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Abstract. In this paper we investigate the asymptotic stability of solutions of the integral

equations of Volterra type and its solvability in the space of continuous and bounded func-

tions on R+. The main tool used in our study is the technique associated with measures of

noncompactness and a fixed point theorem.

1. Introduction

The theory of integral equations has many applications in describing numer-
ous events and problems of the real world. For example, integral equations are
often applicable in engineering, mathematical physics, economics and biology
[11, 12]. It is a well known fact that the nonlinear quadratic equations are
often encountered in various applications. It is worthwhile mentioning the ap-
plications of those equations in the theory of radiative transfer, kinetic theory
of gases, in the traffic theory and in the theory of neutron transport, for in-
stance. Especially the so-called quadratic integral equation of Chandrasekhar
type can be very often encountered in several applications [1, 4, 10, 13, 15, 16].
Integral equations of such a type are also often an object of mathematical in-
vestigations [9, 12, 17].
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Fixed point theorems used in nonlinear functional analysis allows us, in gen-
eral, to obtain existence theorems concerning investigated functional-operator
equations. It is rather difficult to obtain characterizations of solutions of con-
sidered equations with the help of those theorems. In this paper we study the
nonlinear quadratic integral equation of volterra type by using the measure
of noncompactness and the Darbo fixed point theorem. The results generalise
the previous results of [5, 6, 7, 8, 14].

2. Preliminaries

Let (E, ‖.‖) be an infinite dimensional Banach Space with zero element θ.
Let B(x, r) denote the closed ball centered at x and with radius r. The symbol
Br stands for the ball B(θ, r). If X is a subset of E then X, conv X denote
the closure and convex closure of X, respectively. The family of all nonempty
and bounded subsets of E is denoted by ME and its subfamily consisting of
all relatively compact sets is denoted by NE .

Definition 2.1. A mapping µ : ME → R+ = [0, +∞) is said to be a measure
of noncompactness in E if it satisfies the following conditions :

(1) The family kerµ = {X ∈ME : µ(X) = 0} is nonempty and kerµ ⊂
NE ;

(2) X ⊂ Y ⇒ µ(X) ≤ µ(Y );
(3) µ(conv X)= µ(X);
(4) µ(X) = µ(X);
(5) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1];
(6) If (Xn) is a sequence of sets from ME such that Xn+1 ⊂ Xn, Xn =

Xn (n = 1, 2, 3...) and if lim
n→∞µ(Xn) = 0, then the intersection X∞ =

∩∞n=1Xn is nonempty.

The family kerµ described in (1) is called the kernel of the measure of
noncompactness µ.

A measure µ is said to be sublinear if it satisfies the following two conditions:
(7) µ(λX) = |λ|µ(X) for λ ∈ R;
(8) µ(X + Y ) ≤ µ(X) + µ(Y ).

Further facts concerning measures of noncompactness and its properties may
be found in [3]. For our further purposes we will only need the following fixed
point theorem due to Darbo.

Theorem 2.2. Let Q be nonempty bounded closed convex subset of the space
E and let F : Q → Q be a continuous operator such that µ(FX) ≤ kµ(X) for
any nonempty subset X of Q, where k ∈ [0, 1) is a constant. Then F has a
fixed point in the set Q.
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Remark 2.3. Under the assumptions of the above theorem it can be shown
that the set fix F of fixed points of F belonging to Q is a member of the kernel
kerµ.

This observation allows us to characterize solutions of considered operator
equations.

Let us consider the Banach space BC(R+) consisting of all real functions
defined, bounded and continuous on R+. The space BC(R+) is equipped with
the standard norm

‖x‖ = sup {|x(t)| : t ≥ 0} .

Now we recollect the construction of the measure of noncompactness which
will be used in this paper [2].

For this, let us fix a nonempty bounded subset X of BC(R+) and a positive
number T > 0. For x ∈ X and ε ≥ 0 denote by ωT (x, ε) the modulus of
continuity of the function x on the interval [0, T ], i,e.,

ωT (x, ε) = sup {|x(t)− x(s)| : t, s ∈ [0, T ], |t− s| ≤ ε} .

Further, let us put

ωT (X, ε) = sup
{
ωT (x, ε) : x ∈ X

}
,

ωT
0 (X) = lim

ε→0
ωT (X, ε), ω0(X) = lim

T→∞
ωT

0 (X).

For a fixed number t ≥ 0 we denote

X(t) = {x(t) : x ∈ X}

and

diamX(t) = sup {|x(t)− y(t)| : x, y ∈ X} .

Finally, let us define the function µ on the family MBC(R+) by the formula

µ(X) = ω0(X) + lim
t→∞ sup diamX(t).

It can be shown [2] that the function µ is a sublinear measure of non-
compactness on the space BC(R+). The kernel kerµ of this measure contains
nonempty and bounded sets X such that functions from X are locally equicon-
tinuous on R+ and the thickness of the bundle formed by functions from X
tends to zero at infinity. This property allows us to characterize solutions of
the following integral equations and will be used in the next section.
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3. Main result

Consider the following nonlinear functional-integral equations:

x(t) = g
(
t, x(t)

)
+ h

(
t, x(t)

)∫ t

0
u
(
t, s, x(s)

)
ds, t ≥ 0, (3.1)

and

x(t) = f

(
t, x(t)

∫ t

0
u
(
t, s, x(s)

)
ds

)
, t ≥ 0. (3.2)

We assume the following conditions for Eq.(3.1):
(H1) g : R+ ×R → R is a continuous function g(t, 0) ∈ BC(R+);
(H2) h : R+ ×R → R is a continuous function h(t, 0) ∈ BC(R+);
(H3) There exists a continuous function m(t) : R+ → R+ such that

|g(t, x)− g(t, y)| ≤ m(t)|x− y|
for all x, y ∈ R, t ∈ R+;

(H4) There exists a continuous function n(t) : R+ → R+ such that

|h(t, x)− h(t, y)| ≤ n(t)|x− y|
for all x, y ∈ R, t ∈ R+;

(H5) u : R+ ×R+ ×R → R is a continuous function such that

lim
t→∞

∫ t

0

∣∣∣u
(
t, s, x(s)

)∣∣∣ds = 0,

lim
t→∞n(t)

∫ t

0

∣∣∣u
(
t, s, x(s)

)∣∣∣ds = 0

uniformly with respect to x ∈ BC(R+);
(H6) There exists a constant k ∈ [0, 1) such that

sup
t≥0

(
m(t) + n(t)

∫ t

0

∣∣∣u
(
t, s, x(s)

)∣∣∣ds

)
≤ k

for any t ≥ 0.

Remark 3.1. The concept of the asymptotic stability of a solution x = x(t)
of Eq.(3.1) is understood in the following sense.

For any ε > 0 there exist T > 0 and r > 0 such that if x, y ∈ Br and
x = x(t), y = y(t) are solutions of Eq.(3.1) then |x(t)− y(t)| ≤ ε for t ≥ T .

Theorem 3.2. Assume (H1)-(H6) hold. Then Eq.(3.1) has at least one solu-
tion x(t) which belongs to the space BC(R+) and is asymptotically stable on
the interval R+.
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Proof. Define the operator L on the space BC(R+) by the formula

(Lx)(t) = g
(
t, x(t)

)
+ h

(
t, x(t)

)∫ t

0
u
(
t, s, x(s)

)
ds, t ≥ 0.

Clearly, the function Lx is continuous on the interval R+ for any function
x ∈ BC(R+).
Applying our assumptions, we have the following estimate:

|(Lx)(t)|
≤

∣∣∣g
(
t, x(t)

)
− g(t, 0)

∣∣∣

+
∣∣∣h

(
t, x(t)

)∫ t

0
u
(
t, s, x(s)

)
ds− h(t, 0)

∫ t

0
u
(
t, s, x(s)

)
ds

∣∣∣

+
∣∣∣g(t, 0) + h(t, 0)

∫ t

0
u
(
t, s, x(s)

)
ds

∣∣∣

≤
(

m(t) + n(t)
∫ t

0

∣∣∣u
(
t, s, x(s)

)∣∣∣ds

)
|x(t)|

+|g(t, 0)|+ |h(t, 0)|
∫ t

0

∣∣∣u
(
t, s, x(s)

)∣∣∣ds.

≤ k|x(t)|+ |g(t, 0)|+ |h(t, 0)|
∫ t

0

∣∣∣u
(
t, s, x(s)

)∣∣∣ds.

Hence we derive that the function Lx is bounded on the interval R+. Thus
Lx ∈ BC(R+).

Moreover, from the above estimate we obtain

‖Lx‖ ≤ k‖x‖+ A, (3.3)

where we have denoted

A = sup
{
|g(t, 0)|+ |h(t, 0)|

∫ t

0

∣∣∣u
(
t, s, x(s)

)∣∣∣ds : t ≥ 0
}

.

Obviously in view of the assumptions (H1), (H2) and (H5) we have that A <
∞. Since k < 1, from Eq.(3.3), the operator L transforms Br into itself for
r = A/(1− k).

Take ε > 0, and x, y ∈ Br such that ‖x− y‖ ≤ ε. Then for t ≥ 0, we get

|(Lx)(t)− (Ly)(t)| ≤
∣∣∣g

(
t, x(t)

)
− g

(
t, y(t)

)∣∣∣

+
∣∣∣h

(
t, x(t)

)
− h

(
t, y(t)

)∣∣∣
∫ t

0

∣∣∣u
(
t, s, x(s)

)∣∣∣ds

+
∣∣∣h

(
t, y(t)

)∣∣∣
∫ t

0

∣∣∣u
(
t, s, x(s)

)
− u

(
t, s, y(s)

)∣∣∣ds



316 K. Balachandran and M. Diana Julie

≤
(

m(t) + n(t)
∫ t

0

∣∣∣u
(
t, s, x(s)

)∣∣∣ds

) ∣∣∣x(t)− y(t)
∣∣∣ +

∣∣∣h
(
t, y(t)

)

−h(t, 0) + h(t, 0)
∣∣∣
∫ t

0

∣∣∣u
(
t, s, x(s)

)
− u

(
t, s, y(s)

)∣∣∣ds

≤ kε +
(
rn(t)+|h(t, 0)|

)∫ t

0

∣∣∣u
(
t, s, x(s)

)
−u

(
t, s, y(s)

)∣∣∣ds.

(3.4)

Next using assumptions (H2) and (H5), we choose a number T > 0 such that
for t ≥ T the following inequalities hold,

rn(t)
∫ t

0

∣∣∣u
(
t, s, x(s)

)∣∣∣ds ≤ (1− k)ε/4,

sup {|h(t, 0)| : t ≥ 0}
∫ t

0

∣∣∣u
(
t, s, x(s)

)∣∣∣ds ≤ (1− k)ε/4.





(3.5)

Let us consider two cases:

(a) t ≥ T . Then in view of Eq.(3.4) and Eq.(3.5), we obtain
|(Lx)(t)−(Ly)(t)| ≤ kε+(1−k)ε/4+(1−k)ε/4+(1−k)ε/4+(1−k)ε/4 = ε.

(b) t ≤ T . In this case, let us consider the function ω = ω(ε) defined by
the formula

ω(ε)=sup{|u(t, s, x)− u(t, s, y)| : t, s ∈ [0, T ], x, y ∈ [−r, r], |x− y| ≤ ε} .

Taking into account the uniform continuity of the function u = u(t, s, x) on
the set [0, T ]× [0, T ]× [−r, r], we deduce that ω(ε) → 0 as ε → 0.

Thus in this case, by virtue of Eq.(3.5), we get

|(Lx)(t)− (Ly)(t)| ≤ kε +
(
r sup {n(t) : t ∈ [0, T ]}

+ sup {|h(t, 0)| : t ∈ [0, T ]}
)
Tω(ε).

Finally linking cases (a) and (b) and keeping in mind the above established
facts, we conclude that the operator L is continuous on the ball Br.

Take a nonempty set X ⊂ Br. Then, for x, y ∈ X, and for a fixed t ≥ 0,
calculating in the same way as in the proof of estimate Eq.(3.4), we obtain

|(Lx)(t)− (Ly)(t)| ≤ k|x(t)− y(t)|+
(
rn(t) + |h(t, 0)|

)

[ ∫ t

0

∣∣∣u
(
t, s, x(s)

)∣∣∣ds +
∫ t

0

∣∣∣u
(
t, s, y(s)

)∣∣∣ds
]
.
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Hence we can easily deduce,

diam(LX)(t) ≤ kdiamX(t) + sup
x,y∈X

{(
rn(t) + |h(t, 0)|

)

[ ∫ t

0

∣∣∣u
(
t, s, x(s)

)∣∣∣ds +
∫ t

0

∣∣∣u
(
t, s, y(s)

)∣∣∣ds
]}

.

Now, taking into account our assumptions, we get

lim
t→∞ sup diam(LX)(t) ≤ k lim

t→∞ sup diamX(t). (3.6)

Further, let us fix arbitrarily numbers T > 0 and ε > 0. Choose a function
x ∈ X and take t, s ∈ [0, T ] such that |t − s| ≤ ε. Without loss of generality,
we may assume that s < t. Then, in view of our assumptions, we have
|(Lx)(t)− (Lx)(s)|

≤
∣∣∣g

(
t, x(t)

)
− g

(
s, x(s)

)∣∣∣

+
∣∣∣h

(
t, x(t)

)∫ t

0
u
(
t, τ, x(τ)

)
dτ − h

(
s, x(s)

)∫ s

0
u
(
s, τ, x(τ)

)
dτ

∣∣∣

≤ m(t)|x(t)− x(s)|+
∣∣∣g

(
t, x(s)

)
− g

(
s, x(s)

)∣∣∣

+
∣∣∣h

(
t, x(t)

)
− h

(
s, x(s)

)∣∣∣
∫ t

0

∣∣∣u
(
t, τ, x(τ)

)∣∣∣dτ

+
∣∣∣h

(
s, x(s)

)∣∣∣
∣∣∣
∫ t

0
u
(
t, τ, x(τ)

)
dτ −

∫ s

0
u
(
s, τ, x(τ)

)
dτ

∣∣∣

≤
(
m(t) + n(t)

∫ t

0

∣∣∣u
(
t, τ, x(τ)

)∣∣∣dτ
)
|x(t)− x(s)|

+
∣∣∣g

(
t, x(s)

)
− g

(
s, x(s)

)∣∣∣

+
∣∣∣h

(
t, x(s)

)
− h

(
s, x(s)

)∣∣∣
∫ t

0

∣∣∣u
(
t, τ, x(τ)

)∣∣∣dτ

+
(
n(s)|x(s)|+ |h(s, 0)|

)∫ t

s

∣∣∣u
(
t, τ, x(τ)

)∣∣∣dτ

+
(
n(s)|x(s)|+ |h(s, 0)|

)∫ s

0

∣∣∣u
(
t, τ, x(τ)

)
− u

(
s, τ, x(τ)

)∣∣∣dτ

≤ k|x(t)− x(s))|+ ωT
r (g, ε) + ωT

r (h, ε)
∫ t

0

∣∣∣u
(
t, τ, x(τ)

)∣∣∣dτ

+
(
n(s)r + |h(s, 0)|

)∫ t

s

∣∣∣u
(
t, τ, x(τ)

)∣∣∣dτ

+ T
(
n(s)r + |h(s, 0)|

)
ωT

r (u, ε),
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where we denoted

ωT
r (g, ε) = sup {|g(t, x)− g(s, x)| : t, s ∈ [0, T ], |t− s| ≤ ε, |x| ≤ r} ,

ωT
r (h, ε) = sup {|h(t, x)− h(s, x)| : t, s ∈ [0, T ], |t− s| ≤ ε, |x| ≤ r} ,

ωT
r (u, ε) = sup {|u(t, τ, x)− u(s, τ, x)| : t, s, τ ∈ [0, T ], |t− s| ≤ ε, |x| ≤ r} .

Hence we obtain,

ωT (Lx, ε) ≤ kωT (x, ε) + ωT
r (g, ε) + ωT

r (h, ε)
∫ t

0

∣∣∣u
(
t, τ, x(τ)

)∣∣∣dτ

+ εrn(s) sup
{

u
(
t, τ, x(τ)

)
: t, τ ∈ [0, T ], |x| ≤ r

}

+ ε|h(s, 0)| sup
{

u
(
t, τ, x(τ)

)
: t, τ ∈ [0, T ], |x| ≤ r

}

+ T sup {n(s)r + |h(s, 0)| : s ∈ [0, T ]}ωT
r (u, ε).

In view of our assumptions we infer that the function g = g(t, x) and h =
h(t, x) is uniformly continuous on the set [0, T ] × [−r, r] and the function
u = u(t, τ, x) is uniformly continuous on [0, T ]× [0, T ]× [−r, r].

Hence we deduce that ωT
r (g, ε) → 0, ωT

r (h, ε) → 0 and ωT
r (u, ε) → 0 as

ε → 0. Consequently, from the above estimate we get

ωT
0 (LX) ≤ kωT

0 (X)

and, further,

ω0(LX) ≤ kω0(X). (3.7)

Now, linking Eq.(3.6) and Eq.(3.7), and keeping in mind the definition of the
measure of noncompactness µ in the space BC(R+), we obtain

µ(LX) ≤ kµ(X).

The conclusion of the theorem follows by the application of Theorem 2.2. ¤

Remark 3.3. Taking into account of the Remark 3.3 and the description of
the kernel of the measure of noncompactness µ, we infer easily from the proof
of Theorem 3.2 that any solution of Eq.(3.1) which belongs to the ball Br is
asymptotically stable in the earlier defined sense.

Next, we will consider Eq.(3.2) under the following assumptions:
(H1) f : R+ ×R → R is a continuous function f(t, 0) ∈ BC(R+);
(H2) There exists a continuous function m(t) : R+ → R+ such that

|f(t, x)− f(t, y)| ≤ m(t)|x− y|
for all x, y ∈ R, t ∈ R+;
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(H3) u : R+ ×R+ ×R → R is a continuous function such that

lim
t→∞m(t)

∫ t

0

∣∣∣u
(
t, s, x(s)

)∣∣∣ds = 0

uniformly with respect to x ∈ BC(R+);
(H4) There exists a constant c ∈ [0, 1) such that

m(t)
∫ t

0

∣∣∣u
(
t, s, x(s)

)∣∣∣ds ≤ c

for any t ≥ 0.

Theorem 3.4. Assume (H1)-(H4) hold. Then Eq.(3.2) has at least one solu-
tion x(t) which belongs to the space BC(R+) and is asymptotically stable on
the interval R+.

Proof. Define the operator F on the space BC(R+) by the formula

(Fx)(t) = f

(
t, x(t)

∫ t

0
u
(
t, s, x(s)

)
ds

)
, t ≥ 0.

Clearly, the function Fx is continuous on the interval R+ for any function
x ∈ BC(R+).
From the assumptions, we have the following estimate:

|(Fx)(t)| ≤
∣∣∣∣f

(
t, x(t)

∫ t

0
u
(
t, s, x(s)

)
ds

)
− f(t, 0)

∣∣∣∣ + |f(t, 0)|

≤ m(t)|x(t)|
∫ t

0

∣∣∣u
(
t, s, x(s)

)∣∣∣ds + |f(t, 0)|
≤ c|x(t)|+ |f(t, 0)|.

Hence we derive that the function Fx is bounded on the interval R+. Thus
Fx ∈ BC(R+).

Moreover, from the above estimate we obtain

‖Fx‖ ≤ c‖x‖+ D, (3.8)

where we have denoted

D = sup {|f(t, 0)| : t ≥ 0} .
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Since c < 1, this implies F (Bν) ⊂ Bν for ν = D/(1 − c). Let ε > 0, and
x, y ∈ Bν such that ‖x− y‖ ≤ ε. Then for t ≥ 0, we get

|(Fx)(t)− (Fy)(t)| ≤ m(t)
∣∣∣x(t)

∫ t

0
u
(
t, s, x(s)

)
ds− y(t)

∫ t

0
u
(
t, s, y(s)

)
ds

∣∣∣

≤ m(t)|x(t)− y(t)|
∫ t

0

∣∣∣u
(
t, s, x(s)

)∣∣∣ds

+m(t)|y(t)|
∫ t

0

∣∣∣u
(
t, s, x(s)

)
ds− u

(
t, s, y(s)

)∣∣∣ds

≤ cε + νm(t)
∫ t

0

∣∣∣u
(
t, s, x(s)

)
ds− u

(
t, s, y(s)

)∣∣∣ds.

As in the proof of Theorem 3.2, we can obtain that the operator F is continuous
on the ball Bν and

lim
t→∞ sup diam(FX)(t) ≤ c lim

t→∞ sup diamX(t). (3.9)

For any T > 0, ε > 0, choose a function x ∈ X and take t, s ∈ [0, T ] such that
|t − s| ≤ ε. Without loss of generality, we may assume that s < t. Then, in
view of our assumptions, we have

|(Fx)(t)− Fx)(s)| ≤ m(t)
∣∣∣x(t)

∫ t

0
u
(
t, τ, x(τ)

)
dτ − x(s)

∫ s

0
u
(
s, τ, x(τ)

)
dτ

∣∣∣

≤ m(t)|x(t)− x(s)|
∫ t

0

∣∣∣u
(
t, τ, x(τ)

)∣∣∣dτ

+m(t)|x(s)|
∫ t

s

∣∣∣u
(
t, τ, x(τ)

)∣∣∣dτ

+m(t)|x(s)|
∫ s

0

∣∣∣u
(
t, τ, x(τ)

)
− u

(
s, τ, x(τ)

)∣∣∣dτ

≤ c|x(t)− x(s)|+ νm(t)
∫ t

s

∣∣∣u
(
t, τ, x(τ)

)∣∣∣dτ

+νm(t)
∫ s

0

∣∣∣u
(
t, τ, x(τ)

)
− u

(
s, τ, x(τ)

)∣∣∣dτ.

Hence

ωT (Fx, ε)

≤ c ωT (x, ε) + ενm(t) sup
{∣∣∣u

(
t, τ, x(τ)

)∣∣∣ : t, τ ∈ [0, T ], |x| ≤ ν
}

+νm(t)T sup {|u(t, τ, x)− u(s, τ, x)| : s, t, τ ∈ [0, T ], |s− t| ≤ ε, |x| ≤ ν} .

Since u = u(t, τ, x) is uniformly continuous on the set [0, T ]× [0, T ]× [−ν, ν],
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we deduce that

sup {|u(t, τ, x)− u(s, τ, x)| : s, t, τ ∈ [0, T ], |s− t| ≤ ε, |x| ≤ ν} → 0 as ε → 0.

Hence, from the above estimate we obtain

ω0(FX) ≤ cω0(X). (3.10)

Now, from Eq.(3.9) and Eq.(3.10), we get

µ(FX) ≤ cµ(X).

The conclusion of the theorem follows by the application of Theorem 2.2. ¤

4. Examples

Consider the following functional-integral equations:

x(t) =
1

(1 + t2)
x(t) + cos

(
tx(t)

)∫ t

0

ln(1 + s|x(s)|)
(1 + t4)

(
1 + x2(s)

)ds,

x(t) =
ln(1 + t)
(1 + t)

sinx(t) + arctg
(
t2x(t)

)∫ t

0

s exp(−t− x2(s))
(1 + s2)

ds,

x(t) = exp(−t)x(t) + x(t)
∫ t

0

t

4 + t2
exp(−ts)(
1 + x2(s)

)ds,

x(t) = (sin t)x(t) + x(t)
∫ t

0

s|x(s)|
3 + t5

exp
(
− t− sx2(s)

)
ds.

The first two examples satisfy the assumptions of Theorem 3.2 and the next
two examples satisfy the assumptions of Theorem 3.4.
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