such that

〈Tu− Tv, u− v〉 ≥ r‖u− v‖2, for all u, v ∈ H,

(iv) strongly monotone with respect to H if there exists some constant γ > 0
such that

〈Tu− Tv, Hu−Hv〉 ≥ γ‖u− v‖2, for all u, v ∈ H,

(v) Lipschitz continuous if there exists some constant s > 0 such that

‖Tu− Tv‖ ≤ s‖u− v‖, for all u, v ∈ H.

Remark 2.2. If T and H are Lipschitz continuous with constants s and τ
respectively, and T is strongly monotone with respect to H with constant γ,
then γ ≤ τs.

Definition 2.3. A multivalued operator M : H → 2H is said to be
(i) monotone if

〈x− y, u− v〉 ≥ 0, for all u, v ∈ H, x ∈ Mu, y ∈ Mv,

(ii) strongly monotone if there exists some constant η > 0 such that

〈x− y, u− v〉 ≥ η‖u− v‖2, for all u, v ∈ H, x ∈ Mu, y ∈ Mv,
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(iii) maximal monotone if M is monotone and (I + λM)(H) = H for all
λ > 0, where I denotes the identity mapping on H,

(iv) maximal strongly monotone if M is strongly monotone and

(I + λM)(H) = H, for all λ > 0.

Remark 2.4. A multivalued operator M is maximal monotone if and only if
M is monotone and there is no other monotone operator whose graph properly
contains the graph Gr(M) of M , where

Gr(M) = {(u, x) ∈ H ×H : x ∈ M(u)}.

Definition 2.5. [9, 10] Let H : H → H be a single-valued operator and
M : H → 2H a multivalued operator. M is said to be

(i) H-monotone if M is monotone and (H +λM)(H) = H holds for every
λ > 0,

(ii) strongly H-monotone if M is strongly monotone and (H + λM)(H) =
H holds for every λ > 0.

Remark 2.6. If H = I, then the definition of I-monotone operator reduces
to the maximal monotone operators. As a matter of fact, the class of H-
monotone operator has close relation with the maximal monotone operator.

Proposition 2.7. [9, 10] Let H : H → H be a single-valued strictly monotone
operator and M : H → 2H be a H-monotone operator. Then M is maximal
monotone.

Let X be a real Banach space with norm ‖ · ‖, X∗ the dual space of X
and 〈x, f〉 denotes the value of f ∈ X∗ at x ∈ X. For κ ∈ (−∞,∞), a
fuzzy mapping Ã : D(Ã) ⊂ X → F̃ (X) is said to be κ-accretive if for each
x, y ∈ D(Ã) there exists j(u− v) ∈ J(u− v) such that

〈x− y, j(u− v)〉 ≥ κ‖u− v‖2, for all x ∈ Ã(u), y ∈ Ã(v), (2.2)

where J : X → 2X∗
is the normalized duality mapping defined by

J(x) = {f ∈ X∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2},
and 〈·, ·〉 denotes the generalized duality pairing. It is an immediately con-
sequence of Hahn-Banach Theorem that J(x) is nonempty for each x ∈ X.
Moreover it is known that J is single-valued if and only if X is smooth. For
κ > 0 in inequality (2.2), Ã is strongly accretive while for κ = 0, Ã is simply
accretive. In addition if the range of I +λÃ is precisely X for all λ > 0, where
I is an identity mapping on X, then Ã is said to be m-accretive. If X = H, a
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real Hilbert space, then the definitions of strong accretivity and m-accretivity
reduce to the strong, monotonicity and maximal monotonicity, respectively.

Proposition 2.8. [13] Let X be a smooth Banach space, A : D(Ã) ⊂ X → 2X

a m-accretive and S : D(S) ⊂ X → X a continuous and strongly accretive with
D(Ã) ⊂ D(S), where D(Ã) and D(S) are the domain of Ã and S respectively,
and D(Ã) is the closure of D(Ã). Then for each x ∈ X, the equation z ∈
Sx + λÃx has a unique solution xλ for λ > 0.

Corollary 2.9. Let H be a real Hilbert space. Let M : H → 2H be a max-
imal monotone multivalued operator and H : H → H a strongly monotone,
continuous and single-valued operator. Then for each z ∈ H the equation
z ∈ Hx + λMx has a unique solution xλ for λ > 0.

Remark 2.10. If H : H → H is a strongly monotone, continuous single-
valued and M : H → 2H a maximal monotone multivalued operator, then from
Corollary 2.1, the operator (H +λM)−1 is single-valued. Hence we can define
the resolvent operator RH

M,λ : H → H as follows:

RH
M,λ(u) = (H + λM)−1(u) for all, u ∈ H. (2.3)

Theorem 2.11. Let H : H → H be a strongly monotone continuous and
single-valued operator, then a multivalued operator M : H → 2H is H-monotone
if and only if M is maximal monotone.

Proof. At first, let M : H → 2H be H-monotone. Since H : H → H is strongly
monotone, H is strictly monotone. Thus it follows from Proposition 2.1 that
M is maximal monotone.

Conversely, suppose that M is maximal monotone, then M is monotone.
Note that H is strongly monotone, continuous and single-valued operator.
Hence it follows from Corollary 2.1, that for each z ∈ H, the equation z ∈ Hx+
λMx has a unique solution xλ for λ > 0. This implies that (H +λM)(H) = H
holds for every λ > 0. Therefore, M is H-monotone. ¤

Corollary 2.12. Let H : H → H be a strongly monotone continuous and
single-valued operator. Then a multivalued operator M : H → 2H is strongly
H-monotone if and only if M is maximal strongly monotone.

Theorem 2.13. [10] Let H : H → H be continuous and strongly monotone
with constant γ. Let M : H → 2H be maximal strongly monotone with constant
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η. Then the resolvent operator RH
M,λ : H → H is Lipschitz continuous with

constant
1

γ + λη
, i.e.,

‖RH
M,λ(u)−RH

M,λ(v)‖ ≤ 1
γ + λη

‖u− v‖, for all u, v ∈ H.

Proof. Let u, v be any given points in H. It follows from (2.3) that

RH
M,λ(u) = (H + λM)−1(u)

and
RH

M,λ(v) = (H + λM)−1(v).

This implies that
1
λ

(u−H(RH
M,λ(u))) ∈ M(RH

M,λ(u))

and
1
λ

(v −H(RH
M,λ(v))) ∈ M(RH

M,λ(v)).

Since M is strongly monotone, we have

η‖RH
M,λ(u)−RH

M,λ(v)‖2

≤ 1
λ
〈u−H(RH

M,λ(u))− (v −H(RH
M,λ(v))), RH

M,λ(u)−RH
M,λ(v)〉

≤ 1
λ
〈u− v − (H(RH

M,λ(u))−H(RH
M,λ(v))), RH

M,λ(u)−RH
M,λ(v)〉.

It follows that

‖u− v‖ ‖RH
M,λ(u)−RH

M,λ(v)‖
≥ 〈u− v, RH

M,λ(u)−RH
M,λ(v)〉

≥ 〈H(RH
M,λ(u))−H(RH

M,λ(v)), RH
M,λ(u)−RH

M,λ(v)〉
+λη‖RH

M,λ(u)−RH
M,λ(v)‖2

≥ γ‖RH
M,λ(u)−RH

M,λ(v)‖2 + λη‖RH
M,λ(u)−RH

M,λ(v)‖2

= (γ + λη)‖RH
M,λ(u)−RH

M,λ(v)‖2

and hence

‖RH
M,λ(u)−RH

M,λ(v)‖ ≤ 1
γ + λη

‖u− v‖
for all u, v ∈ H. ¤
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3. Existence and Convergence Theory

In this section, we develop the iterative algorithm, then we prove the exis-
tence and convergence of problem (2.1).

Theorem 3.1. Let H be a real Hilbert space, F, G,E : H → F(H) the closed
fuzzy mappings satisfying the Condition (S) and F̃ , G̃, Ẽ : H → CB(H) the
multivalued mappings induced by F, G, E respectively. Let H : H → H and
N : H×H → H be the single-valued mappings, then the following statements
are equivalent:

(i) u ∈ H, x ∈ F̃ (u), y ∈ G̃(u), z ∈ Ẽ(u) are solution of the problem
(2.1),

(ii) u ∈ H, x ∈ F̃ (u), y ∈ G̃(u), z ∈ Ẽ(u) are the solution of the equation

u = RH
M(·,z),λ(H(u)− λN(x, y)), (3.1)

where λ > 0 is a constant and RH
M(·,z),λ is the resolvent operator associated

with M(·, z).

Proof. u ∈ H, x ∈ F̃ (u), y ∈ G̃(u) and z ∈ Ẽ(u) are solution of problem (2.1)
if and only if

0 ∈ N(x, y) + M(u, z)
⇔ H(u)− λN(x, y) ∈ H(u) + λM(u, z)
⇔ H(u)− λN(x, y) ∈ (H + λM(·, z))(u)
⇔ u = (H + λM(·, z))−1(H(u)− λN(x, y))
⇔ u = RH

M(·,z),λ(H(u)− λN(x, y)).

¤

Algorithm 3.2. Assume that N : H×H → H and H : H → H are two single-
valued mappings. Let F, G,E : H → F(H) be closed fuzzy mappings satisfying
Condition (S) and F̃ , G̃, Ẽ : H → CB(H) the multivalued mappings induced
by fuzzy mappings F, G,E, respectively. For given u0 ∈ H, x0 ∈ F̃ (u0), y0 ∈
G̃(u0) and z0 ∈ Ẽ(u0), let

u1 = (1− µ)u0 + µRH
M(·,z0),λ[H(u0)− λN(x0, y0)].

Since x0 ∈ F̃ (u0) ∈ CB(H), y0 ∈ G̃(u0) ∈ CB(H), z0 ∈ Ẽ(u0) ∈ CB(H) by
Nadler [15] there exist x1 ∈ F̃ (u1), y1 ∈ G̃(u1), z1 ∈ Ẽ(u1) such that

Fu0(x0) ≥ a(u0), ‖x0 − x1‖ ≤ (1 + 1)D(F̃ (u0), F̃ (u1)),

Gu0(y0) ≥ b(u0), ‖y0 − y1‖ ≤ (1 + 1)D(G̃(u0), G̃(u1)),

Eu0(z0) ≥ c(u0), ‖z0 − z1‖ ≤ (1 + 1)D(Ẽ(u0), Ẽ(u1)),
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where D(·, ·) is a Hausdorff metric on CB(H). Let

u2 = (1− µ)u1 + µRH
M(·,z1),λ[H(u1)− λN(x1, y1)].

By induction, we can define the sequences {xn}, {yn} and {zn} as

un+1 = (1− µ)un + µRH
M(·,zn),λ[H(un)− λN(xn, yn)], (3.2)

Fun(xn) ≥ a(un), ‖xn − xn+1‖ ≤ (1 + (n + 1)−1)D(F̃ (un), F̃ (un+1))

Gun(yn) ≥ b(un), ‖yn − yn+1‖ ≤ (1 + (n + 1)−1)D(G̃(un), G̃(un+1))

Eun(zn) ≥ c(un), ‖zn − zn+1‖ ≤ (1 + (n + 1)−1)D(Ẽ(un), Ẽ(un+1))
where µ > 0, λ > 0 for n ≥ 0.

Definition 3.3. Let N : H × H → H and H : H → H be single-valued
mappings and F̃ , G̃ : H → CB(H) be multivalued mappings,

(i) F̃ is said to be strongly H-monotone with respect to H in the first
argument of N , if there exists a constant r > 0 such that

〈N(x1, y1)−N(x2, y1), H(u1)−H(u2)〉 ≥ r‖u1 − u2‖2

for all ui ∈ H and xi ∈ F̃ (ui), i = 1, 2;
(ii) G̃ is said to be relaxed H-monotone with respect to H in the second

argument of N , if there exists a constant ρ > 0 such that

〈N(x1, y1)−N(x1, y2), H(u1)−H(u2)〉 ≥ −ρ‖u1 − u2‖2

for all ui ∈ H and yi ∈ G̃(ui), i = 1, 2;
(iii) F̃ is said to be Lipschitz continuous in the first argument of N , if there

exists a constant β > 0 such that

‖N(x1, ·)−N(x2, ·)‖ ≤ β‖u1 − u2‖
for all ui ∈ H and xi ∈ F̃ (ui), i = 1, 2. In a similar way, we can define
the Lipschitz continuity of N with respect to the second argument.

(iv) F̃ is said to be Lipschitz continuous, if there exists a constant α > 0
such that

D̂(F̃ (u1), F̃ (u2)) ≤ α‖u1 − u2‖ for all ui ∈ H i = 1, 2.

Theorem 3.4. Let H : H → H be a strongly monotone and Lipschitz con-
tinuous operator with constants γ and τ respectively. Let N : H × H → H
be the single-valued mapping. Assume that F, G,E : H → F(H) are closed
fuzzy mappings satisfying Condition (S) and F̃ , G̃, Ẽ : H → CB(H) are the
multivalued mappings induced by fuzzy mappings F, G, E respectively.

(i) F̃ , G̃, Ẽ are D-Lipschitz continuous with constants α, ζ, σ > 0 respec-
tively,



Generalized mixed variational inclusions with fuzzy mappings 249

(ii) F̃ is strongly monotone with respect to H in the first argument of N
with constant r > 0,

(iii) G̃ is relaxed monotone with respect to H in the second argument of N
with constant ρ > 0,

(iv) N is Lipschitz continuous with respect to first and second arguments
with constants β, δ > 0 respectively,

(v) for t ∈ H, M(·, t) : H → 2H is maximal monotone with constant ξ
such that

‖RH
M(·,z1),λ(w)−RH

M(·,z2),λ(w)‖ ≤ ξ‖z1 − z2‖ (3.3)

for all u1, u2, w ∈ H, z1 ∈ G̃(u1), z2 ∈ G̃(u2).

(vi) (1−µ)+µξσ+
µ

γ + λη

√
τ2 − 2λ(r − ρ) + λ2(βα + δζ)2 < 1.

(3.4)
Then there exist u ∈ H, x ∈ F̃ (u), y ∈ G̃(u), z ∈ Ẽ(u), which satisfy (2.1) and
the sequences {un}, {xn}, {yn} and {zn} generated by Algorithm 3.1 converge
to u∗, x∗, y∗ and z∗ strongly in H respectively.

Proof. From (3.2)-(3.3) and Theorem 2.2, we have

‖un+1 − un‖ (3.5)

= ‖(1− µ)un + µRH
M(·,zn),λ[H(un)− λN(xn, yn)]

−(1− µ)un−1 − µRH
M(·,zn−1),λ[H(un−1)− λN(xn−1, yn−1)]‖

≤ (1− µ)‖un − un−1‖
+µ‖RH

M(·,zn),λ[H(un)− λN(xn, yn)]−RH
M(·,zn−1),λ[H(un)− λN(xn, yn)]‖

+µ‖RH
M(·,zn−1),λ[H(un)− λN(xn, yn)]

−RH
M(·,zn−1),λ[H(un−1)− λN(xn−1, yn−1)]‖

≤ (1− µ)‖un − un−1‖+ µξ‖zn − zn−1‖
+

µ

γ + λη
‖H(un)−H(un−1)− λN(xn, yn) + λN(xn−1, yn−1)‖

≤ (1− µ)‖un − un−1‖+ µξD(G̃un, G̃un−1)

+
µ

γ + λη
‖H(un)−H(un−1)− λ(N(xn, yn)−N(xn−1, yn−1))‖

≤ (1− µ)‖un − un−1‖+ µξσ(1 + n−1)‖un − un−1‖
+

µ

γ + λη
‖H(un)−H(un−1)− λ(N(xn, yn)−N(xn−1, yn−1))‖.
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Since N is Lipschitz continuous with first and second arguments and F̃ , G̃ are
D-Lipschitz continuous, we have

‖N(xn, yn)−N(xn−1, yn)‖ ≤ β‖xn − xn−1‖ (3.6)

≤ β(1 + n−1)D(F̃ (un), F̃ (un−1))
≤ βα(1 + n−1)‖un − un−1‖

and

‖N(xn−1, yn)−N(xn−1, yn−1)‖ ≤ δ‖yn − yn−1‖ (3.7)

≤ δ(1 + n−1)D(G̃(un), G̃(un−1))
≤ δζ(1 + n−1)‖un − un−1‖.

Since F̃ and G̃ are Lipschitz continuous with constants α, ζ > 0 respectively
and F̃ is strongly monotone with respect to H in the first argument of N
with constant r > 0. G̃ is relaxed monotone with respect to H in the second
argument of N with constant ρ < 0 and H is Lipschitz continuous with respect
to constant τ > 0, we have

‖H(un)−H(un−1)− λ(N(xn, yn)−N(xn−1, yn−1))‖2 (3.8)
≤ ‖H(un)−H(un−1)‖2

−2λ〈N(xn, yn)−N(xn−1, yn−1), H(un)−H(un−1)〉
+λ2‖N(xn, yn)−N(xn−1, yn−1)‖2

≤ τ2‖un − un−1‖2 − 2λ〈N(xn, yn)−N(xn−1, yn), H(un)−H(un−1)〉
−2λ〈N(xn−1, yn)−N(xn−1, yn−1),Hun −Hun−1〉
+λ2‖N(xn, yn)−N(xn−1, yn−1)‖2

≤ τ2‖un − un−1‖2 − 2λr‖un − un−1‖2 + 2λρ‖un − un−1‖2

+λ2(1 + n−1)2(βα + δζ)2‖un − un−1‖2

≤ (τ2 − 2λ(r − ρ) + λ2(1 + n−1)2(βα + δζ)2‖un − un−1‖2.

From (3.5)-(3.8), we have

‖xn+1 − xn‖ (3.9)
≤ (1− µ)‖un − un−1‖+ µξσ(1 + n−1)‖un − un−1‖

+
µ

γ + λη

√
τ2 − 2λ(r − ρ) + λ2(1 + n−1)2(βα + δζ)2‖un − un−1‖
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≤ [(1− µ) + µξσ(1 + n−1)

+
µ

γ + λη

√
τ2 − 2λ(r − ρ) + λ2(1 + n−1)2(βα + δζ)2]‖un − un−1‖

≤ θn‖un − un−1‖,

where,

θn = (1− µ) + µξσ(1 + n−1)

+
µ

γ + λη

√
τ2 − 2λ(r − ρ) + λ2(1 + n−1)2(βα + δζ)2.

Letting n →∞, we have θn → θ, where

θ = (1− µ) + µξσ +
µ

γ + λη

√
τ2 − 2λ(r − ρ) + λ2(βα + δζ)2 < 1.

From condition (3.4), we know that θ < 1. Hence θn < 1 for sufficiently large
n. Therefore {un} is a Cauchy sequence and we can suppose that un → u ∈ H.

Now we prove that xn → x? ∈ F̃ (u?), yn → y? ∈ G̃(u?) and zn → z? ∈
Ẽ(u?). From Algorithm 3.1, we have

‖xn − xn+1‖ ≤ (1 + (n + 1)−1)D(F̃ (un), F̃ (un−1))
≤ (1 + (n + 1)−1)α‖un − un−1‖,

‖yn − yn+1‖ ≤ (1 + (n + 1)−1)D(G̃(un), G̃(un−1))
≤ (1 + (n + 1)−1)ζ‖un − un−1‖,

and

‖zn − zn+1‖ ≤ (1 + (n + 1)−1)D(Ẽ(un), Ẽ(un−1))
≤ (1 + (n + 1)−1)σ‖un − un−1‖.

It follows that {xn}, {yn} and {zn} are Cauchy sequences in H. Let xn → x?,
yn → y?, and zn → z? respectively. Now we will show that x? ∈ F̃ (u?),
y? ∈ G̃(u?), z? ∈ Ẽ(u?). In fact noting xn ∈ F̃ (un), we have

D(x?, F̃ (u?)) = inf{‖x? − w‖ : w ∈ F̃ (u?)}
≤ ‖x? − xn‖+ d(xn, F̃ (u?))

≤ ‖x? − xn‖+ D(F̃ (un), F̃ (u?))
≤ ‖x? − xn‖+ α‖un − u?‖ → 0 as n →∞.
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Hence d(x?, F̃ (u?)) = 0 and therefore x? ∈ F̃ (u?). Similarly we can prove that
y? ∈ G̃(u?) and z? ∈ Ẽ(u?). Since

un+1 = (1− µ)un + µRH
M(·,zn),λ[H(un)− λN(xn, yn)],

(u?, x?, y?, z?) is a solution of (2.1), from Lemma 3.1. This completes the
proof. ¤
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