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Abstract. In this paper, a new class of general nonlinear fuzzy mulitvalued quasi-variational

inclusions involving (G, η)-monotone mappings in Hilbert spaces is introduced and studied.

By using the resolvent operator associated with (G, η)-monotone mappings, an existence

theorem of solutions for this kind of fuzzy mulitvalued quasi-variational inclusions is estab-

lished and a new iterative algorithm is suggested and discussed. The results presented in

this paper generalize, improve, and unify some recent results in this field.

1. Introduction

Variational inclusions have wide applications to many fields including, for
example, mechanics, physics, optimization and control, nonlinear program-
ming, economics, and engineering sciences. For these reasons, various varia-
tional inclusions have been intensively studied in recent years. For details, we
refer the reader to [1]–[15], [17]–[26] , and the references therein.

Chang and Zhou [3] introduced and investigated a class of variational in-
equalities for fuzzy mappings in 1989. Afterwards, Chang and Huang [4], Ding
and Jong [5], Jin[14], Tain [18] and others studies Several kinds of variational
inequalities (inclusions) for fuzzy mappings.
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On the other hand, Monotonicity techniques were extended and applied in
recent years because of their importance in the theory of variational inequal-
ities, complementarity problems, and variational inclusions. In 2003, Huang
and Fang [12] introduced a class of generalized monotone mappings, maximal
η-monotone mappings, and defined an associated resolvent operator. Using
resolvent operator methods, they developed some iterative algorithms to ap-
proximate the solution of a class of general variational inclusions involving
maximal η-monotone operators. Huang and Fang,s method extended the re-
solvent operator method associated with an η-subdifferential operator due to
Ding and [6]. In [7], Fang and Huang introduced another class of generalized
monotone operators, H-monotone operators, and defined an associated resol-
vent operator. They also established the Lipschitz continuity of the resolvent
operator and studied a class of variational inclusions in Hilbert spaces using
the resolvent operator associated with H-monotone operators. In a recent
paper [8], Fang-Huang-Thompson further introduced a new class of general-
ized monotone operators, (H, η)-monotone operators, which provide a unifying
framework for classes of maximal monotone operators, maximal η-monotone
operators, and H-monotone operators. Just recently, using the generalized
resolvent operators technique, Verma [19] studied the solvability of a class
of nonlinear variational inclusions involving A-monotone mapping, which are
more general mappings than the H-monotone operator. Zhang [24] introduced
and studied generalized implicit variational-like inclusion problems involving
G-η-monotone mappings in Banach spaces lately.

Inspired and motivated by recent research works in this field, in this pa-
per, a new class of general nonlinear fuzzy mulitvalued quasi-variational in-
clusions involving (G, η)-monotone mappings in Hilbert spaces is introduced
and studied. By using the resolvent operator associated with (G, η)-monotone
mappings, an existence theorem of solutions for this kind of fuzzy mulitvalued
mixed quasi-variational inclusions is established and a new iterative algorithm
is suggested and discussed. The results presented in this paper generalize,
improve, and unify some recent results in this field.

1.1. General nonlinear fuzzy mulitvalued quasi-variational Inclusions.
Let X is a real Hilbert space with a norm ‖ · ‖ and an inner product 〈·, ·〉.

Let F(X) be a collection of all fuzzy sets over X. A mapping F̂ : X → F(X)
is called a fuzzy mapping. For each x ∈ X, F̂ (x)(denote it by F̂x, in the
sequel) is a fuzzy set on X and F̂x(y) is the membership function of y in F̂x.

Let B̂ ∈ F(X), q ∈ [0, 1]. Then the set

(B̂)q = {x ∈ X : B̂(x) ≥ q}
is called a q-cut set of B̂.
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Let Ŝ, T̂ , P̂ , and Q̂ : X → F(X) be four fuzzy mappings satisfying the
condition (∗):

(*) there exists four functions a, b, c, d : X → [0, 1] such that for all x ∈ X,
we have (Ŝx)a(x), (T̂x)b(x), (P̂x)c(x) ∈ CB(X), and (Q̂x)d(x) ∈ CB(X), where
CB(X) denotes the family of all nonempty bounded closed subsets of X.

By using the fuzzy mappings Ŝ, T̂ , P̂ , and Q̂, we can define four mulitvalued
mappings S, T, P, Q : X → CB(X) by

S(x) = (Ŝx)a(x), T (x) = (T̂x)b(x), P (x) = (P̂x)c(x), Q(x) = (Q̂x)d(x),

for each x ∈ X. In the sequel, S, T, P and Q are called the mulitvalued
mappings induced by the fuzzy mappings Ŝ, T̂ , P̂ , and Q̂, respectively.

Let G, f, g : X → X and η, N : X ×X → X be single-valued mappings and
let Ŝ, T̂ , P̂ , Q̂ : X → F(X) be fuzzy mappings. Let a, b, c, d : X → [0, 1] be
four functions. Let M : X × X → 2X be a mulitvalued mapping such that
for each given t ∈ X, M(·, t) : X → 2X is a (G, η)-monotone mapping and
range(f)

⋂
domM(·, t) 6= ∅ for each t ∈ X. we consider the following problem:

Find x, u, v, z, w ∈ X such that Ŝx(u) ≥ a(x), T̂x(v) ≥ b(x), P̂x(z) ≥
c(x), Q̂x(w) ≥ d(x) and

0 ∈ N(u, v) + M(f(x), z)− g(w). (1.1)

Problem (1.1) is called a general nonlinear fuzzy mulitvalued quasi-variational
inclusions involving (G, η)-monotone mappings(GNFMQ-VI involving (G, η)-
monotone mappings).

If S, T, P, Q : X → CB(X) are mulitvalued mappings, we can define the
fuzzy mappings Ŝ, T̂ , P̂ , Q̂ : X → F(X) by

x 7→ χS(x), x 7→ χT (x), x 7→ χP (x), x 7→ χQ(x),

where χS(x), χT (x), χP (x) and χQ(x) are the characteristic functions of S, T, P, Q,
respectively. Taking a(x) = b(x) = c(x) = d(x) = 1 for all x ∈ X, then prob-
lem (1.1) equivalent to the following problem:

Find x ∈ X, u ∈ S(x), v ∈ T (x), z ∈ P (x), w ∈ Q(x) such that

0 ∈ N(u, v) + M(f(x), z)− g(w), (1.2)

which is called general nonlinear mulitvalued quasi-variational inclusions in-
volving (G, η)-monotone mappings(GNMQ-VI involving (G, η)-monotone map-
pings).

For a suitable choice of G, g, f, η,N,M, S, T, P, Q and the space X, a num-
ber of known classes of variational inclusions and variational inequalities in
[1], [3]–[7], [10]–[15], [17]–[22], [24]–[25] can be obtained as special cases of
the generalized nonlinear mulitvalued quasi-variational Inclusions (1.2). Fur-
thermore, these types of variational inclusions can enable us to study many
important nonlinear problems arising in mechanics, physics, optimization and
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control, nonlinear programming, economics, finance, structural, transporta-
tion, elasticity, and applied sciences in a general and unified framework. Let
us recall some concepts and results.

1.2. Preliminaries.

Definition 1.1. A mulitvalued mapping S : X → CB(X) is said to be
(i) D-Lipschitz continuous if there exists a constant α > 0 such that

D(S(x1), S(x2)) ≤ α‖x1 − x2‖ ∀x1, x2 ∈ X,

where D(·, ·) is the Hausdorff metric on CB(X).
(ii) β-strongly monotone if there exists a constant β > 0 such that

〈u1 − u2, x1 − x2〉 ≥ β‖x1 − x2‖2 ∀x1, x2 ∈ X, u1 ∈ S(x1), u2 ∈ S(x2),

Definition 1.2. A single-valued mapping η : X ×X → X is said to be
τ -Lipschitz continuous if there exists a constant τ > 0 such that

‖η(x, y)‖ ≤ τ‖x− y‖, ∀x, y ∈ X.

Definition 1.3. Let η : X × X → X is a single-valued mapping, and M :
X → 2X be a mulitvalued mapping. M is said to be:

(i) η-monotone if

〈u− v, η(x, y)〉 ≥ 0, ∀x, y ∈ X, u ∈ M(x), v ∈ M(y);

(ii) strictly η-monotone if

〈u− v, η(x, y)〉 ≥ 0, ∀x, y ∈ X, u ∈ M(x), v ∈ M(y);

and equality holds if and only if x = y;
(iii) strongly η-monotone if there exists a constant δ > 0 such that

〈u− v, η(x, y)〉 ≥ δ‖x− y‖2, ∀x, y ∈ X, u ∈ M(x), v ∈ M(y);

(v) m-relaxed η-monotone if there exists a constant m ≥ 0 such that

〈u− v, η(x, y)〉 ≥ −m‖x− y‖2, ∀x, y ∈ X, u ∈ M(x), v ∈ M(y);

Definition 1.4. Let S : X → CB(X) be a mulivalued mapping, and N, η :
X ×X → X be two single-valued mappings. N(·, ·) is said to be:

(i) α-Lipschitz continuous with respect to the first argument if there exists
a constant α > 0 such that

‖N(x1, ·)−N(x2, ·)‖ ≤ α‖x1 − x2‖ ∀xi ∈ X, i = 1, 2.

(ii) η − cocoercive in the fist argument with respect to S if there exists a
constant σ > 0 such that

〈N(u1, ·)−N(u2, ·), η(x, y)〉 ≥ σ‖N(u1, ·)−N(u2, ·)‖2,

for all x, y ∈ X, u1 ∈ S(x), u2 ∈ S(y);
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(iii) η-strongly monotone in the fist argument with respect to S if there exists
a constant γ > 0 such that

〈N(u1, ·)−N(u2, ·), η(x, y)〉 ≥ γ‖x− y‖2,

for all x, y ∈ X, u1 ∈ S(x), u2 ∈ S(y).

In a similar way, we can define Lipschitz continuity of N(·, ·) with respect
to the second argument.

Definition 1.5. Let η : X × X → X and G : X → X be two single-valued
mappings. A mulivalued mapping M : X → 2X is said to be (G, η)-monotone
if M is m-relaxed η-monotone and (G + ρM)(X) = X for all ρ ≥ 0.

It is easy to see that the (G, η)-monotone mapping is more general than
A-monotone, H-monotone mappings, (H, η)-monotone mappings and g − η-
accretive mapping in Hilbet space([7], [13], [14], [15], [24]), and the Definition
1.5 reduces to the definition of the resolvent operator of a maximal η-monotone
mapping as G = I([12]]). For details about these mappings, we refer the reader
to [6]–[8], [12], [24]–[25] and the references therein.

2. The lemma and proposition of the resolvent operator.

Lemma 2.1. ([24]) If η is τ − Lipschitz continuous and N is η − cocoercive
in the fist argument with respect to S with constant σ, then

‖N(u1, ·)−N(u2, ·)‖ ≤ τ

σ
‖x− y‖, ∀x, y ∈ X, u1 ∈ S(x), u2 ∈ S(y).

Lemma 2.2. ([24]) Let η : X ×X → X be a single-valued mapping satisfying
η(x, y) + η(y, x) = 0(∀x, y ∈ X), G : X → X be an r-strongly η-monotone
single-valued mapping and M : X → 2X be an (G, η)-monotone mapping.
Then the mapping (G + ρM)−1 is single-valued, where 0 < ρ < r

m .

By Lemma 2.2, we can define the resolvent operator RG,η
ρ,M as follows.

Definition 2.3. ([24]) Let η : X × X → X be a single-valued mapping, G :
X → X be a strongly η-monotone single-valued mapping and M : X → 2X be
a (G, η)-monotone mapping. The resolvent operator RG,η

ρ,M : X → X is defined
by

RG,η
ρ,M (z) = (G + ρM)−1(z) for all z ∈ X,

where ρ > 0 is a constant.

Remark 2.4. (i) When η(x, y) = x − y and G=H for all x, y ∈ X, Defini-
tion 2.3 reduces to the definition of the resolvent operator of a H-monotone
mapping, see [7].
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(ii) When G = I and η(x, y) = x−y for all x, y ∈ X, Definition 1.5 reduces
to the definition of the resolvent operator of a maximal monotone mapping,
see [13]. When G = H, Definition 1.5 reduces to the definition of the resolvent
operator of a (H, η)-monotone mapping, see [8], [15], [24].

Lemma 2.5. ([24]) Let η : X × X → X be Lipschtiz continuous mapping
with constant τ ≥ 0 satisfying η(x, y) + η(y, x) = 0(∀x, y ∈ X) G : X →
X be an r-strongly η-monotone mapping, and M : X → 2X be a (G, η)-
monotone mapping. Then the generalized resolvent operator RG,η

ρ,M : X → X

is τ/(r −mρ)-Lipschitz continuous, that is,

‖RG,η
ρ,M (x)−RG,η

ρ,M (y)‖ ≤ τ

r −mρ
‖x− y‖ for all x, y ∈ X.

3. Approximation algorithms of solutions for the both
GNFMQ-VI and GNMQ-VI problems (1.1)-(1.2).

3.1. Approximation algorithm of solution for the GNFMQ-VI.
We first transfer the GNFMQ-VI problem (1.1) into a fixed point problem.

Lemma 3.1. (x, u, v, z, w) is a solution of problem (1.1) if and only if
(x, u, v, z, w) satisfies the following relation

f(x) = RG,η
ρ,M(·,z)(G(f(x)) + ρg(w)− ρN(u, v)), (3.1)

where u ∈ S(x), v ∈ T (x), z ∈ P (x), w ∈ Q(x) and ρ > 0 is a constant.

Proof. . By the definition of the resolvent operator RG,η
ρ,M(·,z) of M(·, z), we

have that (3.1) holds if and only if u ∈ S(x), v ∈ T (x), z ∈ P (x) and w ∈ Q(x)
such that

G(f(x)) + ρg(w)− ρN(u, v) ∈ G(f(x)) + ρM(f(x), z).

The above relations hold if and only if u ∈ S(x), v ∈ T (x), z ∈ P (x) and
w ∈ Q(x) such that

0 ∈ N(u, v) + M(f(x), z)− g(w).

Hence (x, u, v, z, w) is a solution of problem (1.1) if and only if u ∈ S(x), v ∈
T (x), z ∈ P (x) and w ∈ Q(x) are such that (3.1) holds. ¤

Based on Lemma 3.1 and Nadler [16], we can develop a new approximate
algorithm for solving problem (1.1) as follows:

Algorithm 3.2. . Let Ŝ, T̂ , P̂ , Q̂ : X → F(x) be fuzzy mappings satisfy-
ing condition (∗) and S, T, P, Q : X → CB(X) be the mulitvalued mappings
induced by the fuzzy mappings Ŝ, T̂ , P̂ , Q̂, respectively. Let G, f, g : X →
X, η, N : X × X → X be single-valued mappings and let M : X × X → 2X
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be such that for each fixed t ∈ X, M(·, t) : X → 2X be a (G, η)-monotone
mapping and range(f)

⋂
domM(·, t) 6= ∅.

Step1. For any given x0 ∈ X, u0 ∈ S(x0), v0 ∈ T (x0), z0 ∈ P (x0) and
w0 ∈ Q(x0);

Step2. Letting




xn+1 = (1− λ)xn + λ[xn − f(xn)
+RG,η

ρ,M(·,zn)(G(f(xn)) + ρg(wn)− ρN(un, vn))] + λen,

un ∈ S(xn), ‖un − un+1‖ ≤ (1 + (1 + n)−1)D(S(xn), S(xn+1)),
vn ∈ T (xn), ‖vn − vn+1‖ ≤ (1 + (1 + n)−1)D(T (xn), T (xn+1)),
zn ∈ P (xn), ‖zn − zn+1‖ ≤ (1 + (1 + n)−1)D(P (xn), P (xn+1)),
wn ∈ Q(xn), ‖wn − wn+1‖ ≤ (1 + (1 + n)−1)D(Q(xn), Q(xn+1)),

(3.2)

we can get the iterative sequences {xn}, {un}, {vn}, {zn} and {wn};
Step3. If xn+1, un+1, vn+1, zn+1, and wn+1 satisfy (3.2) to sufficient accu-

racy, stop; otherwise, set n:=n+1 and return to Step 2;
where n = 0, 1, 2, · · ·, 0 < λ < 1 and ρ > 0 are both constants, en ∈ X(n ≥ 0)
is an error to take into account a possible inexact computation of the approx-
imation sequences.

3.2. Approximation algorithm of solution for the GNMQ-VI.
From Algorithm 3.2 and the condition a(x) = b(x) = c(x) = d(x) = 1 in the

problems (1.2), we can get a algorithm for solving the GNMQ-VI problems
(1.2) as follows:

Algorithm 3.3. . For any given x0 ∈ X, u0 ∈ S(x0), v0 ∈ T (x0), z0 ∈ P (x0)
and w0 ∈ Q(x0), we can get the iterative sequences {xn}, {un}, {vn}, {zn} and
{wn} as follows:




xn+1 = (1− λ)xn + λ[xn − f(xn)
+RG,η

ρ,M(·,zn)(G(f(xn)) + ρg(zn)− ρN(un, vn))] + λen,

un ∈ S(xn), ‖un − un+1‖ ≤ (1 + (1 + n)−1)D(S(xn), S(xn+1)),
vn ∈ T (xn), ‖vn − vn+1‖ ≤ (1 + (1 + n)−1)D(T (xn), T (xn+1)),
zn ∈ P (xn), ‖zn − zn+1‖ ≤ (1 + (1 + n)−1)D(P (xn), P (xn+1)),
wn ∈ Q(xn), ‖wn − wn+1‖ ≤ (1 + (1 + n)−1)D(Q(xn), Q(xn+1)),

(3.3)

where n = 0, 1, 2, · · ·, 0 < λ < 1 and ρ > 0 are both constants, en ∈ X(n ≥ 0)
is an error to take into account a possible inexact computation of the approx-
imation sequences.

Remark 3.4. : If we choose suitable G, f, g, η,N, S, T, P,Q and M , then
Algorithm 3.3 can be degenerated to a number of algorithms involving many
known algorithms which due to classes of variational inequalities, and varia-
tional inclusions (see, for example, [1]–[7], [10]–[15], [17]–[25]).
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4. Existence of the solutions and convergence the algorithms.

4.1. Existence of the solution and convergence of the algorithm(3.2)
for the GNFMQ-VI problem (1.1).

In this section, we show the existence of solution for problem (1.1) and the
convergence of the approximation sequences generated by Algorithm 3.2.

Theorem 4.1. Let η : X × X → X be a τ -Lipschtiz continuous mapping
satisfying η(x, y) + η(y, x) = 0(∀x, y ∈ X), G : X → X be an r-strongly η-
monotone mapping and α-Lipschitz continuous, f : X → X be a ψ-strongly
monotone and β-Lipschitz continuous mapping, and g : X → X be a ω-
Lipschitz continuous. Let Ŝ, T̂ , P̂ , Q̂ : X → F(X) be fuzzy mappings satisfying
condition (∗) and S, T, P,Q : X → CB(X) be mulivalued mappings induced by
the fuzzy mappings Ŝ, T̂ , P̂ , Q̂, respectively. suppose that T, P, Q be D-Lipschitz
continuous with constants ξ, ζ, ϕ, respectively. Let N : X × X → X be ν-
Lipschitz continuous with respect to the second argument and η-cocoercive in
fist argument with respect to S with constant σ, respectively. Let M : X×X →
2X such that for each t ∈ X, M(·, t) : X → 2X be (G, η)-monotone mapping
and range(f)

⋂
domM(·, t) 6= ∅. Suppose that for any x, y, z ∈ X

‖RG,η
ρ,M(·,x)(z)−RG,η

ρ,M(·,y)(z)‖ ≤ δ‖x− y‖. (4.1)

and there exists a constant ρ ∈ (0, r/m) such that




|ρ− σ{τ4 − sσ[(1− l)r − qτ ]}
τ4 − σ2s2 |

< σ

√
{τ4 − sσ[(1− l)r − qτ ]}2 − (τ4 − σ2s2){τ4 − [(1− l)r − qτ ]2}

τ4 − σ2s2 ,

q = β
√

α2 − 2r + τ2 + τ(1 + β),

s = m(1− l) + τ(νξ + ωϕ), τ2 > sσ,

l = δζ +
√

1− 2ψ + β2 < 1,

(4.2)

lim
n→∞ ‖en‖ = 0,

∞∑

n=1

‖en − en−1‖ < ∞. (4.3)

Then the iterative sequences {xn}, {un}, {vn}, {zn} and {wn} generated by Al-
gorithm 3.2 converge strongly to x∗, u∗, v∗, z∗ and w∗, respectively, and
(x∗, u∗, v∗, z∗, w∗) is a solution of problem (1.1).
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Proof. . From Algorithm 3.2, Lemma 2.5, (4.1) and the r-strongly η-monotonicity
and α-Lipschitz continuity of the G, we have

‖xn+1 − xn‖ ≤ (1− λ)‖xn − xn−1‖+ λ‖xn − xn−1 − (f(xn)− f(xn−1))‖
+λ‖en − en−1‖+ λ‖RG,η

ρ,M(·,zn)(G(f(xn)) + ρg(wn)− ρN(un, vn))

−RG,η
ρ,M(·,zn)(G(f(xn−1)) + ρg(wn−1)− ρN(un−1, vn−1))‖

+λ‖RG,η
ρ,M(·,zn)(G(f(xn−1)) + ρg(wn−1)− ρN(un−1, vn−1))

−RG,η
ρ,M(·,zn−1)(G(f(xn−1)) + ρg(wn−1)− ρN(un−1, vn−1))‖

≤ (1− λ)‖xn − xn−1‖+ λ‖xn − xn−1 − (f(xn)− f(xn−1))‖
+λ

τ

r −mρ
‖G(f(xn))−G(f(xn−1))− ρ(N(un, vn)−N(un−1, vn−1)‖

+λρ
τ

r −mρ
‖g(wn)− g(wn−1)‖+ λδ‖zn − zn−1‖+ λ‖en − en−1‖.

≤ (1− λ)‖xn − xn−1‖+ λ‖xn − xn−1 − (f(xn)− f(xn−1))‖
+λ

τ

r −mρ
(‖G(f(xn))−G(f(xn−1))− η(f(xn), f(xn−1)‖

+‖ρ(N(un, vn)−N(un−1, vn−1)− η(f(xn), f(xn−1)‖))
+λρ

τ

r −mρ
‖g(wn)− g(wn−1)‖+ λδ‖zn − zn−1‖+ λ‖en − en−1‖. (4.4)

By the ψ-strongly monotonicity and β-Lipschitz continuity of the f, we can
get

‖xn − xn−1 − (f(xn)− f(xn−1))‖2

= ‖xn − xn−1‖2 − 2〈f(xn)− f(xn−1), xn − xn−1〉+ ‖f(xn)− f(xn−1)‖2

≤ (1− 2ψ + β2)‖xn − xn−1‖2. (4.5)

By the ψ-strongly monotonicity and β-Lipschitz continuity of the f, and ν-
Lipschitz continuity with respect to the second argument of the N, we have

‖G(f(xn))−G(f(xn−1))− η(f(xn), f(xn−1))‖2

≤ ‖G(f(xn))−G(f(xn−1))‖2 + ‖η(f(xn), f(xn−1))‖2

−2〈G(f(xn))−G(f(xn−1)), η(f(xn), f(xn−1))〉
≤ β2(α2 − 2r + τ2)‖xn − xn−1‖2. (4.6)

By using η-cocoercive in fist argument with respect to the S with constant
σ of the N, the ψ-strongly monotonicity and β-Lipschitz continuity of the f,
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Lemma 2.1 and [24], we can get

‖ρ(N(un, vn)−N(un−1, vn−1))− η(f(xn), f(xn−1))‖
≤ ‖ρ(N(un, vn)−N(un−1, vn))− η(f(xn), f(xn−1))‖
+‖ρ(N(un−1, vn)−N(un−1, vn−1))‖
≤ ρνξ(1 + n−1)‖xn − xn−1‖
+‖ρ(N(un, vn)−N(un−1, vn))− η(f(xn), f(xn−1))‖.
≤ (ρνξ(1 + n−1) + (

τ

σ

√
ρ2 − 2σρ + σ2 + τ(1 + β)))‖xn − xn−1‖.(4.7)

By the the conditions, we have

‖g(wn)− g(wn−1)‖ ≤ ω‖wn − wn−1‖ ≤ ωϕ(1 + n−1)‖xn − xn−1‖,(4.8)

and

‖zn − zn−1‖ ≤ ζ(1 + n−1)‖xn − xn−1‖. (4.9)

From (4.4)∼(4.9), It follows that

‖xn+1 − xn‖ ≤ (1− λ + λhn)‖xn − xn−1‖+ λ‖en − en−1‖
= θn‖xn − xn−1‖+ λ‖en − en−1‖. (4.10)

where

θn = 1− λ + λhn,

hn =
√

1− 2ψ + β2 +
τ

r −mρ
((νξ + ωϕ)ρ(1 + n−1) + τ(1 + β)

+β
√

α2 − 2r + τ2 +
τ

σ

√
ρ2 − 2ρσ + σ2) + δζ(1 + n−1).

Letting

θ = 1− λ + λh,

h =
√

1− 2ψ + β2 +
τ

r −mρ
((νξ + ωϕ)ρ + τ(1 + β)

+β
√

α2 − 2r + τ2 +
τ

σ

√
ρ2 − 2ρσ + σ2) + δζ.

we have that hn → h and θn → θ as n → ∞. It follows from condition (4.2)
and 0 < λ < 1 that 0 < θ < 1 and hence there exists N0 > 0 and θ∗ ∈ (θ, 1)
such that θn < θ∗ for all n ≥ N0. Therefore, by (4.10), we have

‖xn+1 − xn‖ ≤ θ∗‖xn − xn−1‖+ λ‖en − en−1‖, ∀n ≥ N0.

Without loss of generality we assume

‖xn+1 − xn‖ ≤ θ∗‖xn − xn−1‖+ λ‖en − en−1‖, ∀n ≥ 1,
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Hence, for any m > n > 0, we have

‖xm − xn‖ ≤
m−1∑

i=n

‖xi+1 − xi‖ ≤
m−1∑

i=n

θi
∗‖x1 − x0‖+

m−1∑

i=n

i∑

j=1

θi−j
∗ λ‖ej − ej−1‖.

It follows from condition (4.3) that ‖xm−xn‖ → 0, as n →∞, and so {xn} is
a Cauchy sequence in X. Let xn → x∗ as n →∞. By the Lipschitz continuity
of S, T, P and Q, we obtain

‖un+1 − un‖ ≤ (1 + n−1)D(S(xn+1), S(xn)) ≤ γ(1 + n−1)‖xn+1 − xn‖,
‖vn+1 − vn‖ ≤ (1 + n−1)D(T (xn+1), T (xn)) ≤ ξ(1 + n−1)‖xn+1 − xn‖,
‖zn+1 − zn‖ ≤ (1 + n−1)D(P (xn+1), P (xn)) ≤ ζ(1 + n−1)‖xn+1 − xn‖,
‖wn+1 − wn‖ ≤ (1 + n−1)D(Q(xn+1), Q(xn)) ≤ ϕ(1 + n−1)‖xn+1 − xn‖.

It follows that {un}, {vn}, {zn} and {wn} are also Cauchy sequences in X. We
can assume that un → u∗, vn → v∗, zn → z∗ and wn → w∗, respectively. Note
that un ∈ S(xn), we have

d(u∗, S(x∗)) ≤ ‖u∗ − un‖+ d(un, S(x∗))
≤ ‖u∗ − un‖+ D(S(xn), S(x∗))
≤ ‖u∗ − un‖+ γ‖xn − x∗‖ → 0(n →∞).

Hence d(u∗, S(x∗)) = 0 and therefore u∗ ∈ S(x∗). Similarly, we can prove that
v∗ ∈ T (x∗), z∗ ∈ P (x∗) and w∗ ∈ Q(x∗) .

By the Lipschitz continuity of S, T, P and Q and Lemma 2.5, condition (4.1)
and lim

n→∞ ‖en‖ = 0, we have

x∗ = (1− λ)x∗ + λ[x∗ − f(x∗) + RG,η
ρ,M(·,z∗)(G(f(x∗)) + ρg(w∗)− ρN(u∗, v∗))].

By Lemma 3.1, we know that (x∗, u∗, v∗, z∗, w∗) is a solution of problem (1.1).
This completes the proof. ¤

From Theorem 4.1, we have the following theorem.

4.2. Existence of the solution and convergence of the algorithm(3.3)
for the GNMQ-VI problem (1.2).

Theorem 4.2. Let G, f, g, η, S, N, M, X be the same as in Theorem 4.1, and
T, P, Q : X → CB(X) be D-Lipschitz continuous with constants ξ, ζ, ϕ, re-
spectively. Let N : X ×X → X be ν-Lipschitz continuous with respect to the
second argument and η-cocoercive in fist argument with respect to S with con-
stant σ, respectively. If conditions (4.1)∼(4.3) of Theorem 4.1 hold, then the
iterative sequences {xn}, {un}, {vn}, {zn} and {wn} generated by Algorithm 3.3
converge strongly to x∗, u∗, v∗, z∗ and w∗, respectively, and (x∗, u∗, v∗, z∗, w∗)
is a solution of the problem (1.2).
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Remark 4.3. For a suitable choice of the mappings G, g, η, N,M, S, T, P, Q,
we can obtain several known results [1], [3]–[7], [10]–[15], [17]–[22], [24], [25]
as special cases of Theorem 4.2.
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