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Abstract. In this paper, we introduce the new concept of generalized normed space and

prove some common fixed point theorems for self mappings in these spaces. Our results

extend some of the known results in literature.

1. Introduction

It is well known that the Banach contraction principle is a fundamental
result in fixed point theory. After this classical result, fixed and common fixed
point Theorem in different types of spaces have been developed. For example,
Ultrametric spaces [2]. In this paper we introduce the new definitions of
normed spaces and give some properties of it and we prove a common fixed
point theorem.
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2. Preliminaries

In this section, first we define binary operation and give some examples.

A binary operation is a mapping � : [0,∞)× [0,∞) −→ [0,∞) which satisfy
the following conditions:

(i) � is associative and commutative,
(ii) � is continuous,

(iii) a � 0 = a for all a ∈ [0,∞),
(iv) a � b ≤ c � d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0,∞).

Let a, b ∈ [0,∞). Five typical examples of � are:

(a) a �1 b = max{a, b}
(b) a �2 b =

√
a2 + b2

(c) a �3 b = a+ b
(d) a �4 b = ab+ a+ b

(e) a �5 b = (
√
a+
√
b)2.

For a, b ∈ [0,∞), it is easy to see that:

a �1 b ≤ a �2 b ≤ a �3 b,

and

a �3 b ≤ min{a �4 b, a �5 b}.

The following lemma show a binary operation which is induced of a self
map on [0,∞).

Lemma 2.1. ([2]) Let f : [0,∞) −→ [0,∞) be a continuous, onto, and in-
creasing map. If define a � b = f−1(f(a) + f(b)) for each a, b ∈ [0,∞), then �
is a binary operation.

Example 2.2. ([2]) f : [0,∞) −→ [0,∞) defined by f(x) = ex − 1. Then f
is a continuous, onto and increasing map and a � b = Ln(ea + eb − 1) for
a, b ∈ [0,∞) is a binary operation.

We have the following simple Lemma.

Lemma 2.3. ([2])

(i) If r, r′ ≥ 0, then r ≤ r � r′.
(ii) If δ ∈ (0, r), there exist δ′ ∈ (0, r) such that δ′ � δ < r.

(iii) For every ε > 0, there exists δ > 0 such that δ � δ < ε.

Here afterwards, we assume that X is a vector space over field R.
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Now we introduce the new concept of a normed space which is generalized
of ordinary normed space.

Definition 2.4. Let X be a vector space and � be a binary operation. A
generalized normed onX is a function: N : X −→ R that satisfies the following
properties:

(1) N(x) ≥ 0 for each x in X,
(2) N(x) = 0 if and only if x = 0,

(3) N(αx) = |α|tN(x) for some t ∈ (0,∞), for each x in X and every
α ∈ R,

(4) N(x+ y) ≤ N(x) �N(y), for each x, y ∈ X.

The 3−tuple (X,N, �) is called a generalized normed space or a G−normed
space.

Example 2.5. Let (X, ‖.‖) be a normed space, a, b ∈ [0,∞), and x ∈ X. If
we define � : [0,∞)× [0,∞) −→ [0,∞),

(i) a � b = a + b, and N is defined by N(x) = ‖x‖ , then (X,N, �) is a
G− normed space for t = 1.

(ii) a � b =
√
a2 + b2, and N is defined by N(x) =

√
‖x‖, then (X,N, �) is

a G− normed space for t = 1
2 .

(iii) a � b = (
√
a+
√
b)2, and N is defined by N(x) = ‖x‖2 , then (X,N, �)

is a G− normed space for t = 2.

Remark 2.6. It is easy to see that: every normed space is a G − normed
space and t in Definition 2.4 is unique.

Example 2.7. Let X = R2, if we define � : [0,∞)× [0,∞) −→ [0,∞) by

a � b = ( 4
√
a + 4
√
b)4 for a, b ∈ [0,∞), and define N : X −→ R by N(x, y) =

x4 + y4 for x, y ∈ R, then (X,N, �) is a G− normed space for t = 4.

Definition 2.8. Let (X,N, �) be a G− normed space, r > 0 and A ⊂ X.
(1) The set BN (x, r) = {y ∈ X : N(x − y) < r} is called an open ball

centered at x and radius r.
(2) If for every x ∈ A there exists r > 0 such that BN (x, r) ⊂ A, then the

subset A is called open subset of X.
(3) The subset A of X is said to be N -bounded if there exists r > 0 such

that N(x− y) < r for all x, y ∈ A.
(4) A sequence {xn} in X converges to x if N(xn − x) → 0 as n → ∞ and

write limn→∞ xn = x. That is for each ε > 0 there exists n0 ∈ N such that
N(xn − x) < ε for all n ≥ n0, then {xn} converges to x.
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(5) A sequence {xn} in X is called a Cauchy sequence if for each ε > 0,
there exists n0 ∈ N such that N(xn − xm) < ε for all n,m ≥ n0.

(6) The generalized normed space (X,N, �) is said to be generalized Banach
space or G−Banach space if every Cauchy sequence is convergent.

Let τ be the set of all open subsets A ⊆ X. It can be verified that τ is a
topology on X, called a topology induced by generalized normed N .

Lemma 2.9. Let (X,N, �) be a G−normed space.Then

(i) N(ax) ≤ N(x) for all real number a with |a| ≤ 1.
(ii) if X is convex, then we get

N(ax+ (1− a)y) ≤ N(x) �N(y)

for all x, y ∈ X.

Proof. It follows immediately from Definition 2.4. �

Now we prove the following basic lemmas needed in the sequel.

Lemma 2.10. Let (X,N, �) be a G− normed space. If r > 0, then the ball
BN (x, r) is open.

Proof. Let y ∈ BN (x, r), so that we have N(x − y) < r. Put, N(x − y) = δ
then by Lemma 2.3 there exists δ′ > 0 such that δ′ � δ < r. Now, we prove
that BN (y, δ′) ⊆ BN (x, r). For this, let z ∈ BN (y, δ′). By triangle inequality
we have

N(x− z) ≤ N(x− y) �N(y − z) < δ � δ′ < r.

This implies that
BN (y, δ′) ⊆ BN (x, r).

Hence BN (x, r) is an open set. �

Lemma 2.11. Every G− normed space (X,N, �) is a Hausdorff space.

Proof. Let x, y ∈ X and x 6= y. If set N(x − y) = r then for 0 < δ < r
by Lemma 2.3 there exists 0 < δ′ < r such that δ′ � δ < r. We prove that
BN (x, δ) ∩ BN (y, δ′) = ∅. Let z ∈ BN (x, δ) ∩ BN (y, δ′). Now, by triangle
inequality, we get that

r = N(x− y) ≤ N(x− z) �N(z − y) < δ � δ′ < r,

which is a contradiction. Hence (X,N, �) is a Hausdorff space. �

Lemma 2.12. Let (X,N, �) be a G − normed space, then every convergent
sequence in X is Cauchy in X.
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Proof. Let {xn} be a sequence in X which converges to x ∈ X. For ε > 0, by
Lemma 2.3 we choose a δ > 0 such that δ � δ < ε. Since xn −→ x there exists
n0 ∈ N such that for every n ≥ n0, we obtain that N(xn − x) < δ. Thus for
every n,m ≥ n0, we have

N(xn − xm) ≤ N(xn − x) �N(x− xm) < δ � δ < ε.

Hence {xn} is a Cauchy sequence. �

Lemma 2.13. Let (X,N, �) be a G − normed space, then addition + : X ×
X −→ X defined by +(x, y) = x+y and scalar multiplication · : R×X −→ X
defined by ·(α, x) = α·x are continuous.

Proof. First we prove continuity of addition. Let xn −→ x, yn −→ y. By
Lemma 2.3, for each ε > 0 there exists δ > 0 such that δ � δ < ε. Also, there
exists n0 ∈ N such that

n ≥ n0 =⇒ N(xn − x) < δ,

and
n ≥ n0 =⇒ N(yn − y) < δ.

By triangle inequality we have

N((xn + yn)− (x+ y)) ≤ N(xn − x) �N(yn − y) < δ � δ < ε.

Now we prove that scalar multiplication is continuous. Let αn −→ α and
xn −→ x( which means that lim

n−→∞
N(xn − x) = 0). Triangle inequality gives

that

N(αn·xn − α·x) = N(αn·(xn − x) + (αn − α)·x)

≤ |αn|tN(xn − x) � |αn − α|tN(x),

hence

lim sup
n−→∞

N(αn·xn − α·x) ≤ lim
n−→∞

|αn|tN(xn − x) � lim
n−→∞

|αn − α|tN(x) = 0.

Therefore
lim

n−→∞
αn.xn = α.x.

�

Corollary 2.14. Let a � b = max{a, b}, then there is not any t ∈ (0,∞) such

that N(α·x) = |α|t·N(x).

Proof. Let there exists t ∈ (0,∞), then for α = 2, we have

|2|t ·N(x) = N(2x) = N(x+ x) ≤ N(x) �N(x) = N(x)

that is |2|t ≤ 1, which is a contradiction. �
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Henceforth, we assume that binary operation � on [0,∞) × [0,∞) satisfy
the following properties:

(PI) : α·(a � b) = α·a � α·b for every α ∈ R+ and
(PII) : there exists h ≥ 0 such that 1 � 1 � · · · � 1 ≤ nh, for every n ∈ N.

In the following example, we give some binary operations � with properties
(PI) and P (II).

Example 2.15. Let a � b = max{a, b}, a � b =
√
a2 + b2 , a � b = a + b or

a � b = (
√
a+
√
b)2, then in each case, � satisfies properties (PI) and (PII).

The next example includes a binary operation � which does not satisfy above
properties.

Example 2.16. Define � : [0,∞)× [0,∞) −→ [0,∞) by a � b = a+ b+ ab, for
a, b ∈ [0,∞). Obviously � have not properties (PI) and (PII).

Lemma 2.17. Let (X,N, �) be a G−normed space. If there exists a sequence
{xn} in X such that

N(xn − xn+1) ≤ kN(xn−1 − xn)

for each n ∈ N, and some 0 < k < 1, then {xn} is a Cauchy sequence.

Proof. For every n,m ∈ N, we have

N(xn − xm) ≤ N(xn − xn+1) �N(xn+1 − xn+2) � · · · �N(xm−1 − xm)

≤ knN(x0 − x1) � kn+1N(x0 − x1) � · · · � km−1N(x0 − x1)
= knN(x0 − x1)(1 � k � k2 � · · · � km−n−1)
≤ knN(x0 − x1)(1 � 1 � 1 � · · · � 1︸ ︷︷ ︸

m−n

)

≤ knN(x0 − x1)(1 � 1 � 1 � · · · � 1︸ ︷︷ ︸
m

)

≤ knN(x0 − x1)·mh.

It is easy to see that for every m ≥ n, there exists s > 0 such that m ≤ ns.
Thus

N(xn − xm) ≤ knN(x0 − x1)·nhs −→ 0.

Hence {xn} is a Cauchy sequence. �
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3. Main Results

Let C be a nonempty convex subset of X and S, T self-map on C. For a
couple of mapping S, T, we consider an Ishikawa scheme [1] which is defined
by x0 ∈ C

(IS)

{
yn = (1− βn)xn + βnSxn, n ≥ 0,

xn+1 = (1− αn)xn + αnTyn, n ≥ 0,

where the real sequences {αn} , {βn} satisfy

(i) 0 ≤ αn ≤ 1, 0 ≤ βn ≤ 1, for n ≥ 0
(ii) lim

n−→∞
an = α > 0.

Now we prove the main results of this paper.

Let Φ denote a family of mappings φ : [0,∞) −→ [0,∞) such that for each
φ ∈ Φ,

(i) φ is continuous and increasing,
(ii) φ(t) < t for every t > 0.

An immediate example of such a function is: φ : [0,∞) −→ [0,∞) and
φ(t) = kt, 0 < k < 1.

Theorem 3.1. Let (X,N, �) be a G−normed space and C a nonempty closed,
convex subset of X and let S, T be two self-mappings of C satisfying the fol-
lowing condition:

(A1) : N(Sx− Ty) ≤ φ
(

max

{
N(x− y), N(x− Sx), N(y − Ty),

N(x− Ty), N(y − Sx)

})
for every x, y ∈ C, and φ ∈ Φ. Suppose that for some x0 ∈ C, the sequence
{xn}∞n=0 of Ishikawa iterates converges to a point u and S is continuous in u,
then u is a unique fixed point of S and T.

Proof. Suppose first that, Su = u for a point u in C. Then putting x = y = u
into inequality (A1) gives Tu = u. For if Tu 6= u, then we get

N(u− Tu) = N(Su− Tu)

≤ φ
(

max

{
N(u− u), N(u− Su), N(u− Tu),

N(u− Tu), N(u− Su)

})
= φ(N(u− Tu)) < N(u− Tu),

which is a contradiction. Hence Tu = u.
Now let {xn} be a sequence of Ishikawa iterates with S and T such that

lim
n−→∞

xn = u.
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From (IS), we see that

u = lim
n−→∞

xn+1 = lim
n−→∞

(1− αn)xn + lim
n−→∞

αnTyn

= (1− α)u+ α lim
n−→∞

Tyn.

We get lim
n−→∞

Tyn = u. Since

N(u− Su) ≤ N(u− Tyn) �N(Tyn − Sxn) �N(Sxn − Su). (3.1)

step (I) : lim
n−→∞

N(u− Tyn) = 0.

step (II) : Since S is continuous in u, we have lim
n−→∞

N(Sxn − Su) = 0.

step (III) : Putting x = xn, y = yn in (A1), we get

N(Sxn − Tyn)

≤ φ
(

max

{
N(xn − yn), N(xn − Sxn), N(yn − Tyn),

N(xn − Tyn), N(yn − Sxn)

})
.

(3.2)

We have

N(xn − yn) = N(xn − xn + βnxn − βnSxn)

= N(βn(xn − Sxn))

≤ N(xn − Sxn)

≤ N(xn − Tyn) �N(Tyn − Sxn),

hence

lim
n−→∞

N(xn − yn) ≤ N(u− Su). (3.3)

Also, we have

N(xn − Sxn) ≤ N(xn − Tyn) �N(Tyn − Sxn),

which gives

lim
n−→∞

N(xn − Sxn) ≤ N(u− Su). (3.4)

Moreover, we get

N(yn − Tyn) = N((1− βn)xn + βnSxn − Tyn))

≤ N(xn − Tyn) �N(−βn(xn − Sxn))

≤ N(xn − Tyn) �N(xn − Sxn),

hence

lim
n−→∞

N(yn − Tyn) ≤ N(u− Su). (3.5)
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Also we have

N(yn − Sxn) = N((1− βn)xn + βnSxn − Sxn))

= N((1− βn)(xn − Sxn))

≤ N(xn − Sxn)

≤ N(xn − Tyn) �N(Tyn − Sxn),

which gives
lim

n−→∞
N(yn − Sxn) ≤ N(u− Su). (3.6)

Substituting inequalities (3.3), (3.4), (3.5) and (3.6) into inequality (3.2) and
letting n −→∞, we obtain

lim
n−→∞

N(Sxn − Tyn) ≤ φ(N(u− Su)).

By inequality (3.1), we get

N(u− Su) ≤ φ(N(u− Su)).

Hence Su = u. Because if u 6= Su, then we get

N(u− Su) ≤ φ(N(u− Su)) < N(u− Su),

which is a contradiction. Thus

Tu = Su = u.

For uniqueness of u, suppose that υ is another common fixed point of T, S.
Putting x = u, y = υ in (A1) we get

N(u− υ) = N(Su− Tυ)

≤ φ

(
max

{
N(u− υ), N(u− Su), N(υ − Tυ),

N(u− Tυ), N(υ − Su)

})
= φ(N(u− υ)) < N(u− υ),

which is a contradiction. Hence we have u = υ. �

Corollary 3.2. Let (X,N, �) be a G − normed space and C a nonempty
closed, convex subset of X and let S, T be two self-mappings of C satisfying
the following condition:

(A2) : N(Sx− Ty) ≤ k
(

max

{
N(x− y), N(x− Sx), N(y − Ty),

N(x− Ty), N(y − Sx)

})
,

for every x, y ∈ C and 0 < k < 1. Suppose that for some x0 ∈ C, the sequence
{xn}∞n=0 of Ishikawa iterates converges to a point u and S is continuous in u.
Then u is a unique fixed point of S and T.

Proof. It follows by Theorem 3.1, if we define: φ(t) = kt for 0 < k < 1. �
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Corollary 3.3. Let (X, ‖·‖) be an ordinary normed space and C a nonempty
closed, convex subset of X and let S, T be two self-mappings of C satisfying
the following condition:

(A3) : ‖Sx− Ty‖ ≤ φ
(

max

{
‖x− y‖ , ‖x− Sx‖ , ‖y − Ty‖ ,

‖x− Ty‖ , ‖y − Sx‖

})
,

for every x, y ∈ C, and φ ∈ Φ. Suppose that for some x0 ∈ C, the sequence
{xn}∞n=0 of Ishikawa iterates converges to a point u and S is continuous in u.
Then u is a unique fixed point of S and T.

Proof. It follows By Theorem 3.1 and Remark 2.6. �

Theorem 3.4. Let (X,N, �) be a G−normed space and C a nonempty closed,
convex subset of X and let T be a self-mapping of C such that the following
condition holds:

(B1) : N(Tx− Ty) ≤ φ(max {N(x− y), N(y − Ty), N(x− Tx)}),

for every x, y ∈ C and φ ∈ Φ. Let sequence {xn} be generated by

x0 ∈ C, xn+1 = (1− αn)xn + αnTxn, (3.7)

where the real sequence {αn} satisfies 0 ≤ αn ≤ 1, and

lim
n−→∞

αn = α > 0 for n ≥ 0.

Suppose that for some x0 ∈ C, the sequence {xn}∞n=0 converges to a point u,
Then u is a unique fixed point of T.

Proof. From (3.7), we see that

u = lim
n−→∞

xn+1 = lim
n−→∞

(1− αn)xn + lim
n−→∞

αnTxn

= (1− α)u+ α lim
n−→∞

Txn,

hence we get lim
n−→∞

Txn = u. Putting x = xn, y = u in (B1), we have

N(Txn − Tu) ≤ φ(max {N(xn − u), N(u− Tu), N(xn − Txn)}).

Letting n −→∞, we get

N(u− Tu) ≤ φ(max {N(u− u), N(u− Tu), N(u− u)})
= φ(N(u− Tu)).

Hence we get Tu = u.
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Suppose υ is another common fixed point of T. Putting x = u, y = υ in
(B1), we have

N(u− υ) = N(Tu− Tυ)

≤ φ(max {N(u− υ), N(υ − Tυ), N(u− Tu)})
= φ(N(u− υ)).

Therefore, we get u = υ. Thus u is the unique common fixed point of T. �

Corollary 3.5. Let (X,N, �) be a G−normed space and C a nonempty closed,
convex subset of X and let T be a self-mapping of C such that the following
condition holds:

(B2) : N(Tx− Ty) ≤ k(max {N(x− y), N(y − Ty), N(x− Tx)}),
for every x, y ∈ C and 0 < k < 1. Let sequence {xn} be generated by

x0 ∈ C, xn+1 = (1− αn)xn + αnTxn,

where the real sequence {αn} satisfies 0 ≤ αn ≤ 1, and

lim
n−→∞

αn = α > 0 for n ≥ 0.

Suppose that for some x0 ∈ C, the sequence {xn}∞n=0 converges to a point u,
then u is a unique fixed point of T.

Corollary 3.6. Let (X, ‖·‖) be an ordinary normed space and C a nonempty
closed, convex subset of X and let T be a self-mapping of C such that the
following condition holds:

(B3) : ‖Tx− Ty‖ ≤ φ(max {‖x− y‖ , ‖y − Ty‖ , ‖x− Tx‖}),
for every x, y ∈ C and φ ∈ Φ. Let sequence {xn} be generated by

x0 ∈ C, xn+1 = (1− αn)xn + αnTxn,

where the real sequence {αn} satisfies 0 ≤ αn ≤ 1, and lim
n−→∞

αn = α > 0 for

n ≥ 0.
Suppose that for some x0 ∈ C, the sequence {xn}∞n=0 converges to a point

u, then u is a unique fixed point of T.

Proof. Result follows By Theorem 3.4 and Remark 2.6. �

Example 3.7. Let X = R and a � b =
√
a2 + b2 for all a, b ∈ R+. Let

N(x) =
√
|x| for every x ∈ X. If define T : [0, 3] −→ [0, 3] by T (x) = 2x+1

3 .
Also define sequence {xn} by xn+1 = (1−αn)xn+αnTxn, n = 1, 2, · · · , where
αn = 1

2 . Then we have xn+1 = 5
6xn + 1

6 . It is easy to see that lim
n−→∞

xn = 1.
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Also

N(Tx− Ty) ≤ k(max {N(x− y), N(y − Ty), N(x− Tx)})

for
√

2
3 ≤ k < 1. That is all conditions of Corrollary 3.5 are holds. Hence 1 is

a unique fixed point of T .
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