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Abstract. Let B(H) be the set of all bounded linear operators on a Hilbert space H. We

will consider an approximately self-adjoint operator S ∈ B(H) with ‖S∗(x)−S(x)‖ ≤ ε‖x‖p

(∀x ∈ H), and an approximately normal operator T ∈ B(H) satisfying ‖T ∗T (x)−TT ∗(x)‖ ≤
ε‖x‖p (∀x ∈ H) for some real numbers ε ≥ 0 and p. We prove that an approximate self-

adjoint (normal) operator is an exact self-adjoint (resp. normal) operator when p 6= 1. For

p = 1, we give examples that such superstability results do not hold.

1. Introduction

It seems that the stability problem of functional equations had been first
raised by S. M. Ulam (cf. [16, Chapter VI]). “For what metric groups G is it
true that an ε-automorphism of G is necessarily near to a strict automorphism?
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(An ε-automorphism of G means a transformation f of G into itself such that
ρ(f(x · y), f(x) · f(y)) < ε for all x, y ∈ G.)”

D. H. Hyers [7, Theorem 1 and Corollary] gave an answer in the affirmative
to the problem as follows.

Theorem A. Suppose that E1 and E2 are two real Banach spaces and f : E1 →
E2 is a mapping. If there exists ε ≥ 0 such that

‖f(x + y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ E1, then the limit

T (x) = lim
n→∞

f(2nx)
2n

exists for each x ∈ E1, and T : E1 → E2 is the unique additive mapping such
that

‖f(x)− T (x)‖ ≤ ε

for every x ∈ E1. If, in addition, the mapping R 3 t 7→ f(tx) is continuous
for each fixed x ∈ E1, then T is linear.

This result is called the Hyers-Ulam stability of the additive Cauchy equa-
tion g(x+ y) = g(x)+ g(y). Here we note that Hyers calls any solution of this
equation a “linear” function or transformation. Hyers considered only bounded
Cauchy difference f(x + y)− f(x)− f(y). T. Aoki [1] introduced unbounded
one and generalized a result [7, Theorem 1] of Hyers obtaining the stability
of additive mapping. Th.M. Rassias [11], who independently introduced the
unbounded Cauchy difference, was the first to prove the stability of the lin-
ear mapping between Banach spaces. The concept of the Hyers-Ulam-Rassias
stability was originated from Rassias’s paper [11] for the stability of the lin-
ear mapping and its importance in the proof of further results in functional
equations. Rassias generalized Hyers’s Theorem as follows:

Theorem B. Suppose that E1 and E2 are two real Banach spaces and f : E1 →
E2 is a mapping. If there exist ε ≥ 0 and 0 ≤ p < 1 such that

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for every x, y ∈ E1, then there is a unique additive mapping T : E1 → E2 such
that

‖f(x)− T (x)‖ ≤ 2ε

|2− 2p| ‖x‖
p

for every x ∈ E1. If, in addition, the mapping R 3 t 7→ f(tx) is continuous
for each fixed x ∈ E1, then T is linear.

This result is what is called, the Hyers-Ulam-Rassias stability of the linear
mapping. The result of Hyers is just the case of Rassias’s Theorem when
p = 0. During the 27th International Symposium on Functional Equations,
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Rassias raised the problem whether a similar result to Theorem B holds for
1 ≤ p. Z. Gajda [5, Theorem 2] proved that Theorem B is valid for 1 < p.
In the same paper [5, Example], he also gave an example that a similar result
to the above does not hold for p = 1. Later, Th. M. Rassias and P. Šemrl
[12, Theorem 2] gave another counter example for p = 1. Note that if p < 0,
then ‖0‖p is obviously meaningless. However, if we assume that ‖0‖p means
∞, then the proof given in [11] also works for x 6= 0. Moreover, with minor
changes in the proof, we see that the result is also valid for p < 0. Thus, the
Hyers-Ulam-Rassias stability of the linear mapping holds for p ∈ R \ {1}.

Let B(H) be the set of all bounded linear operators on a Hilbert space H.
It seems natural to consider stability problems for operators in B(H). In fact,
K. Fan and A. J. Hoffman [4] considered stability of self-adjoint operators
in B(H) for finite-dimensional H. Here and after, T ∗ denotes the adjoint of
T ∈ B(H). P. R. Halmos [6] pointed out that if H is a Hilbert space, which
need not be of finite-dimensional, and if S ∈ B(H) satisfies

‖S∗x− Sx‖ ≤ ε‖x‖ (∀x ∈ H)

for some ε ≥ 0, then S̃ = (S∗ + S)/2 ∈ B(H) is a self-adjoint operator such
that

‖Sx− S̃x‖ ≤ ε

2
‖x‖ (∀x ∈ H).

In this paper, we consider a perturbation of normal operators of the form

‖T ∗Tx− TT ∗x‖ ≤ ε‖x‖p (∀x ∈ H),

where ε ≥ 0 and p ∈ R. For negative p, we assume that ‖0‖p means ∞. We
shall prove that “approximate normal operators” are exact ones when p 6= 1.
Such stability phenomena are called superstability (cf. [2, 3]). We will also
consider Hyers-Ulam stability of normal operators when p = 1.

2. Main results and examples

Before we consider stability of normal operators, we first prove supersta-
bility for self-adjoint operators. That is, “approximate self-adjoint” operators
are exact self-adjoint operators.

Theorem 2.1. If S ∈ B(H) satisfies

‖S∗x− Sx‖ ≤ ε‖x‖p (∀x ∈ H) (1)

for some ε ≥ 0 and p ∈ R \ {1}, then S is self-adjoint.

Proof. Take x ∈ H \ {0} and fix n ∈ N arbitrarily. Put s = |1− p|/(1− p). It
follows from (1) that

‖S∗(nsx)− S(nsx)‖ ≤ ε‖nsx‖p.
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The linearity of S and S∗ implies that

ns‖S∗x− Sx‖ ≤ εnsp‖x‖p,

and hence
‖S∗x− Sx‖ ≤ εns(p−1)‖x‖p.

Recall that s(p − 1) = −|1 − p| < 0. Since n ∈ N was arbitrary, we obtain
‖S∗x− Sx‖ = 0, and so S∗x = Sx: This is true for x = 0. We thus conclude
that S is a self-adjoint operator. ¤
Example 1. In Theorem 2.1, we excluded the case where p = 1. We give an
example to show that a similar result to Theorem 2.1 does not hold for p = 1.

Let ε > 0. We define S =
(

0 ε
0 0

)
. Then S∗ =

(
0 0
ε 0

)
, and hence S is

not self-adjoint. On the other hand, we get

‖S∗x− Sx‖ = ε‖x‖
for every x ∈ R2. We thus conclude that Theorem 2.1 does not hold for p = 1
in general.

Next we prove superstability of normal operators. That is, approximate
normal operators are exact normal ones.

Theorem 2.2. If T ∈ B(H) satisfies

‖T ∗Tx− TT ∗x‖ ≤ ε‖x‖p (∀x ∈ H) (2)

for some ε ≥ 0 and p ∈ R \ {1}, then T is normal.

Proof. Pick x ∈ H \ {0} and fix n ∈ N arbitrarily. Put s = |1− p|/(1− p). It
follows from (2) that

‖T ∗T (nsx)− TT ∗(nsx)‖ ≤ ε‖nsx‖p.

The linearity of T and T ∗ implies that

‖T ∗Tx− TT ∗x‖ ≤ εns(p−1)‖x‖p.

Taking n → ∞, we obtain ‖T ∗Tx − TT ∗x‖ = 0, and so we see that T is a
normal operator. ¤
Example 2. A similar result to Theorem 2.2 does not hold for p = 1. Indeed,

take ε > 0. If we define T =
(

0
√

ε
0 0

)
, then

T ∗T =
(

0 0
0 ε

)
and TT ∗ =

(
ε 0
0 0

)
.

Hence, T is not normal. On the other hand, we obtain

‖T ∗Tx− TT ∗x‖ = ε‖x‖
for every x ∈ R2. This shows that Theorem 2.2 need not be true for p = 1.
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In the case where p = 1, we see by Example 2 that superstability need not
hold. That is, there is an operator T such that T is not normal but that T
satisfies

‖T ∗T − TT ∗‖ ≤ ε, (3)
where ‖ · ‖ denotes the operator norm. One might ask whether Hyers-Ulam
stability holds for normal operators. Here, we give an answer to this question
in the negative in the following sense.

Theorem 2.3. Let H be a Hilbert space with dimH ≥ 2. There is no constant
K ≥ 0 with the following property:

(∗) To each ε ≥ 0 and T ∈ B(H) satisfying (3) there corresponds a normal
operator N ∈ B(H) such that ‖T −N‖ ≤ Kε.

Proof. Suppose, on the contrary, that there is a constant K ≥ 0 with (∗). Let
N ⊂ B(H) be the set of all normal operators. We first prove that (∗) implies
the following:

(]) inf{‖T −N‖ : N ∈ N } ≤ K‖T ∗T − TT ∗‖ holds for every T ∈ B(H).
For if T ∈ B(H), we put ε0 = ‖T ∗T − TT ∗‖. By hypothesis, there exists a
normal operator N0 ∈ B(H) such that

‖T −N0‖ ≤ Kε0 = K‖T ∗T − TT ∗‖.
This implies that

inf{‖T −N‖ : N ∈ N } ≤ ‖T −N0‖ ≤ K‖T ∗T − TT ∗‖,
and so (∗) ⇒ (]) is proved.

Since dimH ≥ 2, there exists T0 ∈ B(H) \ N . Put Tn = n−1T0 ∈ B(H) for
each n ∈ N. By (]) we have

inf{‖Tn −N‖ : N ∈ N } ≤ K‖Tn
∗Tn − TnTn

∗‖. (4)

Since nN = N for each n ∈ N, we see that

inf{‖Tn −N‖ : N ∈ N } =
1
n

inf{‖T0 −N‖ : N ∈ N }.
It follows from (4) that

1
n

inf{‖T0 −N‖ : N ∈ N } ≤ K‖Tn
∗Tn − TnTn

∗‖ =
K

n2
‖T0

∗T0 − T0T0
∗‖,

and so

inf{‖T0 −N‖ : N ∈ N } ≤ K

n
‖T ∗0 T0 − T0T

∗
0 ‖.

Letting n → ∞, we obtain inf{‖T0 − N‖ : N ∈ N } = 0. Since N is closed,
we conclude T0 ∈ N , in contradiction to T0 ∈ B(H)\N . We thus proved that
there is no constant K ≥ 0 with (∗). ¤
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Example 3. If T is a (2×2)-matrix over R, then there exists a (2×2)-matrix
N0, which is normal as an operator, such that

‖T ∗T − TT ∗‖ = 2‖T − T ∗‖ ‖T −N0‖,

where ‖ · ‖ denotes the operator norm on R2. Indeed, put T =
(

a b
c d

)
,

where a, b, c, d ∈ R. A simple calculation shows that

T ∗T − TT ∗ = (b− c)
( −b− c a− d

a− d b + c

)
,

and hence
‖T ∗T − TT ∗‖2 = |b− c|2 {

(a− d)2 + (b + c)2
}

.

We define a matrix N0 by

N0 =
1
2

(
a + d b− c
c− b a + d

)
.

It is easy to see that N0 is normal. Moreover, we obtain

T −N0 =
1
2

(
a− d b + c
b + c d− a

)
,

and so
‖T −N0‖2 =

1
4

{
(a− d)2 + (b + c)2

}
.

We thus obtain

‖T ∗T − TT ∗‖2 = 4|b− c|2 ‖T −N0‖2 = 4‖T − T ∗‖2 ‖T −N0‖2.

As a direct consequence, we get the following stability result: Suppose that T
is a (2× 2)-matrix over R satisfying

‖T ∗T − TT ∗‖ ≤ ε

for some ε ≥ 0. If T is not self-adjoint, then there exists normal N0 such that

‖T −N0‖ ≤ ε

2‖T − T ∗‖ .

Here we notice that the constant 1/2‖T − T ∗‖ obviously depends on T , and
so this stability result does not contradict Theorem 2.3.
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