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Abstract. The main objective of present paper is to study a class of fuzzy generalized

vector variational inequalities and fuzzy generalized vector complementarity problems. We

prove the existence of solutions for this kind of vector variational inequalities and discuss the

relations between the solutions of the fuzzy generalized vector variational inequalities and

the solutions of fuzzy generalized vector complementarity problems in Hausdorff topological

vector spaces.

1. Introduction

Firstly Chang and Zhu [2] introduced and studied the concept of variational
inequalities for fuzzy mappings and investigated existence theorems for some
kinds of variational inequalities for fuzzy mappings. Chang [1] proved the co-
incidence theorems for fuzzy mappings and some existence theorems for more
general variational inequalities for fuzzy mappings. Lee et al [13] obtained
some existence theorems of certain variational inequalities for fuzzy mappings
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following the approach of Chang and Zhu [2] and using the result of Kim and
Tan [11].

On the other hand, Lee et al [18] considered vector variational inequalities
for fuzzy mappings, which were the fuzzy extensions of vector variational in-
equalities studied by Chen and Yang [6] and obtained some existence theorems
of solutions for their inequalities for fuzzy mappings. Since then Chang et al
[3,4] and Lee et al [14] studied several kinds of vector variational inequalities
and vector quasi-variational inequalities for fuzzy mappings and proved some
existence theorems of solutions for their inequalities.

In 1980, Giannessi [8] introduced a vector variational inequality in a finite
dimensional Euclidean space. In the past ten years or so, Chen et al [5,6],
Lai and Yao [12], Isac [10], Lee et al [17,18] and many others have intensively
studied the vector variational inequalities. Very recently Isac [10] and Yang
[20] considered vector complementarity problems and proved some existence
theorems of the solutions for the vector complementarity problems.

In this paper, we considered the fuzzy generalized vector variational in-
equalities and fuzzy complementarity problems. We prove the existence of
solutions for this kind of vector variational inequalities with fuzzy mappings
and discuss the relations between the solutions of the fuzzy generalized vector
variational inequalities and solutions of fuzzy generalized vector complemen-
tarity problems in Hausdorff topological vector spaces.

Let E be a nonempty subset of a vector space X and D a nonempty set.
A function T from D into the collection F(E) of all fuzzy sets on E is called
a fuzzy mapping. If T : D → F(E) is a fuzzy mapping, then T (x), x ∈ D
(denoted by Tx in the sequel) is a fuzzy set in F(E) and Tx(y), y ∈ E is the
degree of membership of y in Tx. A fuzzy mapping T : D → F(E) is said to
be closed if for each x ∈ D the function y → Tx(y) is u.s.c., i.e., for any given
net {yα} ⊂ D satisfying yα → y0 ⊂ D, lim sup

α
Tx(yα) ≤ Tx(y0).

Let A ∈ F(E) and α ∈ (0, 1].Then the set

(A)α = {x ∈ E : A(x) ≥ α}

is called an α-cut set of A.

The fuzzy mapping T : D → F(E) is said to be convex if E is a convex
subset of X and for any x ∈ D, y, z ∈ E and α ∈ [0, 1],

Tx(αy + (1− α)z) ≥ min{Tx(y), Tx(z)}.

Definition 1.1 (15). Let X and Y be two topological spaces and F : X → 2Y

be a multifunction. Then
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(1) T is upper semi-continuous (briefly u.s.c.) at x0 ∈ X if for any open
set N containing T (x0), there exists a neighborhood M of x0 such that
T (M) ⊂ N . T is u.s.c. if T is u.s.c. at every x0 ∈ X.

(2) T is closed at x ∈ X if for any net {xλ} in X such that xλ → x and
for any net {yλ} in Y such that yλ → y and yλ ∈ T (xλ) for any λ, we
have y ∈ T (x).

(3) T has a closed graph if the graph of T , Gr(T ) = {(x, y) ∈ X × Y : y ∈
T (x)} is closed in X × Y .

Definition 1.2 (19). Let X and Y be two topological spaces and T : X →
F(Y ) be a fuzzy mapping. Then T is a fuzzy mapping with closed fuzzy set-
values if Tx(y) is u.s.c. on X × Y as a real ordinary function.

Definition 1.3. A mapping T : K → Y is convex if for any x1, x2 ∈ K and
t ∈ [0, 1]

f(tx1 + (1− t)x2) ≤C(x) tf(x1) + (1− t)f(x2),

that is,

tf(x1) + (1− t)f(x2)− f(tx1 + (1− t)x2) ∈ C(x).

Lemma 1.4. If A is a closed subset of a topological space X then the charac-
teristic function χA of A is an u.s.c. real-valued function.

Lemma 1.5 (16). Let K be a nonempty closed convex subset of a real Haus-
dorff topological vector space X, E be a nonempty closed convex subset of a
real Hausdorff topological vector space Y and α : X → (0, 1] be a lower semi-
continuous function. Let T : K → F(E) be a fuzzy mapping with (Tx)α(x) 6= 0
for any x ∈ X. Let T̃ : K → 2E be a multifunction defined by T̃ (x) = (Tx)α(x).
If T is a fuzzy mapping with closed fuzzy set-values, then T̃ is closed multi-
function.

Proof. Let {xλ} be a net in K converging to x, {yλ} be a net in E converging
to y and yλ ∈ T̃ (xλ) = (Txλ

)α(xλ). Then Txλ
(yλ) ≥ α(xλ). Since Tx(y) is u.s.c.

on X × Y as a real ordinary function, Tx(y) ≥ limTxλ
(yλ) ≥ limTxλ

(yλ) ≥
limα(xλ) ≥ α(x), which shows y ∈ T̃ (x). ¤

2. Fuzzy Generalized Vector Variational Inequalities for Fuzzy
Mappings

Let X be a Hausdorff topological vector space, Y a topological vector
space; M(X,Y ) and L(X,Y ) denote the set of all continuous mappings from
X to Y and the set of all continuous linear mappings from X to Y respectively.
Suppose that K is a nonempty closed convex subset of X, {C(x) : x ∈ K} is
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a family of closed pointed and convex cones of Y with intC(x) 6= ∅. Let T :
X → F(M(X,Y )) be a fuzzy mapping and α : X → (0, 1] be a function. We
define a partial order ≤C(x) in Y with the convex cone C(x) as, for y1, y2 ∈ Y

y1 ≤C(x) y2 if and only if y2 − y1 ∈ C(x).

A mapping f : K → Y is called convex if for any finite subset {x1, x2, · · · , xn}
of K and {λi}n

i=1 ⊂ [0, 1] such that
n∑

i=1
λi = 1, we have f(

n∑
i=1

λixi) ≤C(x)

n∑
i=1

λif(xi).

Let E be a nonempty subset of X,T : E → 2X is called a KKM mapping
if for any arbitrary finite subset {x1, x2, · · · , xn} of E

Co{x1, x2, · · · , xn} ⊂
n⋃

i=1

T (xi)

where Co(A) denotes the convex hull of A.

Now we consider the following fuzzy generalized vector variational inequal-
ity:
Find y0 ∈ K, there exists s0 ∈ (Ty0)α(y0) such that

φ(p(s0), x, y0) 6∈ -intC(y0), for all x ∈ K, (2.1)

where φ : F(M(X,Y )) × K × K → Y is a single-valued mapping and p :
F(M(X, Y )) → F(M(X,Y )) is a continuous mapping. We note that if p is
an identity map and T : X → M(X, Y ) is a mapping then we can define
the fuzzy mapping T : X → F(M(X,Y )) by x → χT (x), where χT (x) is the
characteristic function of T (x). Taking α(x) = 1 for all x ∈ X, Problem (2.1)
is equivalent to the following problem: Find y0 ∈ K, there exists s0 ∈ T (y0)
such that

φ(s0, x, y0) 6∈ -intC(y0), for all x ∈ K, (2.2)

where φ : M(X,Y ) × K × K → Y is a single valued mapping and p :
M(X,Y ) → M(X, Y ) is a continuous mapping. Problem (2.2) is called vector
variational inequality and is studied by Huang and Gao [9].

Lemma 2.1 (7). Let X be a topological vector space and S a subset of X and
F : S → 2X a KKM mapping with closed values. If there exists an x0 ∈ S
such that F (x0) is compact then

⋂

x∈S

F (x) 6= ∅.
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Theorem 2.2. Let X be a Hausdorff topological vector space, Y a topological
vector space and M(X,Y ) the set of all continuous mappings from X to Y .
Suppose that K is a nonempty closed convex subset of X, {C(x) : x ∈ K} is
a family of closed pointed and convex cones of Y with intC(x) 6= ∅, W (x) =
Y \{-intC(x)} has a closed graph. Let a fuzzy mapping T : X → F(M(X,Y ))
is an upper semi-continuous and closed set-valued mapping with compact val-
ues. Let φ : F(M(X, Y ))×K ×K → Y be a continuous mapping such that

(1) there exists an upper semi-continuous function α : X → (0, 1] such
that for any x ∈ K the cut set (Tx)α(x) is nonempty and

⋃
x∈K

(Tx)α(x)

is contained in some compact subset of M(X, Y ),
(2) p : F(M(X, Y )) → F(M(X, Y )) is a continuous mapping,
(3) for each x ∈ K, there exists s0 ∈ (Tx)α(x) such that

φ(p(s0), x, x) 6∈ -intC(x),

(4) the mapping φ(p(s), x, y) is convex with respect to x to the convex cone
C(y) for any y ∈ K and any s ∈ (Ty)α(y),

(5) the mapping φ(p(s), x, y) is continuous with respect to (s, y).
Moreover one of the following two assumptions is satisfied:

(6) K is compact,
(7) there exists a compact subset D of K such that for each x ∈ K\D,

there exists u ∈ D such that

φ(p(s), u, x) ∈ -intC(x) for all s ∈ (Tx)α(x).

Then there exists y0 ∈ K and s0 ∈ (Ty0)α(y0) such that

φ(p(s0), x, y0) 6∈ -intC(y0) for all x ∈ K.

Proof. Define a multifunction T̃ : K → 2M(X,Y ) by T̃ (x) = (Tx)α(x). It follows
from Lemma 1.5 and the condition (1) that T̃ is nonempty closed multifunction
such that T̃ (K) is contained in semi compact subset of M(X,Y ). Assume that
φ satisfies Assumption (3)–(5) and K is compact. Let

F (x)∆={y ∈ K : ∃ s ∈ (Ty)α(y) such that φ(p(s), x, y) 6∈ -intC(y)}
for each x ∈ K.

We assert that F (x) is closed. In fact for each fixed x ∈ K, if {yn} ⊂ F (x)
and yn → y0 ∈ K, then there exists sn ∈ T̃ (yn) such that φ(p(sn), x, yn) 6∈
-intC(yn).

Since K is a compact subset of X, T is upper semi-continuous and closed
with compact values and T (K) is compact then there exists a subnet {sn},
denoted by {sn}, such that sn → s0 and p(sn) → p(s0). It follows from
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Assumption (5) that

φ(p(sn), x, yn) → φ(p(s0), x, y0),

and so φ(p(s0), x, y0) ∈ W (y0) by the closed graph of W , which implies that

φ(p(s0), x, y0) 6∈ -intC(y0).

Hence F (x) is closed and moreover compact. By Assumption (3) we know
that

F (x) 6= ∅ or each x ∈ K.

Further, we shall prove that F : K → 2K is a KKM mapping. Then

there exists a finite subset {xi}n
i=1 such that Co{x1, x2, · · · , xn} 6⊂

n⋃
i=1

F (xi).

Then there exists at least one point x =
n∑

i=1
λixi, where 0 ≤ λi ≤ 1 for each

1 ≤ i ≤ n and
n∑

i=1
λi = 1, such that

x 6∈
n⋃

i=1

F (xi).

Hence for each i = 1, 2, · · ·n, φ(p(s), xi, x) ∈ -intC(x) for all s ∈ T̃ (x)
and it follows from Assumption (4) that

φ(p(s),
n∑

i=1

λixi, x) ≤C(x)

n∑

i=1

λiφ(p(s), xi, x)

that is,
n∑

i=1

λiφ(p(s), xi, x)− φ(p(s), x, x) ∈ C(x),

for all s ∈ T̃ (x). Since φ(p(s), xi, x) ∈ -intC(x) and C(x) is convex, it follows
that

φ(p(s), x, x) ∈ -intC(x) for all s ∈ T̃ (x),

which contradicts Assumption (3). Therefore F : K → 2Y is a KKM mapping.
From Lemma 2.1, we know that

⋂
x∈K

F (x) 6= ∅ which implies that there exists

y0 ∈ K and s0 ∈ T̃ (y0) such that

φ(p(s0), x, y0) 6∈ -intC(y0) for all x ∈ K.

Next we suppose that φ satisfies Assumption (3)–(5) and (7). Let

F (x)∆={y ∈ D : ∃ s ∈ (T̃y) such that φ(p(s), x, y) 6∈ -intC(y)}, ∀x ∈ K.
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We can prove that F : K → 2K is a KKM mapping with closed values.
Now we show that F (x) 6= ∅ for each x ∈ K. It follows from Assumption (3)
that F (x) 6= ∅ for each x ∈ D. On the other hand, for each fixed z ∈ K\D,
let

Ez = Co{D ∪ {z}}
where Co denotes the closed convex hull of a set. Since D is compact, Ez is
also compact. For each x ∈ Ez let

B(x)∆={y ∈ Ez : ∃ s ∈ T̃ (y) such that φ(p(s), x, y) 6∈ -intC(y)}.
Therefore there exists y1 ∈ Ez and s1 ∈ T̃ (y1) such that

φ(p(s1), x, y1) 6∈ -intC(y1), (2.3)

for all x ∈ Ez. Moreover, we assert that y1 ∈ D. In fact if y1 ∈ Ez\D ⊂
K\D, it follows from Assumption (7) that there exists u ∈ D satisfying
φ(p(s), u, y1) ∈ -intC(y1) for all s ∈ T̃ (y1), which contradicts (2.3). So y1 ∈ D
and this implies F (x) 6= ∅ for each x ∈ Ez. Especially F (z) 6= ∅. Since
z ∈ K\D is arbitrary, we have

F (x) = {y ∈ D : ∃ s ∈ T̃ (y) such that

φ(p(s), x, y) 6∈ -intC(y)} 6= ∅, for all x ∈ K.

Since F (x) is closed for each x ∈ D and D is compact. From Assumption
(7), there exists u ∈ D such that F (u) ⊂ D and hence F (u) is compact.
Therefore from Lemma 2.1, we have

⋂
x∈K

F (x) 6= ∅ which implies that there

exists y0 ∈ K and s0 ∈ T̃ (y0) such that φ(p(s0), x, y0) 6∈ -intC(y0) for all
x ∈ K.

This completes the proof. ¤

Corollary 2.3. Let X, Y, K, T and F(M(X, Y )) be the same as in Theorem
2.1. Assume that P is a closed, pointed and convex cone in Y such that
intP 6= ∅ and φ : F(M(X,Y ))×K ×K → Y is a mapping such that

(1) there exists a lower semi-continuous function α : X → (0, 1] such that
for any x ∈ K the cut set (Tx)α(x) is nonempty and

⋃
x∈K

(Tx)α(x) is

contained in some compact subset of M(X,Y ).
(2) p : F(M(X, Y )) → F(M(X, Y )) is a continuous mapping,
(3) for each x ∈ K there exists s0 ∈ T̃ (x) such that

φ(p(s0), x, x) 6∈ -intP,

(4) the mapping φ(p(s), x, y) is convex with respect to x,
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(5) the mapping φ(p(s), x, y) is continuous with respect to (s, y).
Moreover, one of the following two assumptions is satisfied:

(6) there exists a compact subset D of K and u ∈ D such that for all
x ∈ K\D and s ∈ T̃ (x),

φ(p(s), u, x) ∈ -intP,

(7) K is compact.
Then there exists y0 ∈ K and s0 ∈ T̃ (y0) such that

φ(p(s0), x, y0) 6∈ -intP for all x ∈ K.

Lemma 2.4 (5). Let (X,P ) be an ordered topological vector space with a
closed pointed and convex cone P such that intP 6= ∅. Then for any y, z ∈ X,
we have

(i) y − z ∈ -intP and y 6∈ -intP imply z ∈ -intP ,
(ii) y − z ∈ P and y 6∈ intP imply z 6∈ intP .

If we replace M(X, Y ) by L(X,Y ), then from Theorem 2.2 we have the
following.

Theorem 2.5. Let X, Y,K, C, T and W be the same as in Theorem 2.2. As-
sume that φ : F(L(X, Y ))×K ×K → Y is a mapping such that

(1) there exists a lower semi-continuous function α : X → (0, 1] such that
for any x ∈ K, the cut set (Tx)α(x) is nonempty and

⋃
x∈K

(Tx)α(x) is

contained some compact subset of L(X, Y ),
(2) p : F(M(X, Y )) → F(M(X, Y )) is a continuous mapping,
(3) there exists a mapping g : F(L(X, Y ))×K ×K → Y such that

g(p(s), x, y)− φ(p(s), x, y) ∈ -intC(x) for all (s, x, y) ∈ L(X,Y )×K ×K;

(4) the set F (y) = {x ∈ K ∃ s ∈ T̃ (y) such that g(p(s), x, y) ∈ -intC(y)}
is convex for all y ∈ K,

(5) there exists s ∈ T̃ (x) such that

g(p(s), x, x) 6∈ -intC(x) forall x ∈ K,

(6) the mapping φ(p(s), x, y) and g(p(s), x, y) are continuous with respect
to (s, y),

(7) there exists a nonempty compact and convex subset D of K and u ∈ D
such that

φ(p(s), u, x) ∈ -intC(x) for all x ∈ K\D and s ∈ T̃ (x).

Then there exists y0 ∈ K and s0 ∈ T̃ (y0) such that

φ(p(s0), x, y0) 6∈ -intC(y0) for all x ∈ K.
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Proof. Define a multifunction T̃ : K → 2L(X,Y ) by T̃ (x) = (Tx)α(x). From
Lemma 1.5 and the condition (1) that T̃ is a nonempty closed multifunction
such that T̃ (K) is contained in some compact subset of L(X, Y ). Let

F1(x) = {y ∈ D : ∃ s ∈ T̃ (y) such that g(p(s), x, y) 6∈ -intC(y)},
F2(x) = {y ∈ D : ∃ s ∈ T̃ (y) such that φ(p(s), x, y) 6∈ -intC(y)},

for all x ∈ K. Since g(p(s), ·, y) and φ(p(s), ·, y) are continuous and W (y) =
Y \{-intC(y)} has a closed graph. It is easy to prove F1(y) and F2(y) is closed
for each y ∈ K. From Theorem 2.2, we can prove F1 is a KKM mapping.
Further we shall prove F1(y) ⊂ F2(y). For each x ∈ F1(y), there exists s ∈
T̃ (y) such that g(p(s), x, y) ∈ -intC(y). From Assumption (3) and Lemma
2.4(i), for some s ∈ T̃ (y),

φ(p(s), x, y) 6∈ -intC(y),

which implies that x ∈ F2(y). So F1(y) ⊂ F2(y), and hence F2(y) is also a
KKM mapping. From Theorem 2.2 and Assumption (7) we show that F2(y) 6=
∅ for all y ∈ K and there exists u ∈ K such that F2(u) is compact. Hence the
desired conclusion follows from Lemma 2.1. This completes the proof. ¤

3. A Fuzzy Generalized Vector Complementarity Problems

Let X be a Hausdorff topological vector space, Y a topological vec-
tor space, T̃ : X → 2L(X,Y ), a mapping defined by T̃ (x) = (Tx)α(x), p :
F(L(X, Y )) → F(L(X, Y )) a continuous mapping, P a closed, pointed and
convex cone in X such that intP 6= ∅ and {C(x) : x ∈ P} a family of closed
pointed and convex cones in Y such that intC(x) 6= ∅.
Definition 3.1. Let {C(x) : x ∈ P} be a family of closed pointed and convex
cones in Y and P a closed pointed and convex cone in X. Then T̃ : X →
2L(X,Y ) is generally positive on P related to C(·) if for any fixed x ∈ P and
for all s ∈ T̃ (x), we have

〈s, y〉 ∈ C(x), for all y ∈ P.

Now we consider the fuzzy generalized vector complementarity problems.

Find y0 ∈ P and s0 ∈ T̃ (y0) such that

〈p(s0), θ(x, y0)〉 6∈ -intC(y0) for all x ∈ P,

〈p(s0), θ(y0, y0)〉 6∈ intC(y0).
(3.1)

Theorem 3.2. Let P be a closed pointed and convex cone in X such that
intP 6= ∅ and {C(x) : x ∈ P} a family of closed, pointed and convex cones in
Y such that intC(x) 6= ∅. Suppose that θ : P×P → P is a continuous mapping
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such that θ(P, y) = P for all y ∈ P and T̃ : X → 2L(X,Y ) is a mapping
such that T̃ (x) = (Tx)α(x), where α : X → (0, 1]. Let p : F(L(X, Y )) →
F(L(X, Y )) be a continuous mapping. If y0 ∈ P and s0 ∈ T̃ (y0) satisfy the
following fuzzy generalized vector variational inequality

〈p(s0), θ(x, y0)− θ(y0, y0)〉 6∈ -intC(y0) for all x ∈ P, (3.2)

then y0 ∈ P and s0 ∈ T̃ (y0) satisfy problem (3.1). Moreover if T̃ is generally
positive on P related to C(·) then y0 ∈ P and s0 ∈ T̃ (y0) are the solution of
problem (3.1) if and only if y0 ∈ P and s0 ∈ T̃ (y0) are the solution of problem
(3.2).

Proof. Define a multifunction T̃ : X → 2L(X,Y ) by T̃ (x) = (Tx)α(x). From the
Definition 3.1, if y0 ∈ P and s0 ∈ T̃ (y0) satisfy problem (3.2) then there exists
x ∈ P such that θ(x, y0) = 0. Hence it follows from (3.2) that

〈p(s0), θ(y0, y0)〉 6∈ intC(x).

On the other hand since θ(y, y0) + θ(y0, y0) ∈ P and θ(P, y) = P for each
y ∈ P then there exists x ∈ P such that θ(y, y0) + θ(y0, y0) = θ(x, y0).

From (3.1), we get

〈p(s0), θ(x, y0)− θ(y0, y0)〉 = 〈p(s0), θ(y, y0)〉 6∈ -intC(y0) for each y ∈ P.

Therefore y0 ∈ P and s0 ∈ T̃ (y0) satisfy problem (3.1).

Now suppose that T̃ is a generally positive on P related to C(·) and
y0 ∈ P and s0 ∈ T̃ (y0) satisfy problem (3.1). Hence s0 ∈ T̃ (y0),

〈p(s0), y〉 ∈ C(y0), for all y ∈ P and so,

〈p(s0), θ(x, y0)〉 = 〈p(s0), θ(y0, y0)−(θ(y0, y0)−θ(x, y0))〉 ∈ C(y0), for all x ∈ P.

Since

〈p(s0), θ(y0, y0)〉 6∈ intC(y0),

it follows from Lemma 2.2(ii) that

〈p(s0), θ(y0, y0)− θ(x, y0)〉 6∈ intC(y0), for all x ∈ P,

i.e.,

〈p(s0), θ(x, y0)− θ(y0, y0)〉 6∈ -intC(y0), for all x ∈ P.

Therefore y0 ∈ P and s0 ∈ T̃ (y0) satisfy problem (3.2). This completes
the proof. ¤
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