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Abstract. Let Pn be the class of polynomials P (z) of degree n and Bn a family of operators
that map Pn into itself. For B ∈ Bn, we investigate the dependence of∣∣∣∣B[P (Rz)]− αB[P (rz)] + β

{(
R+ 1

r + 1

)n

− |α|
}
B[P (rz)]

∣∣∣∣
on the minimum and the maximum modulus of P (z) on |z| = 1 for arbitrary real or complex

numbers α, β with |α| ≤ 1, |β| ≤ 1 and R > r ≥ 1 with or without restriction on the zeros of

the polynomial P (z) and present some new inequalities for B-operators yielding certain sharp

compact generalizations of some well-known Bernstein-type inequalities for polynomials.

1. Introduction

Let Pn(z) denote the space of all complex polynomials P (z) =
∑n

j=0 ajz
j

of degree n. If P ∈ Pn, then

Max
|z|=1

∣∣P ′(z)∣∣ ≤ nMax
|z|=1

|P (z)| (1.1)

and

Max
|z|=R>1

|P (z)| ≤ RnMax
|z|=1

|P (z)| . (1.2)
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Inequality (1.1) is an immediate consequence of S. Bernstein’s theorem (see
[5], [8], [11]) on the derivative of a trigonometric polynomial. Inequality (1.2)
is a simple deduction from the maximum modulus principle (see [9] or [12]).
For the class of polynomials P ∈ Pn, having all their zeros in |z| ≤ 1, we have

Min
|z|=1

∣∣P ′(z)∣∣ ≥ nMin
|z|=1

|P (z)| (1.3)

and

Min
|z|=R>1

|P (z)| ≥ RnMin
|z|=1

|P (z)| . (1.4)

Inequalities (1.3) and (1.4) are due to A.Aziz and Q.M.Dawood [2]. Both the
results are sharp and equality in (1.3) and (1.4) holds for P (z) = λzn, λ 6= 0.

For the class of polynomials P ∈ Pn having no zero in |z| < 1, then (1.1)
and (1.2) can be replaced by

Max
|z|=1

∣∣P ′(z)∣∣ ≤ n

2
Max
|z|=1

|P (z)| (1.5)

and

Max
|z|=R>1

|P (z)| ≤ Rn + 1

2
Max
|z|=1

|P (z)| . (1.6)

Equality in (1.5) and (1.6) holds for P (z) = λzn + µ, |λ| = |µ| = 1. Inequality
(1.5) was conjectured by Erdös and later verified by Lax [6]. Ankeny and
Rivlin [1] used inequality (1.5) to prove inequality (1.6).

A.Aziz and Q.M.Dawood [2] improved inequalities (1.5) and (1.6) and showed
that if P (z) 6= 0 in |z| < 1, then

Max
|z|=1

∣∣P ′(z)∣∣ ≤ n

2

{
Max
|z|=1

|P (z)| −Min
|z|=1

|P (z)|
}

(1.7)

and

Max
|z|=R>1

|P (z)| ≤ Rn + 1

2
Max
|z|=1

|P (z)| − Rn − 1

2
Min
|z|=1

|P (z)| . (1.8)

As a compact generalization of inequalities (1.5) and (1.6), Aziz and Rather
[3] have shown that, if P ∈ Pn and P (z) 6= 0 for |z| < 1, then for every real or
complex number α with |α| ≤ 1, R > 1 and |z| ≥ 1,

|P (Rz)− αP (z)| ≤ {|R
n − α| |z|n + |1− α|}

2
Max
|z|=1

|P (z)| . (1.9)

The result is sharp and equality in (1.9) holds for P (z) = azn+b, |a| = |b| = 1.
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Rahman [10] (see also Rahman and Schemissier [11]) introduced a class Bn
of operators B that carries a polynomial P ∈ Pn into

B[P ](z) = λ0P (z) + λ1

(nz
2

) P ′(z)
1!

+ λ2

(nz
2

)2 P ′′(z)
2!

, (1.10)

where λ0, λ1 and λ2 are such that all the zeros of

u(z) = λ0 + C(n, 1)λ1z + C(n, 2)λ2z
2 (1.11)

lie in the half plane
|z| ≤ |z − n/2| . (1.12)

As a generalization of inequalities (1.1) and (1.2), Q.I.Rahman [10] proved
that if P ∈ Pn, then

|P (z)| ≤ |z|nMax
|z|=1

|P (z)| for |z| = 1

implies
|B[P ](z)| ≤ |B[zn]|Max

|z|=1
|P (z)| for |z| ≥ 1, (1.13)

where B ∈ Bn (see [10], inequality (5.1)) and if P (z) 6= 0 for |z| < 1, then

|B[P ](z)| ≤ 1

2
{|B[zn]|+ |λ0|}Max

|z|=1
|P (z)| for |z| ≥ 1. (1.14)

where B ∈ Bn (see [10], inequality (5.2) and (5.3) or [11]).
In this paper we consider a problem of investigating the dependence of

|B[P (Rz)] + φ (R, r, α, β)B[P (rz)]|
where

φ (R, r, α, β) = β

{(
R+ 1

r + 1

)n
− |α|

}
− α, (1.15)

on the minimum and the maximum modulus of P (z) on |z| = 1 for arbitrary
real or complex numbers α, β with |α| ≤ 1,|β| ≤ 1 and R > r ≥ 1, and
obtain certain compact generalizations and refinements of some well known
polynomial inequalities.

2. Lemmas

For the proofs of main results, we need the following lemmas. First Lemma
is due to Aziz and Rather [4].

Lemma 2.1. If P ∈ Pn and P (z) has all its zeros in |z| ≤ 1, then for every
R ≥ r ≥ 1 and |z| = 1,

|P (Rz)| ≥
(
R+ 1

r + 1

)n
|P (rz)| .
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The following Lemma follows from corollary 18.3 on page 65 of [7].

Lemma 2.2. If P ∈ Pn and P (z) has all its zeros in |z| ≤ 1, then all the
zeros of B[P ](z) also lie in |z| ≤ 1.

Lemma 2.3. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for arbitrary
real or complex numbers α and β with |α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and |z| = 1,

|B[P (Rz)] + φ (R, r, α, β)B[P (rz)]|
≤ |B[Q(Rz)] + φ (R, r, α, β)B[Q(rz)]|

(2.1)

where Q(z) = znP (1/z) and φ (R, r, α, β) is defined by (1.15). The result is
sharp and equality in (2.1) holds for P (z) = zn + 1.

Proof. Since the nth degree polynomial P (z) does not vanish in |z| < 1, all the

zeros of the polynomial Q(z) = znP (1/z) of degree n lie in |z| ≤ 1. Applying
Theorem 1.1 with F (z) replaced by Q(z), it follows that

|B[P (Rz)] + φ (R, r, α, β)B[P (rz)]| ≤ |B[Q(Rz)] + φ (R, r, α, β)B[Q(rz)]|
for |z| ≥ 1, |α| ≤ 1, |β| ≤ 1 and R > r ≥ 1. This proves the Lemma 2.3. �

Lemma 2.4. If P ∈ Pn, then for arbitrary real or complex numbers α and β
with |α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

|B[P (Rz)] + φ (R, r, α, β)B[P (rz)]|
+ |B[Q(Rz)] + φ (R, r, α, β)B[Q(rz)]|

≤ {|Rn + φ (R, r, α, β) rn| |B[zn]|
+ |1 + φ (R, r, α, β)| |λ0|}Max|z|=1 |P (z)|

(2.2)

where Q(z) = znP (1/z) and φ (R, r, α, β) is defined by (1.15). The result is
sharp and equality in (2.2) holds for P (z) = λzn, λ 6= 0.

Proof. Let M = Max|z|=1|P (z)|, then |P (z)| ≤M for |z| = 1. If µ is any real
or complex number with |µ| > 1, then by Rouche’s Theorem, the polynomial

f(z) = P (z) − µM does not vanish in |z| < 1. If f∗(z) = znf(1/z), then all
the zeros of f∗(z) lie in |z| ≤ 1. Applying Lemma 2.3 with P (z) replaced by
f(z) and F (z) by f∗(z), it follows that for all real or complex numbers α, β
with |α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

|B[f(Rz)] + φ (R, r, α, β)B[f(rz)]|
≤ |B[f∗(Rz)] + φ (R, r, α, β)B[f∗(rz)]| .

(2.3)

Since Q(z) = znP (1/z), we have

f∗(z) = znf(1/z) = znP (1/z)− µMzn = Q(z)− µMzn.
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Using the fact that B is a linear operator and B[1] = λ0, we obtain from (2.3),

|(B[P (Rz)] + φ (R, r, α, β)B[P (rz)])− µ (1 + φ (R, r, α, β))λ0M |
≤ |(B[Q(Rz)] + φ (R, r, α, β)B[Q(rz)])− µ (Rn + φ (R, r, α, β) rn)B[zn]M |

for all real or complex numbers α and β with |α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and
|z| ≥ 1. Now choosing the argument of µ such that

|(B[Q(Rz)] + φ (R, r, α, β)B[Q(rz)])− µ (Rn + φ (R, r, α, β) rn)B[zn]M |
= |µ| |Rn + φ (R, r, α, β) rn| |B[zn]|M − |B[Q(Rz)] + φ (R, r, α, β)B[Q(rz)]| ,

we get

|B[P (Rz)] + φ (R, r, α, β)B[P (rz)]| − |µ| |1 + φ (R, r, α, β)| |λ0|M
≤ |(B[Q(Rz)] + φ (R, r, α, β)B[Q(rz)])− µ (Rn + φ (R, r, α, β) rn)B[zn]M |
= |µ| |Rn + φ (R, r, α, β) rn| |B[zn]|M − |B[Q(Rz)] + φ (R, r, α, β)B[Q(rz)]|

for |α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and |z| ≥ 1. This implies

|B[P (Rz)] + φ (R, r, α, β)B[P (rz)]|+ |B[Q(Rz)] + φ (R, r, α, β)B[Q(rz)]|
≤ |µ| {|Rn + φ (R, r, α, β) rn| |B[zn]|+ |λ0| |1 + φ (R, r, α, β)|}M,

for |α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and |z| ≥ 1. Letting |µ| → 1, we obtain

|B[P (Rz)] + φ (R, r, α, β)B[P (rz)]|+ |B[Q(Rz)] + φ (R, r, α, β)B[Q(rz)]|
≤ {|Rn + φ (R, r, α, β) rn| |B[zn]|+ |λ0| |1 + φ (R, r, α, β)|}M.

This proves Lemma 2.4. �

3. Main results

Theorem 3.1. If F ∈ Pn has all its zeros in |z| ≤ 1 and P (z) is a polynomial
of degree at most n such that

|P (z)| ≤ |F (z)| for |z| = 1,

then for all real or complex numbers α, β with |α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and
|z| ≥ 1,

|B[P (Rz)] + φ (R, r, α, β)B[P (rz)]|
≤ |B[F (Rz)] + φ (R, r, α, β)B[F (rz)]|

(3.1)

where B ∈ Bn and φ (R, r, α, β) is defined by (1.15).

Proof. By hypothesis, the polynomial F (z) of degree n has all its zeros in
|z| ≤ 1 and P (z) is a polynomial of degree at most n such that

|P (z)| ≤ |F (z)| for |z| = 1, (3.2)

therefore, if F (z) has a zero of multiplicity s at z = eiθ0 , then P (z) has a zero
of multiplicity at least s at z = eiθ0 . If P (z)/F (z) is a constant, then the



290 N. A. Rather, K. Boubaker and M. A. Shah

inequality (3.1) is obvious. We now assume that P (z)/F (z) is not a constant
so that by the maximum modulus principle, it follows that

|P (z)| < |F (z)| for |z| > 1 .

Suppose F (z) has m zeros on |z| = 1 where 0 ≤ m ≤ n so that we can write

F (z) = F1(z)F2(z)

where F1(z) is a polynomial of degree m whose all zeros lie on |z| = 1 and
F2(z) is a polynomial of degree exactly n −m having all its zeros in |z| < 1.
This implies with the help of inequality (3.2) that

P (z) = P1(z)F1(z)

where P1(z) is a polynomial of degree at most n −m. Now, from inequality
(3.2), we get

|P1(z)| ≤ |F2(z)| for |z| = 1

where F2(z) 6= 0 for |z| = 1. Therefore for every real or complex number λ
with |λ| > 1, a direct application of Rouche’s theorem shows that the zeros of
the polynomial P1(z) − λF2(z) of degree n −m ≥ 1 lie in |z| < 1. Hence the
polynomial

f(z) = F1(z) (P1(z)− λF2(z)) = P (z)− λF (z)

has all its zeros in |z| ≤ 1 with at least one zero in |z| < 1, so that we can
write

f(z) = (z − teiδ)H(z)

where t < 1 and H(z) is a polynomial of degree n − 1 having all its zeros in
|z| ≤ 1. Applying Lemma 2.1 to the polynomial f(z), we obtain for every
R > r ≥ 1 and 0 ≤ θ < 2π,

|f(Reiθ)| = |Reiθ − teiδ||H(Reiθ)|

≥ |Reiθ − teiδ|
(
R+ 1

r + 1

)n−1
|H(reiθ)|

=

(
R+ 1

r + 1

)n−1 |Reiθ − teiδ|
|reiθ − teiδ|

|(reiθ − teiδ)H(reiθ)|

≥
(
R+ 1

r + 1

)n−1(R+ t

r + t

)
|f(reiθ)|.

This implies for R > r ≥ 1 and 0 ≤ θ < 2π,(
r + t

R+ t

)
|f(Reiθ)| ≥

(
R+ 1

r + 1

)n−1
|f(reiθ)|. (3.3)
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Since R > r ≥ 1 > t so that f(Reiθ) 6= 0 for 0 ≤ θ < 2π and 1+r
1+R > r+t

R+t , from

inequality (3.3), we obtain

|f(Reiθ| >
(
R+ 1

r + 1

)n
|f(reiθ)| R > r ≥ 1 and 0 ≤ θ < 2π. (3.4)

Equivalently,

|f(Rz)| >
(
R+ 1

r + 1

)n
|f(rz)|

for |z| = 1 and R > r ≥ 1. Hence for every real or complex number α with
|α| ≤ 1 and R > r ≥ 1, we have

|f(Rz)− αf(rz)| ≥ |f(Rz)| − |α||f(rz)|

>

{(
R+ 1

r + 1

)n
− |α|

}
|f(rz)|, |z| = 1.

(3.5)

Also, inequality (3.4) can be written in the form

|f(reiθ)| <
(
r + 1

R+ 1

)n
|f(Reiθ)| (3.6)

for every R > r ≥ 1 and 0 ≤ θ < 2π. Since f(Reiθ) 6= 0 and
(
r+1
R+1

)n
< 1,

from inequality (3.6), we obtain for 0 ≤ θ < 2π and R > r ≥ 1,

|f(reiθ| < |f(Reiθ).

Equivalently,

|f(rz)| < |f(Rz)| for |z| = 1.

Since all the zeros of f(Rz) lie in |z| ≤ (1/R) < 1, a direct application of
Rouche’s theorem shows that the polynomial f(Rz)− αf(rz) has all its zeros
in |z| < 1 for every real or complex number α with |α| ≤ 1. Applying Rouche’s
theorem again, it follows from (3.5) that for arbitrary real or complex numbers
α, β with |α| ≤ 1, |β| ≤ 1 and R > r ≥ 1, all the zeros of the polynomial

T (z) = f(Rz)− αf(rz) + β

{(
R+ 1

r + 1

)n
− |α|

}
f(rz)

=

[
P (Rz)− αP (rz) + β

{(
R+ 1

r + 1

)n
− |α|

}
P (rz)

]
− λ

[
F (Rz)− αF (rz) + β

{(
R+ 1

r + 1

)n
− |α|

}
F (rz)

]
= [P (Rz) + φ(R, r, α, β)P (rz)]

− λ [F (Rz) + φ(R, r, α, β)F (rz)]
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lie in |z| < 1 where |λ| > 1. Using Lemma 2.2 and the fact that the operator
B is linear, we conclude that all the zeros of polynomial

W (z) = B[T (z)]

= (B[P (Rz)] + φ(R, r, α, β)B[P (rz)])

− λ(B[F (Rz)] + φ(R, r, α, β)B[F (rz)])

also lie in |z| < 1 for every λ with |λ| > 1. This implies

|B[P (Rz)]+φ(R, r, α, β)B[P (rz)]| ≤ |B[F (Rz)]+φ(R, r, α, β)B[F (rz)]| (3.7)

for |z| ≥ 1 and R > r ≥ 1. If inequality (3.7) is not true, then exist a point
z = z0 with |z0| ≥ 1 such that

|B[P (Rz)] + φ(R, r, α, β)B[P (rz)]|z=z0
> |B[F (Rz)] + φ(R, r, α, β)B[F (rz)]|z=z0 .

But all the zeros of F (Rz) lie in |z| < 1, therefore, it follows (as in case of
f(z)) that all the zeros of F (Rz) + φ(R, r, α, β)F (rz) lie in |z| < 1. Hence by
Lemma 2.2, all the zeros of B[F (Rz)]+φ(R, r, α, β)B[F (rz)] also lie in |z| < 1,
which shows that

{B[F (Rz)] + φ(R, r, α, β)B[F (rz)]}z=z0 6= 0

with |z0| ≥ 1. We take

λ =
[B[P (Rz)] + φ(R, r, α, β)B[P (rz)]]z=z0
[B[F (Rz)] + φ(R, r, α, β)B[F (rz)]]z=z0

,

then λ is a well defined real or complex number with |λ| > 1 and with this
choice of λ, we obtain W (z0) = 0 where |z0| ≥ 1. This contradicts the fact
that all the zeros of W (z) lie in |z| < 1. Thus

|B[P (Rz)] + φ(R, r, α, β)B[P (rz)]| ≤ |B[F (Rz)] + φ(R, r, α, β)B[F (rz)]|

for |z| ≥ 1 and R > r ≥ 1. This proves the Theorem 3.1. �

A variety of interesting results can be deduced from Theorem 3.1 as special
cases. Here we mentiopn a few of these.

The following interesting result, which is a compact generalization of the
inequalities (1.1), (1.2) and (1.13), follows from Theorem 3.1 by taking

F (z) = znMax
|z|=1

|P (z)| .
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Corollary 3.2. If P ∈ Pn, then for all real or complex numbers α and β with
|α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

|B[P (Rz)] + φ (R, r, α, β)B[P (rz)]|
≤ |Rn + φ (R, r, α, β) rn||B[zn]|Max

|z|=1
|P (z)| (3.8)

where B ∈ Bn and φ (R, r, α, β) is defined by (1.15). The result is best possible
and equality in (3.8) holds for P (z) = λzn, λ 6= 0.

The case B[P (z)] = P (z) of Corollary 3.2 leads to:

Corollary 3.3. If P ∈ Pn, then for all real or complex numbers α and β with
|α| ≤ 1, |β| ≤ 1, R > r ≥ 1, and |z| ≥ 1,

|P (Rz) + φ (R, r, α, β)P (rz)| ≤ |Rn + φ (R, r, α, β) rn||z|n|Max
|z|=1

|P (z)| , (3.9)

where φ (R, r, α, β) is defined by (1.15). The result is best possible and equality
in (3.9) holds for P (z) = λzn, λ 6= 0.

Remark 3.4. For α = β = 0 and |z| = 1, inequality (3.8) reduces to inequality
(13). Further, if we take α = 1 and divide the two sides of (3.9) by R− r, and
make R→ r, we get for r ≥ 1, |β| ≤ 1 and |z| ≥ 1,∣∣∣∣zP ′(rz) + n

β

r + 1
P (rz)

∣∣∣∣ ≤ n ∣∣∣∣rn−1 +
βrn

r + 1

∣∣∣∣ |z|nMax
|z|=1

|P (z)| ,

which, in particular, includes inequality (1.1) as a special case.

Setting α = 0 in (3.8), we obtain:

Corollary 3.5. If P ∈ Pn, then for every real or complex number β with
|β| ≤ 1, R > r ≥ 1 and |z| ≥ 1,∣∣∣∣B[P (Rz)] + β

(
R+ 1

r + 1

)n
B[P (rz)]

∣∣∣∣
≤
∣∣∣∣Rn + β

(
R+ 1

r + 1

)n
rn
∣∣∣∣ |B[zn]|Max

|z|=1
|P (z)| .

(3.10)

where B ∈ Bn and φ (R, r, α, β) is defined by (1.15). The result is best possible
and equality in (3.10) holds for P (z) = λzn, λ 6= 0.

For β = 0, it follows from Corollary 3.2 that if P ∈ Pn, then for every real
or complex number α with |α| ≤ 1, R > r ≥ 1, and |z| ≥ 1,

|B[P (rz)]− αB[P (rz)]| ≤ |Rn − αrn||B[zn]|Max
|z|=1

|P (z)| . (3.11)

where B ∈ Bn. The result is best possible and equality in (3.11) holds for
P (z) = λzn, λ 6= 0.
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Next we establish the following result.

Theorem 3.6. If P ∈ Pn, and P (z) has all its zeros in |z| ≤ 1, then for
arbitrary real or complex numbers α and β with |α| ≤ 1, |β| ≤ 1 and R > r ≥ 1

|B[P (Rz)] + φ (R, r, α, β)B[P (rz)]|
≥ |Rn + φ (R, r, α, β) rn| |B[zn]|Min

|z|=1
|P (z)| for |z| ≥ 1 (3.12)

where B ∈ Bn and φ (R, r, α, β) is defined by (1.15). The result is best possible
and equality in (3.12) holds for P (z) = λzn, λ 6= 0.

Proof. The result is clear if P (z) has a zero on |z| = 1, for then m =
Min|z|=1 |P (z)| = 0. We now assume that P (z) has all its zeros in |z| < 1 so
that m > 0 and

m ≤ |P (z)| for |z| = 1.

This gives for every λ with |λ| < 1,

|λzn|m ≤ |P (z)| for |z| = 1.

By Rouche’s Theorem, it follows that all the zeros of the polynomial F (z) =
P (z) − λmzn lie in |z| < 1 for every real or complex number λ with |λ| < 1.
Therefore(as in proof of the Theorem 1.1), we conclude that all the zeros of
the polynomial G(z) = F (Rz) + φ (R, r, α, β)F (rz) lie in |z| < 1 for arbitrary
real or complex numbers α, β with |α| ≤ 1, |β| ≤ 1 and R > r ≥ 1. Hence by
Lemma 2.2, all the zeros of the polynomial

S(z) = B[G(z)] = B[F (Rz) + φ (R, r, α, β)F (rz)]

= B[P (Rz)] + φ (R, r, α, β)B[P (rz)]

− λ (Rn + φ (R, r, α, β) rn)B[zn]m

(3.13)

lie in |z| < 1 for all real or complex numbers α, λ with |α| ≤ 1, |λ| < 1 and
R > r ≥ 1. This implies for |z| ≥ 1 and R > r ≥ 1,

|B[P (Rz)] + φ (R, r, α, β)B[P (rz)]|
≥ |Rn + φ (R, r, α, β) rn| |B[zn]|m.

(3.14)

If inequality (3.14) is not true, then there is a point z = w with |w| ≥ 1 such
that

|{B[P (Rz)] + φ (R, r, α, β)B[P (rz)]}z=w|
< |Rn + φ (R, r, α, β) rn| |{B[zn]}z=w|m.

Since {B[zn]}z=w 6= 0, we take

λ =
{B[P (Rz)] + φ (R, r, α, β)B[P (rz)]}z=w
m (Rn + φ (R, r, α, β) rn) {B[zn]}z=w

so that λ is a well defined real or complex number with |λ| < 1 and with this
choice of λ, from (3.13), we get S(w) = 0 with |w| ≥ 1. This contradicts the
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fact that all the zeros of S(z) lie in |z| < 1. Thus for arbitrary real or complex
numbers α, β with |α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

|B[P (Rz)] + φ (R, r, α, β)B[P (rz)]|
≥ |Rn + φ (R, r, α, β) rn| |B[zn]|Min

|z|=1
|P (z)| .

This completes the proof of Theorem 3.6 �

The case B[P (z)] = P (z) of Theorem 3.6 yields:

Corollary 3.7. If P ∈ Pn, and P (z) has all its zeros in |z| ≤ 1, then for
arbitrary real or complex numbers α and β with |α| ≤ 1, |β| ≤ 1 and R > r ≥ 1

|P (Rz) + φ (R, r, α, β)P (rz)|
≥ |Rn + φ (R, r, α, β) rn| |z|nMin

|z|=1
|P (z)| for |z| ≥ 1 (3.15)

where φ (R, r, α, β) is defined by (1.15). The result is best possible and equality
in (3.15) holds for P (z) = λzn, λ 6= 0.

If we divide the two sides of (3.15) by R− r with α = 1 and let R→ r, we
get for P (z) = 0 in |z| ≤ 1, |β| ≤ 1, and r ≥ 1

Min
|z|=1

∣∣∣∣zP ′(rz) + n
β

r + 1
P (rz)

∣∣∣∣ ≥ n ∣∣∣∣rn−1 +
βrn

r + 1

∣∣∣∣Min
|z|=1

|P (z)| .

The result is best possible.

The next corollary follows by taking β = 0 in (3.12).

Corollary 3.8. If P ∈ Pn and P (z) has all its zeros in |z| ≤ 1, then for every
real or complex number α with |α| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

|B[P (Rz)]− αB[P (rz)]| ≥ |Rn − αrn| |B[zn]|Min
|z|=1

|P (z)| (3.16)

where B ∈ Bn. The result is best possible and equality in (3.16) holds for
P (z) = λzn, λ 6= 0.

For α = 0, it follows from Corollary 3.8 that if P ∈ Pn and P (z) has all
its zeros in |z| ≤ 1, then for every real or complex number α with |α| ≤ 1,
R > r ≥ 1 and |z| ≥ 1,

|B[P (Rz)]| ≥ |B[Rnzn]|Min
|z|=1

|P (z)| (3.17)

where B ∈ Bn. The result is sharp.
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Remark 3.9. For the choice β = λ1 = λ2 = 0 in (3.12), we obtain for every
real or complex number α with |α| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

|P (Rz)− αP (rz)| ≥ |Rn − αrn| |z|nMin
|z|=1

|P (z)| , (3.18)

which, in particular, includes a compact generalization of the inequalities (1.3)
and (1.4) as a special case.

Next, for the choice α = 0 in (3.12), we get the following result.

Corollary 3.10. If P ∈ Pn and P (z) has all its zeros in |z| ≤ 1, then for
every real or complex number β with |β| ≤ 1, |z| = 1 and R > r ≥ 1,

Min
|z|=1

∣∣∣∣B[P (Rz)] + β

(
R+ 1

r + 1

)n
B[P (rz)]

∣∣∣∣
≥
∣∣∣∣Rn + β

(
R+ 1

r + 1

)n
rn
∣∣∣∣ |B[zn]|Max

|z|=1
|P (z)|

(3.19)

where B ∈ Bn. The result is best possible.

Setting λ0 = λ2 = 0 in (3.12) and noting that all the zeros of u(z) defined
by (1.11) lie in the half plane (1.12), we get

Corollary 3.11. If P ∈ Pn and P (z) has all its zeros in |z| ≤ 1, then for
arbitrary real or complex numbers α, β with |α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and
|z| ≥ 1, ∣∣RP ′(Rz) + φ (R, r, α, β) rP ′(rz)

∣∣
≥ n |Rn + φ (R, r, α, β) rn| |z|n−1Min

|z|=1
|P (z)| . (3.20)

The result is sharp and the extremal polynomial is P (z) = λzn, λ 6= 0.

Finally we prove the following compact generalization of the inequalities
(1.3), (1.4), (1.5) and (1.6), which also include refinements of the inequalities
(1.9) and (1.14) as special cases.
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Theorem 3.12. If P ∈ Pn and P (z) 6= 0 for |z| < 1, then for arbitrary real
or complex numbers α and β with |α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and |z| ≥ 1.

|B[P (Rz)] + φ (R, r, α, β)B[P (rz)]|

≤ 1

2
{|Rn + φ (R, r, α, β) rn| |B[zn]|

+ |1 + φ (R, r, α, β)| |λ0|}Max
|z|=1

|P (z)|

− 1

2
{|Rn + φ (R, r, α, β) rn| |B[zn]|

− |1 + φ (R, r, α, β)| |λ0|}Min
|z|=1

|P (z)|

(3.21)

where B ∈ Bn. The result is sharp and equality in (3.21) holds for P (z) =
azn + b, |a| = |b| = 1.

Proof. By hypothesis, the polynomial P (z) does not vanish in |z| < 1, therefore
if m = Min|z|=1|P (z)|, then m ≤ |P (z)| for |z| ≤ 1. We first show that
for every real or complex number δ with |δ| ≤ 1, the polynomial H(z) =
P (z) + mδzn does not vanish in |z| < 1. This is obvious if m = 0 and for
m > 0, we prove it by a contradiction. Assume that H(z) has a zero in |z| < 1
say at z = w with |w| < 1, then we have P (w) + mδwn = H(w) = 0. This
gives

|P (w)| = |mδwn| ≤ m|w|n < m,

which is clearly a contradiction to the minimum modulus principle. Hence
H(z) has no zero in |z| < 1 for every real or complex number δ with |δ| ≤ 1.

If G(z) = znH(1/z),then all the zeros of nth degree polynomial G(z) lie in
|z| ≤ 1. Applying Lemma 2.3 with P (z) replaced by H(z) and F (z) by G(z),
we obtain for arbitrary real or complex numbers α, β with |α| ≤ 1, |β| ≤ 1, R >
r ≥ 1 and |z| ≥ 1,

|B[H(Rz)] + φ (R, r, α, β)B[H(rz)]| ≤ |B[G(Rz)] + φ (R, r, α, β)B[G(rz)]| ,

where now G(z) = znP (1/z) −mδ = Q(z) −mδ,Q(z) = znP (1/z). Equiva-
lently,

|B[P (Rz)]+φ (R, r, α, β)B[P (rz)]−mδ (Rn+φ (R, r, α, β) rn)B[zn]|
≤
∣∣B[Q(Rz)] + φ (R, r, α, β)B[Q(rz)]−mδ (1 + φ (R, r, α, β))λ0

∣∣ (3.22)

for all real or complex numbers α, β, δ with |α| ≤ 1, |β| ≤ 1, |δ| ≤ 1 and
R > r ≥ 1. Now choosing the argument of δ such that

|B[P (Rz)] + φ (R, r, α, β)B[P (rz)]−mδ (Rn + φ (R, r, α, β) rn)B[zn]|
= |B[P (Rz)] + φ (R, r, α, β)B[P (rz)]|+m|δ| |Rn + φ (R, r, α, β) rn| |B[zn]|,
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we obtain from (3.22),

|B[P (Rz)] + φ (R, r, α, β)B[P (rz)]|+m|δ| |Rn + φ (R, r, α, β) rn| |B[zn]|
≤ |B[Q(Rz)] + φ (R, r, α, β)B[Q(rz)]|+m|δ| |1 + φ (R, r, α, β)| |λ0|,

for |z| ≥ 1. Equivalently,

|B[P (Rz)] + φ (R, r, α, β)B[P (rz)]|
+ |δ| (|Rn + φ (R, r, α, β) rn| |B[zn]| − |1 + φ (R, r, α, β)| |λ0|)m

≤ |B[Q(Rz)] + φ (R, r, α, β)B[Q(rz)]| ,

for |α| ≤ 1, |β| ≤ 1, |δ| ≤ 1 and R > r ≥ 1. Letting |δ| → 1, we get

|B[P (Rz)] + φ (R, r, α, β)B[P (rz)]|
+ (|Rn + φ (R, r, α, β) rn| |B[zn]| − |1 + φ (R, r, α, β)| |λ0|)m

≤ |B[Q(Rz)] + φ (R, r, α, β)B[Q(rz)]|
(3.23)

for |α| ≤ 1, |β| ≤ 1, |δ| ≤ 1 and R > r ≥ 1. Combining this inequality with
Lemma 2.4, we get for all real or complex numbers α, β with |α| ≤ 1, |β| ≤
1, R > r ≥ 1 and |z| ≥ 1,

2 |B[P (Rz)] + φ (R, r, α, β)B[P (rz)]|
+ (|Rn + φ (R, r, α, β) rn| |B[zn]| − |1 + φ (R, r, α, β)| |λ0|)m

≤ |B[P (Rz)] + φ (R, r, α, β)B[P (rz)]|+ |B[Q(Rz)] + φ (R, r, α, β)B[Q(rz)]| ,
≤ (|Rn + φ (R, r, α, β) rn| |B[zn]|+ |1 + φ (R, r, α, β)| |λ0|)Max|z|=1 |P (z)| .

Equivalently,

|B[P (Rz)] + φ (R, r, α, β)B[P (rz)]|

≤ 1

2
{|Rn + φ (R, r, α, β) rn| |B[zn]|+ |1 + φ (R, r, α, β)| |λ0|}Max|z|=1 |P (z)|

− 1

2
{|Rn+φ (R, r, α, β) rn| |B[zn]|−|1+φ (R, r, α, β)| |λ0|}Min|z|=1 |P (z)| .

This completes the proof of Theorem 3.12 �

The following result is an immediate consequence of Theorem 3.12.

Corollary 3.13. If P ∈ Pn and P (z) 6= 0 for |z| < 1, then for every real or
complex number α with |α| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

|B[P (Rz)]− αB[P (rz)]|

≤ 1

2
{|Rn − αrn| |B[zn]|+ |1− α| |λ0|}Max

|z|=1
|P (z)|

− 1

2
{|Rn − αrn| |B[zn]| − |1− α| |λ0|}Min

|z|=1
|P (z)|

(3.24)
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where B ∈ Bn. The result is best possible.

Taking α = 0 in Corollary 3.13, it follows that if P ∈ Pn and P (z) 6= 0 for
|z| < 1, then for R ≥ 1 and |z| ≥ 1,

|B[P (Rz)]| ≤ 1

2
(|B[Rnzn]|+ |λ0|)Max

|z|=1
|P (z)|

− 1

2
(|B[Rnzn]| − |λ0|)Min

|z|=1
|P (z)| .

(3.25)

The result is best possible. Clearly (3.25) is a refinement of inequality (1.14).

Next, if we choose λ0 = λ2 = 0 in (3.21) and note that all the zeros of u(z)
defined by (1.11) lie in the half plane (1.12), we get for |α| ≤ 1, |β ≤ 1,|z| ≥ 1
and R > r ≥ 1,∣∣RP ′(Rz) + φ (R, r, α, β) rP ′(rz)

∣∣
≤ n

2
|Rn + φ (R, r, α, β) rn| |z|n−1

{
Max
|z|=1
|P (z)| −Min

|z|=1
|P (z)|

}
.

(3.26)

which, in particular, gives inequality (1.7). For β = 0 (3.26) reduces to

∣∣RP ′(Rz)− αrP ′(rz)∣∣ ≤ n

2
|Rn − αrn| |z|n−1

{
Max
|z|=1
|P (z)| −Min

|z|=1
|P (z)|

}
.

Also for α = 0, Theorem 3.12 yields the following result.

Corollary 3.14. If P ∈ Pn and P (z) 6= 0 for |z| < 1, then for every real or
complex number β with |β| ≤ 1, R > r ≥ 1 and |z| ≥ 1,∣∣∣∣B[P (Rz)] + β

(
R+ 1

r + 1

)n
B[P (rz)

∣∣∣∣
≤ n

2

{∣∣∣∣Rn + β

(
R+ 1

r + 1

)n
rn
∣∣∣∣ |B[zn]|+

∣∣∣∣1 + β

(
R+ 1

r + 1

)n∣∣∣∣ |λ0|}Max
|z|=1
|P (z)|

− n

2

{∣∣∣∣Rn + β

(
R+ 1

r + 1

)n
rn
∣∣∣∣ |B[zn]| −

∣∣∣∣1 + β

(
R+ 1

r + 1

)n∣∣∣∣ |λ0|}Min
|z|=1
|P (z)|.

Next choosing λ1 = λ2 = 0 in (3.21), we immediately get the following
result, which is a refinemnet of inequality (1.9).
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Corollary 3.15. If P ∈ Pn and P (z) 6= 0 for |z| < 1, then for all real or
complex numbers α, β with |α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and |z| ≥ 1.

|P (Rz) + φ (R, r, α, β)P (rz)|

≤ 1

2
{|Rn + φ (R, r, α, β) rn| |z|n + |1 + φ (R, r, α, β)|}Max

|z|=1
|P (z)|

− 1

2
{|Rn+φ (R, r, α, β) rn| |z|n−|1+φ (R, r, α, β)|}Min

|z|=1
|P (z)|.

(3.27)

The result is sharp and equality in (3.27) holds for P (z) = azn+b, |a| = |b| = 1.

Dividing the two sides (3.27) by R − r with α = 1 and making R → r, we
obtain for |β| ≤ 1, |z| ≥ 1 and r ≥ 1,∣∣∣∣zP ′(rz) + n

β

r + 1
P (rz)

∣∣∣∣ ≤ n

2

{∣∣∣∣rn−1 + nβ
rn

r + 1

∣∣∣∣ |z|n +

∣∣∣∣ β

r + 1

∣∣∣∣}Max
|z|=1
|P (z)|

− n

2

{∣∣∣∣rn−1 + nβ
rn

r + 1

∣∣∣∣ |z|n − ∣∣∣∣ β

r + 1

∣∣∣∣}Min
|z|=1
|P (z)|.

This inequality reduces to inequality (1.7) for β = 0 and r = 1.
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[12] M. Riesz, Über einen satz des Herrn Serge Bernstein, Proc. Acta Math., 40 (1916),

337–347.


