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Abstract. In this paper, an existence theorem for the periodic boundary value problems

of first order Caratheéodory and discontinuous differential equations is proved in Banach

algebras under the mixed generalized Lipschitz and Carathéodory conditions. The existence

theorems for extremal solutions are also proved under certain monotonicity conditions.

1. Introduction

Let R denote the real line. Given a closed and bounded interval J = [0, T ]
in R, consider the periodic boundary value problems (in short PBVP) of first
order ordinary differential equations





d

dt

[x(t)− k(t, x(t))
f(t, x(t))

]
= g(t, x(t)) a. e. t ∈ J

x(0) = x(T ),

(1.1)

where f : J × R→ R− {0} and g, k : J × R→ R.

By a solution of PBVP (1.1) we mean a function x ∈ AC(J,R) that satisfies

(i) the function t 7→
(x(t)− k(t, x(t))

f(t, x(t))

)
is absolutely continuous on J ,

and
(ii) x satisfies the equations in (1.1),
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where AC(J,R) is the space of absolutely continuous real-valued functions on
J .

First order ordinary differential equations (ODE) with periodic boundary
value conditions are considered in many works. See Bernfeld and Lakshmikan-
tham [1], Ladde et al. [18], Omari and Zanolin [21] and the references therein.
The study of periodic boundary value problems of nonlinear first order differen-
tial equations with discontinuous nonlinearity has been exploited in the works
of Heikkilä and Lakshmikantham [17]. But the study of periodic boundary
value problems of ordinary differential equations in Banach algebras involving
Carathéodory as well as discontinuous nonlinearity has not been made so far
in the literature. The study of initial value problems of nonlinear differen-
tial equations in Banach algebras is initiated in the recent works of Dhage
[4] and Dhage and O’Regan [11] and discussed the existence theory for first
order differential equations. The study of such equations has been further
exploited in the works of Dhage [2,3] and Dhage et al. [12] for various aspects
of the solutions. In this paper, we deal with the periodic boundary value
problems of nonlinear first order Carathéodory and discontinuous differential
equations in Banach algebras and discuss the existence as well as existence
results for extremal solutions under the mixed Lipschitz, Carathéodory and
monotonic conditions. The main tools used in the study are the hybrid fixed
point theorems to be developed in this paper itself. We claim that the nonlin-
ear differential equation as well as the existence results of this paper are new
to the literature on the theory of nonlinear ordinary differential equations.

Our method of study is to convert the PBVP (1.1) into an equivalent integral
equation and apply the hybrid fixed point theorems of next section 2 under
suitable conditions on the nonlinearities f, k and g involved it. In the following
section 2 we give some preliminaries and the auxiliary results needed in the
sequel.

2. Hybrid fixed point theory

Let X be a Banach algebra with the norm ‖ · ‖. A mapping A : X → X
is called D-Lipschitz if there exists a continuous nondecreasing function ψ :
R+ → R+ satisfying

‖Ax−Ay‖ ≤ ψ(‖x− y‖) (2.1)

for all x, y ∈ X with ψ(0) = 0. In the special case, when ψ(r) = αr (α > 0), A
is called a Lipschitz with a Lipschitz constant α. In particular, if α < 1, A is
called a contraction with the contraction constant α. Further, if ψ(r) < r for
all r > 0, then A is called a nonlinear D-contraction on X. For convenience,
we call the function ψ to be a D-function of A on X.
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An operator T : X → X is called compact if T (S) is a compact subset
of X for any S ⊂ X. Similarly, T : X → X is called totally bounded if T
maps a bounded subset of X into a relatively compact subset of X. Finally,
T : X → X is called completely continuous operator, if it is continuous and
totally bounded operator on X. It is clear that every compact operator is
totally bounded, but the converse may not be true. However, these two notions
are equivalent on the bounded subsets of X.

2.1. Fixed point theory in Banach spaces. The following nonlinear al-
ternative is fundamental and has been used extensively in the theory of dif-
ferential and integral equations for proving the existence results under certain
compactness conditions.

Theorem 2.1. [14] Let K be a convex subset of a normed linear space E, U
an open subset of K with 0 ∈ U , and N : U → K a continuous and compact
map. Then either

(a) N has a fixed point in U ; or,
(b) there is an element u ∈ ∂U such that u = λNu for some real number

λ ∈ (0, 1), where ∂U is the boundary of U .

Before presenting the main results of this section, we give some preliminaries
needed in the sequel.

The Kuratowskii measure of noncompactness α of a bounded set S in X is
a nonnegative real number α(S) defined by

α(S) = inf
{

r > 0 : S =
n⋃

i=1

Si, and diam(Si) ≤ r, ∀i
}

. (2.2)

The function α enjoys the following properties:
(α1) α(S) = 0 ⇐⇒ S is precompact.
(α2) α(S) = α(S) = α(co S), where S and co S denote respectively the

closure and the closed convex hull of S.
(α3) S1 ⊂ S2 ⇒ α(S1) ≤ α(S2)
(α4) α(S1 ∪ S2) = max{α(S1), α(S2)}.
(α5) α(λS) = |λ|α(S),∀λ ∈ R.
(α6) α(S1 + S2) ≤ α(S1) + α(S2).
The details of measures of noncompactness and their properties appear in

Deimling [13] and Zeidler [22].

Definition 2.1. A mapping T : X → X is called α-condensing, if for any
bounded subset S of X, T (S) is bounded and α(T (S)) < α(S), α(S) > 0.

Note that contraction and completely continuous mappings are α-condensing,
but the converse may not be true. The following generalization of Theorem



326 B. C. Dhage

2.1 for α-condensing mappings in Banach spaces is well-known and will be
used in the sequel.

Theorem 2.2. Let U and U be respectively open and closed subsets of a
Banach space X such that 0 ∈ U . If N(U) is bounded and N : U → X a
continuous and α-condensing map, then either

(a) N has a fixed point in U ; or,
(b) there is an element u of the boundary ∂U such that u = λNu for some

real number λ ∈ (0, 1).

Our main result of this section is

Theorem 2.3. Let U and U be open-bounded and closed-bounded subsets of a
Banach algebra X such that 0 ∈ U and let A,B, C : U → X be three operators
satisfying

(a) A and C are D-Lipschitz with the D-functions ψA and ψC respectively,
(b) B is continuous and compact, and
(c) MψA(r) + ψC(r) < r for r > 0, where

M = ‖B(U)‖ = sup
{‖B(x)‖ : x ∈ U

}
.

Then either

(i) the equation AxBx + Cx = x has a solution in U , or
(ii) there is an element u ∈ ∂U such that u = λ[AuBu + Cu] for some

λ ∈ (0, 1), where ∂U is the boundary of U .

Proof. Define a mapping T : U → X by

Tx = AxBx + Cx, x ∈ U. (2.3)

First, we show that T is a continuous mapping on U . Let {xn} be a sequence
in U converging to a point x∗ ∈ U. Then, we have

‖T (xn)− T (x∗)‖ ≤ ‖Axn Bxn −Ax∗Bx∗‖+ ‖Cxn − Cx∗‖
≤ ‖Axn Bxn −Ax∗Bxn‖+ ‖Ax∗Bxn −Ax∗Bx∗‖

+ ‖Cxn − Cx∗‖
≤ ‖Axn −Ax∗‖‖Bxn‖+ ‖Ax∗‖‖Bxn −Bx∗‖

+ ‖Cxn − Cx∗‖
≤ MψA(‖xn − x∗‖) + ‖Ax∗‖‖Bxn −Bx∗‖

+ ψC(‖xn − x∗‖).
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Taking the limit superior on both sides,

lim sup
n→∞

‖T (xn)− T (x∗)‖
≤ M lim sup

n→∞
ψA(‖xn − x∗‖) + ‖Ax∗‖ lim sup

n→∞
‖Bxn −Bx∗‖

+ lim sup
n→∞

ψC(‖xn − x∗‖)

≤ MψA

(
lim sup

n→∞
‖xn − x∗‖

)
+ ‖Ax∗‖ lim sup

n→∞
‖Bxn −Bx∗‖

+ ψC

(
lim sup

n→∞
‖xn − x∗‖

)

= 0.

Therefore, it follows that

lim
n→∞ ‖T (xn)− T (x∗)‖ = 0,

and so, T is a continuous mapping on U . Now the result follows immediately
from Theorem 2.2, if we show that the operator T is α-condensing on U . Let
S be a set in U . Then we have the following estimate concerning the operators
A,B and C on U . Let x∗ be a fixed element of S. Then by hypothesis (a),

‖Ax‖ ≤ ‖Ax∗‖+ ‖Ax∗ −Ax‖ ≤ ‖Ax∗‖+ ψA(‖x∗ − x‖) ≤ β

for all x ∈ S, where

β = ‖Ax∗‖+ ψA(diam(S)) < ∞, (2.4)

because S is bounded.

Now there are two cases :
Case I : If β = 0, then ‖Ax‖ = 0 and consequently, Tx = Cx. In this

case, we show that T is a α-condensing mapping on U . Let ε > 0 be given
and suppose that

S =
n⋃

i=1

Si

with
diam(Si) ≤ α(S) + ε

for all i = 1, 2, ..., n.
Now

C(S) ⊆
n⋃

i=1

C(Si) =
n⋃

i=1

Yi.
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If w0, w1 ∈ Yi, for some i, then there exist x0, x1 ∈ Si such that Cx0 =
w0 and Cx1 = w1. Since φ is nondecreasing, one has

‖Cx0 − Cx1‖ ≤ ψC(‖x0 − x1‖) ≤ ψC(diam(Si)) < φ(α(S) + ε).

This is true for every w0, w1 ∈ Yi and so

diam(Yi) < ψC(α(S) + ε),

for all i = 1, 2, ..., n. Thus we have

α(C(S)) = max
i

diam(Yi) < φ(α(S) + ε).

Since ε is arbitrary, we have

α(C(S)) ≤ φ(α(S)).

Now from (3.3) it follows that

α(T (S)) = α(C(S)) ≤ φ(α(S)) < α(S)

whenever α(S) > 0. This shows that T is a α-condensing on U .
Case II : Now suppose that β 6= 0. In this case also we show that T is a

α-condensing on U . Since B is compact, B(S) is a precompact subset of X.
Hence for η > 0, there exist subsets G1, G2, . . . , Gm of X such that

B(S) =
m⋃

j=1

Gj and diam(Gj) <
η

β
.

This further gives that

S ⊂
m⋃

j=1

B−1(Gj).

Let ε > 0 be given and suppose that

S =
n⋃

i=1

Si

with
diam(Si) < α(S) + ε

for all i = 1, 2, ..., n. We put Fij = Si
⋂

B−1(Gj), then S ⊂ ⋃
Fij .

Now
T (S) ⊆

⋃

i,j

T (Fij) =
⋃

i,j

T
(
Si

⋂
B−1(Gj)

)
=

⋃

i,j

Yij .

If w0, w1 ∈ Yij , for some i = 1, . . . , n and j = 1, . . . ,m, then there exist
x0, x1 ∈ Fij = Si

⋂
B−1(Gj) such that Tx0 = w0 and Tx1 = w1.
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Since ψA and ψA are nondecreasing, one has

‖Tx0 − Tx1‖ ≤ ‖Ax0Bx0 −Ax1Bx1‖+ ‖Cx0 − Cx1‖
≤ ‖Ax0Bx0 −Ax1Bx0‖+ ‖Ax1Bx0 −Ax1Bx1‖

+ ‖Cx0 − Cx1‖
≤ ‖Ax0 −Ax1‖‖Bx0‖+ ‖Ax1‖‖Bx0 −Bx1‖

+ ‖Cx0 − Cx1‖
≤ ψA(‖x0 − x1‖)‖Bx0‖+ ‖Ax1‖‖Bx0 −Bx1‖

+ ψC(‖x0 − x1‖)
≤ ψA(diam(Fij))‖B(U)‖+ ‖A(S)‖‖Bx0 −Bx1‖

+ ψC(diam(Fij))

< MψA(diam(Fij)) + ψC(diam(Fij)) + η.

This further implies that

‖Tx0 − Tx1‖ ≤ MψA(diam(Si)) + ψC(diam(Si)) + η

< M ψA(α(S) + ε) + ψC(α(S) + ε) + η.

This is true for every w0, w1 ∈ Yij , and so

diam(Yij) ≤ MψA(α(S) + ε) + ψC(α(S) + ε) + η,

for all i = 1, 2, ..., n. Thus we have

α(T (S)) ≤ max
i,j

diam(Yij) ≤ MψA(α(S) + ε) + ψC(α(S) + ε) + η.

Since ε is arbitrary, one has

α(T (S)) ≤ MψA(α(S) + ε) + ψC(α(S) + ε).

Since ε is arbitrary, we have

α(T (S)) ≤ MψA(α(S)) + ψC(α(S)) < α(S),

whenever α(S) > 0.
This shows that T is a α-condensing mapping on U . Now the desired

conclusion follows by an application of Theorem 2.2. This completes the proof.
¤

As a consequence of Theorem 2.3 we obtain the following corollary in its
applicable form to nonlinear differential and integral equations.

Corollary 2.1. Let Br(0) and Br(0) be open and closed balls in a Banach
algebra X centered at origin 0 of radius r, for some real number r > 0 and let
A,B, C : Br(0) → X be three operators satisfying
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(a) A and C are Lipschitz with the Lipschitz constants α and β respec-
tively,

(b) B is continuous and compact, and
(c) αM + β < 1, where M = sup

{
‖B(x)‖ : x ∈ Br(0)

}
.

Then either
(i) the equation AxBx + Cx = x has a solution in Br(0), or
(ii) there is an element u ∈ X such that ‖u‖ = r satisfying λ[AuBu +

Cu] = u for some 0 < λ < 1.

Remark 2.1. Theorem 2.3 is an improvement of the nonlinear alternatives of
Leray-Schauder type due to Dhage [2,6] and Dhage and O’Regan [11] under
weaker conditions.

2.2. Fixed point theory in ordered spaces. A non-empty closed set K
in a Banach algebra X is called a cone if (i) K + K ⊆ K, (ii) λK ⊆ K for
λ ∈ R, λ ≥ 0 and (iii) {−K} ∩ K = 0, where 0 is the zero element of X. A
cone K is called positive if (iv) K ◦ K ⊆ K, where ”◦” is a multiplication
composition in X. We introduce an order relation ≤ in X as follows. Let
x, y ∈ X. Then x ≤ y if and only if y−x ∈ K. A cone K is called normal if the
norm ‖·‖ is semi-monotone increasing on K, that is, there is a constant N > 0
such that ‖x‖ ≤ N‖y‖ for all x, y ∈ K with x ≤ y. It is known that if the
cone K is normal in X, then every order-bounded set in X is norm-bounded.
The details of cones and their properties appear in Guo and Lakshmikantham
[16].

Lemma 2.1. (Dhage [3]) Let K be a positive cone in a real Banach algebra X
and let u1, u2, v1, v2 ∈ K be such that u1 ≤ v1 and u2 ≤ v2. Then u1u2 ≤ v1v2.

For any a, b ∈ X, a ≤ b, the order interval [a, b] is a set in X given by

[a, b] = {x ∈ X : a ≤ x ≤ b}.

Definition 2.2. A mapping T : [a, b] → X is said to be nondecreasing or
monotone increasing if x ≤ y implies Tx ≤ Ty for all x, y ∈ [a, b].

We use the following three fixed point theorems of Dhage [2,6] for proving
the existence of extremal solutions for the PBVP (1.1) under certain mono-
tonicity conditions.

Theorem 2.4. (Dhage [2]) Let K be a cone in the Banach algebra X and let
a, b ∈ X be such that a ≤ b. Suppose that A,B : [a, b] → K and C : X → X
are three operators such that

(a) A and C are Lipschitz with the Lipschitz constants α and β respec-
tively,

(b) B is completely continuous,
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(c) the elements a, b ∈ X satisfy a ≤ AaBa+Ca and AbBb+Cb ≤ b, and
(d) A,B and C are nondecreasing.

Further if the cone K is positive and normal, then the operator equation
AxBx + Cx = x has the least and the greatest solution in [a, b], whenever
αM + β < 1, where M = ‖B([a, b])‖ := sup{‖Bx‖ : x ∈ [a, b]}.
Theorem 2.5. (Dhage [7]) Let K be a cone in the Banach algebra X and let
a, b ∈ X be such that a ≤ b. Suppose that A,B : [a, b] → K and C : X → X
are three operators such that

(a) A is completely continuous,
(b) B and C are totally bounded,
(c) the elements a, b ∈ X satisfy a ≤ AaBa+Ca and AbBb+Cb ≤ b, and
(d) A,B and C are nondecreasing.

Further, if the cone K is positive and normal, then the operator equation
AxBx + Cx = x has the least and the greatest solution in [a, b].

Theorem 2.6. (Dhage [7]) Let K be a cone in a Banach algebra X and let
a, b ∈ X be such that a ≤ b. Suppose that A,B : [a, b] → K and C : X → X
are three operators such that

(a) A and C are Lipschitz mappings with the Lipschitz constants α and β
respectively,

(b) B is totally bounded,
(c) the elements a, b ∈ X satisfy a ≤ AaBa+Ca and AbBb+Cb ≤ b, and
(d) A,B and C are nondecreasing.

Further, if the cone K is positive and normal, then the operator equation
AxBx + Cx = x has the least and the greatest solution in [a, b], whenever
αM + β < 1, where M = ‖B([a, b])‖ := sup{‖Bx‖ : x ∈ [a, b]}.

Next we prove an improvement of the following two fixed point theorems
due to the present author for the mappings in ordered Banach algebras.

Theorem 2.7. (Dhage [7]) Let [a, b] be an order interval in an ordered Banach
algebra X with the cone K and let A,B : [a, b] → K and C : [a, b] → X be
three nondecreasing operators such that

(a) A is a Lipschitz mapping with the Lipschitz constant α < 1/2,
(b) B is completely continuous,
(c) C is totally bounded, and
(d) AxBy + Cz ∈ [a, b] for all x, y, z ∈ [a, b].

Further, if the cone K is positive and normal, then the operator equation
AxBx + Cx = x has the least and the greatest solution in [a, b], whenever
αM < 1, where M = ‖B([a, b])‖ := sup{‖Bx‖ : x ∈ [a, b]}.
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Theorem 2.8. (Dhage [7]) Let [a, b] be an order interval in an ordered Banach
algebra X with the cone K and let A,B : [a, b] → K and C : [a, b] → X be
three nondecreasing operators such that

(a) A is completely continuous,
(b) B is totally bounded,
(c) C is a contraction with the contraction constant β < 1/2, and
(d) AxBy + Cz ∈ [a, b] for all x, y, z ∈ [a, b].

Further, if the cone K is positive and normal, then the operator equation
AxBx + Cx = x has the least and the greatest solution in [a, b].

We use the following two fixed point theorems in the sequel.

Theorem 2.9. Let [a, b] be a norm-bounded order interval in the ordered Ba-
nach space X and let T : [a, b] → [a, b] be a continuous and α-condensing
mapping. If T is nondecreasing, then T has the least fixed point x∗ and the
greatest fixed point x∗ in [a, b] and the sequences {Tn(a)} and {Tn(b)} converge
to x∗ and x∗ respectively.

Proof. The proof is obtained using essentially the same arguments that given
in Dhage [7] with appropriate modifications. Hence we omit the details. ¤
Theorem 2.10. (Heikkilä and Lakshmikantham [17]) Let [a, b] be an order in-
terval in a subset Y of an ordered Banach space X and let Q : [a, b] → [a, b] be a
nondecreasing mapping. If each sequence {Qxn} ⊆ Q([a, b]) converges, when-
ever {xn} is a monotone sequence in [a, b], then the sequence of Q-iteration of
a converges to the least fixed point x∗ of Q and the sequence of Q-iteration of
b converges to the greatest fixed point x∗ of Q. Moreover,

x∗ = min{y ∈ [a, b] | y ≥ Qy} and x∗ = max{y ∈ [a, b] | y ≤ Qy}.
Theorem 2.11. Let [a, b] be an order interval in an ordered real Banach
algebra X with the cone K and let A,B : [a, b] → K and C : [a, b] → X be
three nondecreasing operators such that

(a) A is D-Lipschitz with the D-function ψ,
(b) B is completely continuous,
(c) every sequence {Cyn} ⊆ C([a, b]) converges, whenever {yn} is a mono-

tone sequence in [a, b], and
(d) AxBx + Cz ∈ [a, b] for all x, z ∈ [a, b].

Further if the cone K is positive and normal, then the operator equation
AxBx + Cx = x has the least and the greatest solution in [a, b], whenever
Mψ(r) < r, if r > 0, where M = ‖B([a, b])‖ := sup{‖Bx‖ : x ∈ [a, b]}.
Proof. Let y ∈ [a, b] be fixed and define a mapping Ty : [a, b] → X by

Ty(x) = Ax Bx + Cy.
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First we show that Ty is a continuous mapping on [a, b]. Let {xn} be a sequence
in [a, b] converging to a point x∗ ∈ [a, b]. Then, we have

‖Ty(xn)− Ty(x∗)‖ = ‖Axn Bxn −Ax∗Bx∗‖
≤ ‖Axn Bxn −Ax∗Bxn‖+ ‖Ax∗Bxn −Ax∗Bx∗‖
≤ ‖Axn −Ax∗‖‖Bxn‖+ ‖Ax∗‖‖Bxn −Bx∗‖
≤ Mψ(‖xn − x∗‖) + β‖Bxn −Bx∗‖

where β = ‖Ax∗‖ < ∞.
Passing to the limit superior as n →∞ in the above inequality yields

lim
n→∞ ‖Ty(xn)− Ty(x∗)‖ = 0.

This shows that the mapping Ty is continuous on [a, b]. To show Ty is nonde-
creasing on [a, b], let x1, x2 ∈ [a, b] be such that x1 ≤ x2. By the positivity of
the cone K in X, we obtain

Ty(x1) = Ax1 Bx1 + Cy ≤ Ax2 Bx2 + Cy = Ty(x2).

Therefore, hypothesis (d) implies that Ty defines a nondecreasing mapping
Ty : [a, b] → [a, b]. Now proceeding with the arguments similar to the proof
of Theorem 2.3, it can be shown that Ty is a α-condensing mapping on [a, b].
Hence by Theorem 2.2, the operator Ty has the least fixed point x∗ and the
greatest fixed point x∗ and the sequences {Tn

y (a)} and {Tn
y (b)} converge to x∗

and x∗ respectively.
Define a mapping Q : [a, b] → X by Qy = z, where z is a greatest solution

to the operator equation AzBz + Cy = z and which is obviously unique
for each y ∈ [a, b]. We show that Q is a nondecreasing mapping on [a, b].
Let y1, y2 ∈ [a, b] be such that y1 ≤ y2. Then there are unique elements
z1, z2 ∈ [a, b] such that

Qy1 = z1 = Az1 Bz1 + Cy1 = Ty1(z1)

and
Qy2 = z2 = Az2 Bz2 + Cy2 = Ty2(z2).

From the monotonicity of C, it follows that

Ty1(x) = AxBx + Cy1 ≤ AxBx + Cy2 = Ty2(x)

for all x ∈ [a, b]. Hence for any x ∈ [a, b]

Tn
y1

(x) ≤ Tn
y2

(x)

for all n ∈ N. In particular,

Tn
y1

(b) ≤ Tn
y2

(b)
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for all n ∈ N. By Theorem 2.9,

z1 = lim
n→∞Tn

y1
(b) ≤ lim

n→∞Tn
y2

(b) = z2.

This shows that Q defines a nondecreasing operator Q : [a, b] → [a, b]. See
also Dhage [7] and the references therein.

Next, let {yn}be a monotone sequence in [a, b]. We will show that the
sequence {Qyn} converges. By definition of Q, there is a monotone increasing
sequence {zn} in [a, b] such that Q(yn) = zn = Tyn(zn), n ∈ N. Let S = {zn}.
Then S is a bounded and countable subset of [a, b] such that S ⊆ ⋃

n∈N Tyn(S).
Since the map x 7→ Ty(x) is countably condensing for each y ∈ [a, b], one has

α(S) ≤ α
( ∪n∈N Tyn(S)

)
= max {α(Tyn(S)) : n ∈ N} < α(S)

for each n ∈ N. If α(S) 6= 0, then we get a contradiction. As a result α(S) = 0
and that S is compact. Hence the sequence {zn} converges to a point, say z
in [a, b]. Now, by hypothesis (c), the sequence {Tyn(z)} converges, say to the
point Ty(z) for some y ∈ [a, b]. Then, we have

‖Tyn(zn)− Ty(z)‖ ≤ ‖Tyn(zn)− Tyn(z)‖+ ‖Tyn(z)− Ty(z)‖.
Passing the limit to n →∞ in the above inequality,

lim
n→∞ ‖Tyn(zn)− Ty(z)‖ = 0.

As a result, the sequence {Qyn} ⊆ Q([a, b]) converges, whenever {yn} is a
monotone sequence in [a, b].

Hence, by Theorem 2.10, the operator Q has the least and the greatest fixed
point in [a, b]. Now the greatest fixed point of Q is the greatest solution to
the operator equation Ax Bx + Cx = x in [a, b]. Similarly, it is proved that
the operator equation Ax Bx + Cx = x has the least solution in [a, b]. This
completes the proof. ¤

Corollary 2.2. Let [a, b] be an order interval in an ordered real Banach
algebra X with the cone K and let A,B : [a, b] → K and C : [a, b] → X be
three nondecreasing operators such that

(a) A is a Lipschitz mapping with the Lipschitz constant α,
(b) B is completely continuous,
(c) C is totally bounded, and
(d) the elements a, b ∈ X satisfy a ≤ Aa Ba + Ca and AbBb + Cb ≤ b.

Further if the cone K is positive and normal, then the operator equation
AxBx + Cx = x has the least and the greatest solution in [a, b], whenever
αM < 1, where M = ‖B([a, b])‖ := sup{‖Bx‖ : x ∈ [a, b]}.
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Theorem 2.12. Let [a, b] be an order interval in an ordered real Banach
algebra X with the cone K and let A,B : [a, b] → K and C : [a, b] → X be
three nondecreasing operators such that

(a) A is completely continuous mapping,
(b) every sequence {Byn} ⊂ B([a, b]) converges, whenever {yn} is a mono-

tone sequence in [a, b],
(c) C is a nonlinear D-contraction with the D-function ψC , and
(d) AxBy + Cx ∈ [a, b] for all x, y ∈ [a, b].

Further, if the cone K is positive and normal, then the operator equation
AxBx + Cx = x has the least and the greatest solution in [a, b].

Proof. Let y ∈ [a, b] be fixed and define a mapping Ty : [a, b] → X by

Ty(x) = Ax By + Cx.

It is easy to see that the mapping Ty is continuous on [a, b]. To show Ty

is nondecreasing on [a, b], let x1, x2 ∈ [a, b] be such that x1 ≤ x2. By the
positivity of the cone K in X, we obtain

Ty(x1) = Ax1 By + Cx1 ≤ Ax2 By + Cx2 = Ty(x2).

Therefore, hypothesis (d) implies that Ty defines a nondecreasing mapping
Ty : [a, b] → [a, b].

Next, we show that the operator Ty is α-condensing on [a, b]. Let S be a set
in [a, b]. Then we have the following estimate concerning he operators A,B
and C on [a, b]. Now there are two cases :

Case I : If ‖By‖ = 0, then Ty(x) = Cx. Now proceeding with the ar-
guments as in the case I of proof of Theorem 2.3 it can be shown that the
mapping Ty is α-condensing on [a, b].

Case II : If ‖By‖ > 0, then in this case also, we will show that Ty is α-
condensing mapping on [a, b]. Since A is compact, A(S) is a relatively compact
subset of X. Hence for η > 0, there exist subsets G1, G2, . . . , Gm of X such
that

A(S) =
m⋃

j=1

Gj and diam(Gj) <
η

‖By‖ .

This further gives that

S ⊂
m⋃

j=1

A−1(Gj).

Let ε > 0 be given and suppose that

S =
n⋃

i=1

Si
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with
diam(Si) ≤ α(S) + ε

for all i = 1, 2, ..., n. We put Fij = Si
⋂

A−1(Gj), then S ⊂ ⋃
Fij .

Now
Ty(S) ⊆

⋃

i,j

Ty(Fij) =
⋃

i,j

Ty

(
Si

⋂
A−1(Gj)

)
=

⋃

i,j

Yij .

If w0, w1 ∈ Yij , for some i = 1, . . . , n and j = 1, . . . ,m, then there exist
x0, x1 ∈ Fij = Si

⋂
A−1(Gj) such that Tyx0 = w0 and Tyx1 = w1.

Since ψC is nondecreasing, one has

‖Ty(x0)− Ty(x1)‖ = ‖Ax0By −Ax1By + Cx0 − Cx1‖
≤ ‖Ax0By −Ax1By‖+ ‖Cx0 − Cx1‖
≤ ‖Ax0 −Ax1‖‖By‖+ ‖Cx0 − Cx1‖
≤ diam(Gj) ‖By‖+ ψC(‖x0 − x1‖)
< ψC(diam(Fij)) + η.

This further implies that

‖Ty(x0)− Ty(x1)‖ ≤ ψC(diam(Si)) + η < ψC(α(S) + ε) + η.

This is true for every w0, w1 ∈ Yij , and so

diam(Yij) < ψC(α(S) + ε) + η,

for all i = 1, 2, ..., n. Thus we have

α(Ty(S)) = max
i,j

diam(Yij) ≤ ψC(α(S) + ε) + η.

Since ε is arbitrary, we have

α(Ty(S)) ≤ ψC(α(S)) < α(S),

whenever α(S) > 0.
This shows that Ty is a α-condensing mapping on [a, b]. Hence by Theorem

2.9, the operator Ty has the least fixed point x∗ and the greatest fixed point
x∗ and the sequences {Tn

y (a)} and {Tn
y (b)} converge to x∗ and x∗ respectively.

Define a mapping Q : [a, b] → X by Qy = z, where z is the greatest
solution to the operator equation AzBy + Cz = z and which is obviously
unique for each y ∈ [a, b]. We show that Q is a nondecreasing mapping on
[a, b]. Let y1, y2 ∈ [a, b] be such that y1 ≤ y2. Then there are unique elements
z1, z2 ∈ [a, b] such that

Qy1 = z1 = Az1 By1 + Cz1 = Ty1(z1)

and
Qy2 = z2 = Az2 By2 + Cz2 = Ty2(z2).
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From the monotonicity of A and C, it follows that

Ty1(x) = AxBy1 + Cx ≤ AxBy2 + Cx = Ty2(x)

for all x ∈ [a, b]. Hence for any x ∈ [a, b]

Tn
y1

(x) ≤ Tn
y2

(x)

for all n ∈ N. In particular,

Tn
y1

(b) ≤ Tn
y2

(b)

for all n ∈ N. By Theorem 2.9,

z1 = lim
n→∞Tn

y1
(b) ≤ lim

n→∞Tn
y2

(b) = z2.

This shows that Q defines a nondecreasing operator Q : [a, b] → [a, b]. See
also Dhage [7] and the references therein.

Next, let {yn}be a monotone sequence in [a, b]. We will show that the
sequence {Qyn} converges. By definition of Q, there is a monotone increasing
sequence {zn} in [a, b] such that Q(yn) = zn = Tyn(zn), n ∈ N. Again, in view
of hypothesis (b), it can be shown as in the proof of Theorem 2.11 that every
sequence {Q(yn)} converges in X, whenever {yn} is a monotone sequence in
[a, b]. Hence by Theorem 2.10, the operator Q has the least and the greatest
fixed point in [a, b]. Now the greatest fixed point of Q is the greatest solution
to the operator equation AxBx + Cx = x in [a, b]. Similarly, it is proved that
the operator equation Ax Bx + Cx = x has the least solution in [a, b]. This
completes the proof. ¤

Corollary 2.3. Let [a, b] be an order interval in an ordered real Banach
algebra X with the cone K and let A,B : [a, b] → K and C : [a, b] → X be
three nondecreasing operators such that

(a) A is completely continuous,
(b) B is totally bounded,
(c) C is a contraction, and
(d) the elements a, b ∈ X satisfy a ≤ Aa Ba + Ca and AbBb + Cb ≤ b.

Further, if the cone K is positive and normal, then the operator equation
AxBx + Cx = x has the least and the greatest solution in [a, b].

In the following sections we prove the main existence results for the PBVP
(1.1) under suitable conditions.

3. Existence theory

Let B(J,R) denote the space of bounded real-valued functions on J. Let
C(J,R), denote the space of all continuous real-valued functions on J. Define
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a norm ‖ · ‖ and a multiplication “ · ” in C(J,R) by

‖x‖ = sup
t∈J

|x(t)| and (x.y)(t) = x(t)y(t) for t ∈ J.

Clearly C(J,R) becomes a Banach algebra with respect to the above norm and
multiplication. By L1(J,R) we denote the set of Lebesgue integrable functions
on J and the norm ‖ · ‖L1 in L1(J,R) is defined by

‖x‖L1 =
∫ T

0
|x(s)| ds.

The following useful lemma is obvious and may be found in Nieto [20].

Lemma 3.1. For any h ∈ L1(J,R+) and σ ∈ L1(J,R), x is a solution to the
differential equation

x′(t) + h(t)x(t) = σ(t) a. e. t ∈ J

x(0) = x(T ),

}
(3.1)

if and only if it is a solution of the integral equation

x(t) =
∫ T

0
Gh(t, s)σ(s) ds (3.2)

where,

Gh(t, s) =





eH(s)−H(t)+H(T )

eH(T ) − 1
, 0 ≤ s ≤ t ≤ T,

eH(s)−H(t)

eH(T ) − 1
, 0 ≤ t < s ≤ T,

(3.3)

where H(t) =
∫ t

0
h(s) ds.

Proof. The proof is well-known, but for sake of completeness, we give the
details of it. If h is not identically zero, then H(t) 6= 0 for all t > 0. If h is
identically zero, then H(T ) = 0. We assume that h is not identically zero on
J . Multiplying both sides of linear differential equation (3.1) by integrating
factor eH(t), we obtain

(
eH(t)x(t)

)′
= eH(t)σ(t)

x(0) = x(T ).

On integration the above equation yields

eH(t)x(t) = x(0) +
∫ t

0
eH(s)σ(s) ds. (3.4)
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Substituting t = T in the above equation (3.4), we obtain

eH(T )x(T ) = x(T ) +
∫ T

0
eH(s)σ(s) ds.

Therefore,

x(T ) =
∫ T

0

eH(s)

eH(T ) − 1
σ(s) ds.

Substituting this value in (3.4), we obtain

x(t) =
∫ T

0

eH(s)−H(t)

eH(T ) − 1
σ(s) ds +

∫ t

0
eH(s)−H(t)σ(s) ds

=
∫ t

0
eH(s)−H(t)

( 1
eH(T ) − 1

+ 1
)
σ(s) ds +

∫ T

t

(eH(s)−H(t)

eH(T ) − 1

)
σ(s) ds

=
∫ t

0

(eH(s)−H(t)+H(T )

eH(T ) − 1

)
σ(s) ds +

∫ T

t

(eH(s)−H(t)

eH(T ) − 1

)
σ(s) ds

=
∫ T

0
Gh(t, s)σ(s) ds

where Gh is a function on J × J defined by (3.3). The proof of the lemma is
complete. ¤

Notice that the Green’s function Gh is nonnegative on J×J and the number

Mh := max { |Gh(t, s)| : t, s ∈ [0, T ] }
exists for all h ∈ L1(J,R+).

We need the following definition in the sequel.

Definition 3.1. A mapping β : J × R→ R is said to be Carathéodory if
(i) t 7→ β(t, x) is measurable for each x ∈ R, and
(ii) x 7→ β(t, x) is continuous almost everywhere for t ∈ J.

Again, a Carathéodory function β(t, x) is called L1-Carathéodory if
(iii) for each real number r > 0 there exists a function qr ∈ L1(J,R) such

that
|β(t, x)| ≤ qr(t), a.e. t ∈ J

for all x ∈ R with |x| ≤ r.
Finally, a Carathéodory function β(t, x) is called L1

R-Carathéodory if
(iv) there exists a function q ∈ L1(J,R) such that

|β(t, x)| ≤ q(t), a.e. t ∈ J

for all x ∈ R.
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For convenience, the function q is referred to as a bound function of β.
We will use the following hypotheses in the sequel.
(A0) The functions t 7→ f(t, x) and t 7→ k(t, x) are periodic of period T for

all x ∈ R.

(A1) The mapping x 7→ x− k(0, x)
f(0, x)

is injective on R.

(A2) The function f : J × R → R − {0} is continuous and there exists a
function `1 ∈ B(J,R) such that

|f(t, x)− f(t, y)| ≤ `1(t) |x− y| a.e. t ∈ J

for all x, y ∈ R.
(A3) The function k : J × R→ R is continuous and there exists a function

`2 ∈ B(J,R) such that

|k(t, x)− k(t, y)| ≤ `2(t) |x− y| a.e. t ∈ J

for all x, y ∈ R.
(A4) The function g is Carathéodory.

Note that hypotheses (A2) through (A4) are much common in the literature
on the theory of nonlinear differential equations. Hypothesis (A1) is somewhat
new, but has been used in the literature for discussing the periodic solutions of
differential and integral equations. Actually the function f : J×R→ R defined
by f(t, x) = α + β|x| for some α, β ∈ R satisfies the hypotheses (A1)-(A2) if
α + β|x| 6= 0 for all x ∈ R.

Now consider the PBVP



(x(t)− k(t, x(t))
f(t, x(t))

)′
+ h(t)

(x(t)− k(t, x(t))
f(t, x(t))

)

= gh(t, x(t)) a.e. t ∈ J

x(0) = x(T )

(3.5)

where h ∈ L1(J,R+) is bounded and the function gh : J × R → R is defined
by

gh(t, x) = g(t, x) + h(t)
(x− k(t, x)

f(t, x)

)
. (3.6)

Remark 3.1. Note that the PBVP (1.1) is equivalent to the PBVP (3.5) and
a solution of the PBVP (1.1) is the solution for the PBVP (3.5) on J and vice
versa.

Remark 3.2. Assume that hypotheses (A3) and (A4) hold. Then the function
gh defined by (3.6) is Carathéodory on J × R.
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Lemma 3.2. Assume that hypothesis (A0)-(A1) holds. Then for any h ∈
L1(J,R+), x is a solution to the differential equation (3.5) if and only if it is
a solution of the integral equation

x(t) = k(t, x(t)) +
[
f(t, x(t))

]( ∫ T

0
Gh(t, s)gh(s, x(s)) ds

)
, (3.7)

where, the Green’s function Gh(t, s) is defined by (3.3).

Proof. Let y(t) =
x(t)− k(t, x(t))

f(t, x(t))
. Since f(t, x) and k(t, x) are periodic in t

with period T for all x ∈ R, we have

y(0) =
x(0)− k(0, x(0))

f(0, x(0))
=

x(T )− k(T, x(T ))
f(T, x(T ))

= y(T ).

Now an application of Lemma 3.1 yields that the solution to differential equa-
tion (3.5) is the solution to integral equation (3.7). Conversely, suppose that
x is any solution to the integral equation (3.7), then

y(0) =
x(0)− k(0, x(0))

f(0, x(0))
= y(T )

and

y(T ) =
x(T )− k(T, x(T ))

f(T, x(T ))
=

x(T )− k(0, x(T ))
f(0, x(T ))

.

Since the function x 7→ x− k(0, x)
f(0, x)

is injective on R, one has x(0) = x(T ) and

so, x is a solution to PBVP (1.1). The proof of the lemma is complete. ¤

We make use of the following hypothesis in the sequel.

(A5) There is a continuous and nondecreasing function ψ : [0,∞) → (0,∞)
and a function γ ∈ L1(J,R) such that γ(t) > 0, a.e. t ∈ J satisfying

|gh(t, x)| ≤ γ(t)ψ
(|x|), a. e. t ∈ J,

for all x ∈ R.

Theorem 3.1. Assume that the hypotheses (A0)-(A5) hold. Suppose that
there exists a real number r > 0 such that L1[Mh‖γ‖L1ψ(r) + L2 < 1 and

r >
K + FMh‖γ‖L1ψ(r)

1− [L1Mh‖γ‖L1ψ(r) + L2]
(3.8)

where, F = supt∈[0,T ] |f(t, 0)|, K = supt∈[0,T ] |k(t, 0)|, L1 = maxt∈J `1(t) and
L2 = maxt∈J `2(t). Then the PBVP (1.1) has a solution on J.
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Proof. Let X = C(J,R). Define an open ball Br(0) centered at origin 0 of
radius r, where, the real number r satisfies the inequality (3.8). Define three
mappings A,B and C on Br(0) by

Ax(t) = f(t, x(t)), t ∈ J, (3.9)

Bx(t) =
∫ T

0
Gh(t, s)gh(s, x(s)) ds, t ∈ J (3.10)

and
Cx(t) = k(t, x(t)), t ∈ J, (3.11)

Obviously A,B and C define the operators A,B, C : Br(0) → X. Then the
integral equation (3.7) is equivalent to the operator equation

Ax(t) Bx(t) + Cx(t) = x(t), t ∈ J. (3.12)

We shall show that the operators A, B and C satisfy all the hypotheses of
Theorem 2.3.

We first show that A is a Lipschitz mapping on X. Let x, y ∈ X. Then by
(A3),

|Ax(t)−Ay(t)| = |f(t, x(t))− f(t, y(t))|
≤ `1(t) |x(t)− y(t)|
≤ L1 ‖x− y‖

for all t ∈ J . Taking the supremum over t, we obtain

‖Ax−Ay‖ ≤ L1‖x− y‖
for all x, y ∈ X. So A is a Lipschitz mapping on X with the Lipschitz constant
L1. Similarly, it can be shown that C is also a Lipschitz mapping with the
Lipschitz constant L2.

Next we show that B is completely continuous on X. Using the standard
arguments as in Granas et al. [15], it is shown that B is a continuous operator
on X. We shall show that B(Br(0)) is a uniformly bounded and equicontinuous
set in X. Let x ∈ Br(0) be arbitrary. Since g is Carathéodory, we have

|Bx(t)| =
∣∣∣
∫ T

0
Gh(t, s)gh(s, x(s)) ds

∣∣∣

≤ Mh

∫ T

0

[
γ(s)ψ(|x(s)|)] ds

= Mh

∫ T

0
γ(s)ψ(|x(s)|) ds

≤ Mh‖γ‖L1ψ(r).
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Taking the supremum over t, we obtain ‖Bx‖ ≤ M for all x ∈ Br(0), where
M = Mh‖γ‖L1ψ(r) This shows that B(Br(0)) is a uniformly bounded set in X.

Next we show that B(Br(0)) is an equicontinuous set. To finish, it is enough
to show that y′ = (Bx)′ is bounded on [0, T ]. Now for any t ∈ [0, T ], one has

|y′(t)| =
∣∣∣
∫ T

0

∂

∂t
Gh(t, s)gh(s, x(s)) ds

∣∣∣

=
∣∣∣
∫ T

0
(−h(s))Gh(t, s)gh(s, x(s)) ds

∣∣∣
≤ H Mh‖γ‖L1ψ(r)
= c,

where H = maxt∈J h(t). Hence for any t, τ ∈ [0, T ] one has

|Bx(t)−Bx(τ)| ≤ c |t− τ | → 0 as t → τ.

This shows that B(Br(0)) is an equi-continuous set in X. Now the set B(Br(0))
is uniformly bounded and equi-continuous, so it is relatively compact by
Arzelà-Ascoli theorem. As a result B is a compact and continuous opera-
tor on Br(0). Thus all the conditions of Theorem 2.3 are satisfied and a direct
application of it yields that either the conclusion (i) or the conclusion (ii)
holds. We show that the conclusion (ii) is not possible. Let u ∈ X be a solu-
tion to x = λ(AxBx + Cx) such that ‖u‖ = r. Then for any λ ∈ (0, 1), we
have

u(t) = λ k(t, u(t)) + λ
[
f(t, u(t))

](∫ T

0
Gh(t, s)gh(s, u(s)) ds

)

for t ∈ J . Therefore,

|u(t)| ≤ λ |k(t, u(t)|+ λ |f(t, u(t)|
(∣∣∣∣

∫ T

0
Gh(t, s)gh(s, u(s)) ds

∣∣∣∣
)

≤ λ
(∣∣k(t, u(t))− k(t, 0)

∣∣ +
∣∣k(t, 0)

∣∣
)

+ λ
[
f(t, u(t))

] (∫ T

0
Gh(t, s)|gh(s, u(s))| ds

)

≤ [`2(t) |u(t)|+ K] + [`1(t) |u(t)|+ F ]
(∫ T

0
Mh|gh(s, u(s))| ds

)

≤ L2|u(t)|+ K + L1Mh |u(t)|
(∫ T

0
γ(s)ψ(|u(s)|) ds

)

+ FMh

(∫ T

0
γ(s)ψ(|u(s|) ds

)
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≤
[
L1Mh‖γ‖L1ψ(‖u‖) + L2

]
|u(t)|+ K + FMh‖γ‖L1ψ(‖u‖). (3.13)

Taking the supremum over t in the above inequality (3.13) yields

‖u‖ ≤ K + FMh‖γ‖L1ψ(‖u‖)
1− [

L1Mh‖γ‖L1ψ(‖u‖) + L2

] .

Substituting ‖u‖ = r in above inequality yields

r ≤ K + FMh‖γ‖L1ψ(r)
1− [

L1Mh‖γ‖L1ψ(r) + L2

] .

This is a contradiction to (3.8). Hence the conclusion (ii) of Corollary 2.1 does
not hold. Therefore the operator equation AxBx + Cx = x and consequently
the PBVP (1.1) has a solution on J . This completes the proof. ¤

Remark 3.3. We note that in Theorem 3, we only require the hypothesis
(A1) to hold in [−r, r].

4. Existence of extremal solutions

We equip the space C(J,R) with the order relation ≤ with the help of the
cone defined by

K = {x ∈ C(J,R) : x(t) ≥ 0, ∀ t ∈ J}. (4.1)

It is well known that the cone K is positive and normal in C(J,R). We need
the following definitions in the sequel.

Definition 4.1. A function a ∈ AC(J,R) is called a lower solution of the

PBVP (1.1) on J if the function t 7→
(a(t)− k(t, a(t))

f(t, a(t))

)
is absolutely contin-

uous on J , and

d

dt

[a(t)− k(t, a(t))
f(t, a(t))

]
≤ g(t, a(t)) a.e. t ∈ J

a(0) ≤ a(T ).





Again, a function b ∈ AC(J,R) is called an upper solution of the PBVP (1.1)

on J if the function t 7→
(b(t)− k(t, b(t))

f(t, b(t))

)
is absolutely continuous on J , and

d

dt

[b(t)− k(t, b(t))
f(t, b(t))

]
≥ g(t, b(t)) a.e. t ∈ J

b(0) ≥ b(T ).




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Definition 4.2. A solution xM of the PBVP (1.1) is said to be maximal if
for any other solution x to PBVP (1.1) one has x(t) ≤ xM (t) for all t ∈ J.
Similarly, a solution xm of the PBVP (1.1) is said to be minimal if xm(t) ≤ x(t)
for all t ∈ J, where x is any solution of the PBVP (1.1) on J.

Remark 4.1. The upper and lower solutions of the PBVP (1.1) are respec-
tively the upper and lower solutions of the PBVP (3.5) and vice-versa. Simi-
larly, the maximal and minimal solutions of the PBVP (1.1) are respectively
the maximal and minimal solutions of the PBVP (3.5) and vice-versa.

4.1. Carathéodory case. We need the following definition in the sequel.

Definition 4.3. A function β : R→ R is called nondecreasing if f(x) ≤ f(y)
for all x, y ∈ R with x ≤ y. Similarly, β(x) is called increasing in x if f(x) <
f(y) for all x, y ∈ R with x < y.

We consider the following set of assumptions:
(B0) f : J × R→ R+ − {0}, gh : J × R→ R+.

(B1) The mapping x 7→ x− k(0, x)
f(0, x)

is increasing in the real interval
[
min
t∈J

a(t),

max
t∈J

b(t)
]
.

(B2) The functions f(t, x), k(t, x) and gh(t, x) are nondecreasing in x almost
everywhere for t ∈ J.

(B3) The PBVP (1.1) has a lower solution a and an upper solution b on J
with a ≤ b.

(B4) The function q : J → R defined by

q(t) = gh(t, b(t)),

is Lebesgue integrable.

We remark that hypothesis (B3) holds in particular if f is continuous and g is
L1-Carathéodory on J × R.

Remark 4.2. Assume that hypotheses (B0)-(B4) hold. Then the function
t 7→ gh(t, x(t)) is Lebesgue integrable on J and

|gh(t, x(t))| = gh(t, x(t)) ≤ q(t) a.e. t ∈ J,

for all x ∈ [a, b].

Remark 4.3. If the hypothesis (B0) and (B1) holds, then the map x 7→
x− k(0, x)

f(0, x)
is injective and

a(0)− k(0, a(0)
f(0, a(0))

≤ a(T )− k(T, a(T ))
f(T, a(T ))
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and
b(0)− k(0, b(0))

f(0, b(0))
≥ b(T )− k(T, b(T ))

f(T, b(T ))
.

Theorem 4.1. Suppose that the assumptions (A0)–(A4) and (B0)-(B4 ) hold.
Further if L1Mh‖h‖L1+L2 < 1, where q is given in Remark 4, L1 = maxt∈J `1(t)
and L2 = maxt∈J `2(t), then PBVP (1.1) has a minimal and a maximal solu-
tion on J.

Proof. Now PBVP (1.1) is equivalent to integral equation (3.7) on J. Let X =
C(J,R). Define three operators A,B and C on X by (3.9), (3.10) and (3.11)
respectively. Then integral equation (3.7) is transformed into an operator
equation Ax(t)Bx(t) + Cx(t) = x(t) in a Banach algebra X. Notice that (B0)
implies A,B : [a, b] → K and C : [a, b] → X. Note that condition (B1) provides
a ≤ AaBa + Ca and AbBb + Cb ≤ b. Since the cone K in X is normal, [a, b]
is a norm-bounded set in X. Now it is shown, as in the proof of Theorem 3,
that A and C are Lipschitz mappings with the Lipschitz constants L1 and
L2 respectively. Also B is completely continuous operator on [a, b]. Again the
hypothesis (B2) implies that A,B and C are nondecreasing on [a, b]. To see
this, let x, y ∈ [a, b] be such that x ≤ y. Then by (B2),

Ax(t) = f(t, x(t)) ≤ f(t, y(t)) = Ay(t)

for all t ∈ J. Again, we have

Bx(t) =
∫ T

0
Gh(t, s)gh(s, x(s)) ds

≤
∫ T

0
Gh(t, s)gh(s, x(s)) ds

= By(t)

for all t ∈ J . Similarly,

Cx(t) = k(t, x(t)) ≤ k(t, y(t)) = Cy(t)

So A,B and C are nondecreasing operators, A and B on [a, b] and C on X.
Again, Lemma 3.1 and hypotheses (B1)-(B2) together imply that

a(t) ≤ k(t, a(t)) + [f(t, a(t))]
(∫ T

0
Gh(t, s)gh(s, a(s))) ds

)

≤ k(t, x(t)) + [f(t, x(t))]
(∫ T

0
Gh(t, s)gh(s, x(s)) ds

)

≤ k(t, b(t)) + [f(t, b(t))]
(∫ T

0
Gh(t, s)gh(s, b(s))) ds

)

≤ b(t),
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for all t ∈ J and x ∈ [a, b]. As a result a(t) ≤ Ax(t)Bx(t) + Cx(t) ≤ b(t) for
all t ∈ J and x ∈ [a, b]. Hence, AxBx + Cx ∈ [a, b] for all x ∈ [a, b]. Again,

M = ‖B([a, b])‖
= sup{‖Bx‖ : x ∈ [a, b]}

≤ sup
{

sup
t∈J

∫ T

0
Gh(t, s)|gh(s, x(s))| ds

∣∣ x ∈ [a, b]
}

≤ Mh

∫ T

0
q(s) ds

= Mh‖q‖L1 .

Since L1Mh‖q‖L1 + L2 < 1, we apply Theorem 2.4 to the operator equation
AxBx + Cx = x to yield that the PBVP (1.1) has a minimal and a maximal
solution in [a, b] defined on J. This completes the proof. ¤

4.2. Discontinuous case. We need the following definition in the sequel.

Definition 4.4. A mapping β : J × R→ R is said to be Chandrabhan if
(i) t 7→ β(t, x(t)) is measurable for each x ∈ C(J,R), and
(ii) x 7→ β(t, x) is nondecreasing almost everywhere for t ∈ J.

Again, a Chandrabhan function β(t, x) is called L1-Chandrabhan if
(iii) for each real number r > 0 there exists a function hr ∈ L1(J,R) such

that
|β(t, x)| ≤ qr(t), a.e. t ∈ J

for all x ∈ R with |x| ≤ r.
Finally, a Chandrabhan mapping β is called L1

R-Chandrabhan if
(iv) there exists a function q ∈ L1(J,R) such that

|β(t, x)| ≤ q(t), a.e. t ∈ I

for all x ∈ R.
For convenience, the function q is referred to as a bound function of β.

We consider the following hypotheses in the sequel.
(C1) The function f : J × R→ R− {0} is continuous.
(C2) The function k : J × R→ R is continuous.
(C3) The function f(t, x) and k(t, x) are nondecreasing in x almost every-

where for t ∈ J.
(C4) The function gh defined by (3.6) is Chandrabhan.

Theorem 4.2. Suppose that the assumptions (A0), (B0)-(B1), (B3)-(B4) and
(C1)-(C4) hold. Then PBVP (1.1) has a minimal and a maximal solution on
J.



348 B. C. Dhage

Proof. Now PBVP (1.1) is equivalent to integral equation (3.7) on J. Let
X = C(J,R). Define two operators A and B on X by (3.9), (3.10) and (3.11)
respectively. Then integral equation (3.7) is transformed into an operator
equation Ax(t) Bx(t) + Cx(t) = x(t) in a Banach algebra X. Notice that (B0)
implies A,B : [a, b] → K. Note that condition (B1) provides a ≤ AaBa + Ca
and AbBb+Cb ≤ b. Since the cone K in X is normal, [a, b] is a norm bounded
set in X.

Step I : First we show that A is completely continuous on [a, b]. Now
the cone K in X is normal, so the order interval [a, b] is norm-bounded in X.
Hence there exists a constant r > 0 such that ‖x‖ ≤ r for all x ∈ [a, b]. As f is
continuous on compact J × [−r, r], it attains its maximum, say M . Therefore,
for any subset S of [a, b] we have

‖A(S)‖P = sup{‖Ax‖ : x ∈ S}
= sup

{
sup
t∈J

|f(t, x(t))| : x ∈ S
}

≤ sup
{

sup
t∈J

|f(t, x)| : x ∈ [−r, r]
}

≤ M.

This shows that A(S) is a uniformly bounded subset of X.
Next we note that the function f(t, x) is uniformly continuous on [0, T ] ×

[−r, r]. Therefore for any t, τ ∈ [0, T ], we have

|f(t, x)− f(τ, x)| → 0 as t → τ

for all x ∈ [−r, r]. Similarly, for any x, y ∈ [−r, r]

|f(t, x)− f(t, y)| → 0 as x → y

for all t ∈ [0, T ]. Hence for any t, τ ∈ [0, T ] and for any x ∈ S one has

|Ax(t)−Ax(τ)| = |f(t, x(t))− f(τ, x(τ))|
≤ |f(t, x(t))− f(τ, x(t)|+ |f(τ, x(t))− f(τ, x(τ))|
→ 0 as t → τ.

This shows that A(S) is an equi-continuous set in X. Now an application of
Arzelà-Ascoli theorem yields that A is a completely continuous operator on
[a, b].

Step II : Next we show that B is a totally bounded operator on [a, b]. To
finish, we shall show that B(S) is uniformly bounded and equi-continuous set
in X for any subset S of [a, b]. Since the cone K in X is normal, the order
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interval [a, b] is norm-bounded. Let y ∈ B(S) be arbitrary. Then,

y(t) =
∫ T

0
Gh(t, s)gh(s, x(s)) ds

for some x ∈ S. By hypothesis (B2) one has

|y(t)| =
∫ T

0
Gh(t, s)|gh(s, x(s))| ds

≤ Mh

∫ T

0
q(s) ds

≤ Mh‖h‖L1 .

Taking the supremum over t,

‖y‖ ≤ Mh‖q‖L1 ,

which shows that B(S) is a uniformly bounded set in X. Similarly, let t, τ ∈ J .
To finish, it is enough to show that y′ is bounded on [0, T ]. Now for any
t ∈ [0, T ],

|y′(t)| ≤
∣∣∣
∫ T

0

∂

∂t
Gh(t, s)|gh(s, x(s))| ds

∣∣∣

=
∣∣∣
∫ T

0
(−h(s))Gh(t, s)|gh(s, x(s))| ds

∣∣∣
≤ K Mh‖q‖L1

= c.

where H = maxt∈J |h(t)|. Hence for any t, τ ∈ [0, T ], one has

|y(t)− y(τ)| ≤ c |t− τ | → 0 as t → τ.

This shows that B(S) is an equi-continuous set of functions in [a, b] for all
S ⊂ [a, b]. Now B(S) is a uniformly bounded and equi-continuous, so it is
totally bounded by Arzelà-Ascoli theorem. It can be shown as in the case
of operator A that the operator C is also totally bounded. Thus all the
conditions of Theorem 2.5 are satisfied and hence an application of it yields
that the PBVP (1.1) has a maximal and a minimal solution in [a, b] defined
on J . ¤

Theorem 4.3. Suppose that the assumptions (A0), (B0)-(B3) and (C3)-(C4)
hold. Further if

L1Mh‖q‖L1 + L2 < 1,

where q is given in (B4), L1 = maxt∈J `1(t) and L2 = maxt∈J `2(t), then the
PBVP (1.1) has a minimal and a maximal solution in [a, b] defined on J .
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Proof. Now PBVP (1.1) is equivalent to integral equation (3.7) on J. Let X =
C(J,R). Define three operators A,B and C on X by (3.9), (3.10) and (3.11)
respectively. Then the integral equation (3.7) is transformed into an operator
equation Ax(t) Bx(t)+Cx(t) = x(t) in the Banach algebra X. Notice that (B0)
implies A,B : [a, b] → K. Note that condition (B1) provides a ≤ AaBa + Ca
and AbBb+Cb ≤ b. Since the cone K in X is normal, [a, b] is a norm bounded
set in X. Now it can be shown as in the proofs of Theorem 3 and Theorem
4.1 that the operators A and C are Lipschitz with the Lipschitz constants
α = L1 and β = L2 respectively. Again, B is a totally bounded operator with
M = ‖B([a, b])‖ = Mh‖q‖L1 . Since αM + β = L1 Mh‖q‖L1 + L2 < 1, the
desired conclusion follows by an application of Theorem 2.4. ¤
Theorem 4.4. Suppose that the assumptions (A1), (A2), (B0),(B2)-(B3) and
(C2)-(C4) hold. Further, if L1Mh‖q‖L1 < 1, where q is given in (B4) and L1 =
maxt∈J `1(t), then the PBVP (1.1) has a minimal and a maximal solution in
[a, b] defined on J.

Proof. Now PBVP (1.1) is equivalent to the integral equation (3.7) on J. Let
X = C(J,R). Define three operators A,B and C on X by (3.9), (3.10) and
(3.11) respectively. Then the integral equation (3.7) is transformed into an
operator equation Ax(t)Bx(t)+Cx(t) = x(t) in the Banach algebra X. Notice
that (B0) implies A,B : [a, b] → K. Since the cone K in X is normal, [a, b] is
a norm bounded set in X. Now it can be shown as in the proof of Theorem 3
that the operator A is Lipschitz mapping with the Lipschitz constant α = L1

and B is a completely continuous operator on [a, b] with M = ‖B([a, b])‖ =
Mh‖q‖L1 . Again, following the arguments similar to Step I in the proof of
Theorem 4.2, it is shown that C is a totally bounded operator on [a, b]. Since
αM = L1 Mh‖q‖L1 < 1, the desired conclusion follows by an application of
Theorem 2.11. ¤
Theorem 4.5. Suppose that the assumptions (A0), (A3), (B0)-(B1), (B3) and
(C1), (C3)-(C4) hold. Then the PBVP (1.1) has a minimal and a maximal
solution in [a, b] defined on J.

Proof. The proof is similar to Theorem 4.2 and now the desired conclusion
follows by an application of Theorem 2.12. ¤

5. An example

Given the closed and bounded interval J = [0, 1] in R, consider the nonlinear
PBVP




d

dt

[
x(t)− k(t, x(t))

f(t, x(t))

]
=
|x(t)|
32

− x(t)− 1
32 sinx(t)

1 + |x(t)| , a.e. t ∈ J

x(0) = x(1),

(5.1)
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where the functions f : J × R→ R− {0}, k : J × R→ R are defined by

f(t, x) = 1 + |x|, and k(t, x) =
1
32

sinx.

Obviously f : J × R → R+ − {0} is continuous and the functions t 7→ f(t, x)
and t 7→ k(t, x) are periodic of period T = 1 for all x ∈ R. Define a function
g : J × R→ R by

g(t, x) =
|x|
32
− x− 1

32 sinx

1 + |x| .

Now consider the PBVP




(
x(t)− 1

32 sinx(t)
1 + |x(t)|

)′
+

x(t)− 1
32 sinx(t)

1 + |x(t)| =
|x(t)|
32

, a. e. t ∈ J

x(0) = x(1).

(5.2)

It is easy to verify that f is continuous and Lipschitz on J×R with a Lipschitz
function `1(t) = 1 for all t ∈ J . Here h(t) = 1, and so Mh =

e

e− 1
. Also, here

we have F = sup
t∈J

|f(t, 0)| = 1. Now the real number r = 4 satisfies condition

(3.8) of Theorem 3 with γ(t) = 1
32 for all t ∈ J and ψ(r) = r for all r ∈ R+.

Note that, in this case, K = sup
t∈[0,T ]

|k(t, 0)| = 0, h is bounded and besides,

x 7→ x− k(0, x)
f(0, x)

=
x− 1

32 sinx

1 + |x|
is (strictly) increasing in the interval [−4, 4]. Therefore, an application of
Theorem 3 yields that the PBVP (5.1) has a solution u on J with ‖u‖ ≤ 4.
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