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Abstract. In this paper, we study an inverse problem of reconstructing time independent

coefficient of an integrodifferential equation from the final time overspecified data. The

reconstruction of the parameter is transformed to a minimization problem through optimal

control frame work. The stability estimate for the coefficient with the upper bound in terms

of the final measurement derived through the minimization of the cost functional.

1. Introduction

The theory and applications of integrodifferential equations play an impor-
tant role in the mathematical modeling of many fields: physical, biological
phenomena and engineering sciences in which it is necessary to take into ac-
count the effect of real world problems. The advantage of the integrodiffer-
ential equation’s representation for a variety of problems is witnessed by its
increasing frequency in the literature and in many texts on method of ad-
vanced applied mathematics. Also, the suitability of the solution method for
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machine computation and the inherent simplicity of the structure of the sub-
ject combine to make the integrodifferential equation approach a very valuable
one for many applications [21, 22].

Heat conduction problems have many applications in science and engineer-
ing, for example crystal growing [16], material structure control [26] and in-
tegrated circuit packaging. The heat spread over medium depends not only
on the geometry and physical properties of medium, but also primarily on
heat transfer from it and other external sources. The product of a convective
heat transfer coefficient and the temperature difference between the medium
surface and its surrounding circumferences is termed as the convective heat
flux. The convective heat transfer coefficient is an important parameter in
modelling the heat transfer processes. However the dynamical representation
of the heat conduction process is modelled very well by including the past
history of one or more variables through memory kernel. This phenomenon is
governed by parabolic integrodifferential equations with time dependent mem-
ory kernel when the medium is homogeneous and space dependent memory
kernel when the medium is heterogeneous. This type of dynamical system
appear in chemical diffusion, thermoelasticity [4, 5], heat conduction process
[23], nuclear reactor dynamics and medical sciences [24].

In the last few years, various methods are used for the identification of heat
source terms, of unknown boundary conditions, of memory kernel or spatially
varying function. The identification of the convective coefficient using the dif-
ferent kinds of temperature measurements by means of inverse heat conduc-
tion is important to understand the heat conduction of the medium. Various
problems to identify time-dependent memory kernels in parabolic equations
have been studied in a number of papers. In the present paper we study an
inverse problem to determine the spatially varying parameter q(x) in a diver-
gence form parabolic integrodifferential equation governing the heat flow in
materials with memory. It is interesting to note that analyzing the interior
structure of that medium through recovering parameters of media by bound-
ary measurements have a broad range of applications in geophysics, searching
minerals, oil and gas, nondestructive evaluation of materials etc.

In this paper, we consider the inverse problem of the following integrodif-
ferential equation [32]


yt−∇(d(x)∇y)+

t∫
0

K(t, τ)y(x, τ) dτ+q(x)y=f(x, t), (x, t) ∈ ΩT ,

y(x, t) = 0, (x, t) ∈ Σ,

y(x, 0) = y0(x), x ∈ Ω,

(1.1)
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where ΩT = Ω×(0, T ], Σ = ∂Ω×(0, T ], the domain Ω = (0, `) and T > 0 is an
arbitrary but fixed moment of time. The initial conditions y0(x) is sufficiently
regular and the unknown coefficient q(x) is assumed to be sufficiently smooth
and shall be kept independent of time t. Here we assume that the diffusive
coefficient d is dependent of space only. Suppose we assume that there is a
possibility to provide the additional temperature for the inverse heat problems
at final time

y(x, T ) = m(x) for all x ∈ Ω, (1.2)

where the given function m(x) satisfy the homogeneous Dirichlet boundary
conditions. The goal of this article is to obtain the stability estimates for
this inverse problem of determining coefficient q(x) in the integrodifferential
equation with respect to the solution at final time. The key ingredient to these
stability estimates is an optimal control framework to the system.

Different kinds of methods have been developed for the analysis of the in-
verse heat conduction and reported in the literature. Romanov [27] studied
the identification of the spatially varying kernel in an integrodifferential equa-
tion of electrodynamics and also proved that for sufficiently large time interval
conditional stability of the solution of inverse problem. Denisov and Shores
[11] analyzed the existence and uniqueness of solutions to the inverse problem
of reconstruction of spatially varying absorbing parameter in the one dimen-
sional model of adsorption dynamics through monotone operator method by
transforming the system of equations into integrodifferential equation from
final time observations. In [29], the principle of invariant imbedding has been
applied to the identification of reflection coefficient in the nonlinear integrod-
ifferential model of scattering process. Xiao et al., [31] studied the existence
and uniqueness of solutions for the direct problem as well as the existence
of quasisolutions of the inverse source problem of integrodifferential parabolic
equations, which comes from nonlinear pollution problems in porous media in
an appropriate class of admissible source functions. Colombo [6] established
the local time existence and global time uniqueness for the solution of the
identification of the convolution memory kernel K and the temperature in the
evolution equation from nonlocal overspecified data by treating the evolution
problem an abstract inverse problem. Baranibalan et.al., [2] established the
stability and uniqueness results for the coefficient q from a measurement of
the solution with respect to the normal derivative on an arbitrary part of the
boundary and certain spatial derivatives through the Carleman estimates and
certain energy estimates for parabolic equations with memory. Favini and
Lorenzi [14, 15] proved a global existence and uniqueness result for the recov-
ery of unknown scalar kernels in linear singular first-order integrodifferential
initial-boundary value problems and recovered unknown kernels, depending on
time only, in linear singular first-order integrodifferential Cauchy problems in
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Banach spaces. Perthame and Zubelli [25] considered a size-structured model
for cell division and address the question of determining the division (birth)
rate from the measured stable size distribution of the population, which is ex-
ecuted by novel regularization technique on an integrodifferential equation on
the half line along with the regular dependence theory for the solution in terms
of the coefficients. Durdiev and Rashidov [12] studied the inverse problem of
determining the multidimensional kernel of the integral term in a parabolic
equation of second order. Wu and Yu [30] studied the inverse problem for an
integrodifferential equation related to the Basset problem.

Apart from the literature mentioned above for inverse problems for par-
abolic integrodifferential equations, it should be noted that, to the best of
our knowledge, the optimization technique plays a crucial role in proving the
results for inverse problems and has the following advantages over other meth-
ods. The optimization technique is a classical tool to yield general solution
for inverse problems without unique solution. The basic idea is to restrict the
solution under consideration to some compact set and then take the minimizer
of some cost functional as the general solution.The idea of the minimization
of the cost functional can work well when good approximation for the exact
solution is known in advance. As far as the method of optimal control for
inverse problems is concerned, Hoffman and Jiang [19] investigated an inverse
problem of reconstructing a source term in a phase field model for solidifica-
tion. An inverse problem of recovering the implied volatility coefficient in the
Black-Scholes type equation has been studied by Jiang and Tao [20]. In the ab-
sence of the memory term (K = 0), problem (1.1) has been studied by various
authors and several results concerning inverse problem have been established.
Chen and Liu [3] investigated the numerical reconstruction of the coefficient
q(x) in the parabolic equation ut−∆u+q(x)u = 0 from the final measurement
by using the optimization method combined with the finite element method.
After these contributions to the study of various types of inverse problems via
optimal control framework, lot of papers started appearing in the literature
for single [7, 8, 9, 10, 33, 35] and coupled system of equations [17, 18, 28] from
various type of overspecified measurement data.

The brief description of our work is as follows: Let ỹ(x, t) be the solution
of the following equation

ỹt−∇(d(x)∇ỹ)+
t∫

0

K(t, τ)ỹ(x, τ) dτ+q̃(x)ỹ=f(x, t), (x, t) ∈ ΩT ,

ỹ(x, t) = 0, (x, t) ∈ Σ,

ỹ(x, 0) = y0(x), x ∈ Ω.

(1.3)

Set Y = y− ỹ and Q = q− q̃ so that the subtraction of (1.3) from (1.1) yields
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Yt−∇(d(x)∇Y )+

t∫
0

K(t, τ)Y (x, τ) dτ+q(x)Y =−Qỹ, (x, t) ∈ ΩT ,

Y (x, t) = 0, (x, t) ∈ Σ,

Y (x, 0) = 0, x ∈ Ω.

(1.4)

More preciously, let y and ỹ be the solutions of the systems (1.1) and (1.3)
respectively; then for all T , there exists a constant C > 0 depending only on
T and Ω satisfying

max |Q|2 ≤ C
∫
Ω

|m− m̃|2 dx

where m and m̃ are the values of the solutions of the systems (1.1) and (1.3)
at final time t = T , that is y(x, T ) = m(x) and ỹ(x, T ) = m̃(x).

The outline of the paper is as follows: In Section 2, we transform the given
problem into an optimal control problem by using the optimization theory. In
Section 3 we prove the existence of minimizer and estabilished the first order
necessary optimality conditions. Making use of the necessary conditions and
energy estimates, we complete the stability result in Section 4.

2. Optimal control problem

Consider the optimal control problem with the classes of admissible set

M =
{
q(x) | 0 < q0 ≤ q(x) ≤ q1 <∞ and ∇q ∈ L2(Ω)

}
. (2.1)

The constants q0 and q1 are lower and upper bounds for the unknown q(x).
The coefficients d(x) and q(x), initial condition y0(x), source term f(x, t) and
memory kernel K(t, τ) satisfy the following assumptions:

Assumption 2.1. For α > 0,

(A1) q(x) ∈ Cα(Ω), K(t, τ) ∈ C
α
2
,α
2 ([0, T ]× [0, T ]), f(x, t) ∈ Cα,

α
2 (ΩT ),

(A2) m(x) ∈ L2(Ω), y0(x) ∈ C2+α(Ω),
(A3) 0 < d0 ≤ d(x) ≤ d1 <∞ in Ω and d(x) ∈ L∞(Ω).

For the definitions of the spaces Cα(Ω), Cα,β(ΩT ), H1(Ω), L2(Ω) and L∞(Ω),
one can refer the books [1] and [13].

Now we define the optimal control problem (P) as follows: Find q̃(x) ∈ M
satisfying

J (q̃) = min
q∈M
J (q), (2.2)

where

J (q) =
1

2

∫
Ω

|y(x, T ; q)−m(x)|2 dx+
N

2

∫
Ω

|∇q|2 dx, (2.3)
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y is the solution of the equation (1.1) for the given coefficient q(x) ∈ M and
N is the regularization parameter.

In order to analyze the inverse problem for the differential equations, the
knowledge of the direct problem is essential. By the well-known Schauder’s
theory for parabolic equation, one can provide following existence result [34].

Theorem 2.2. Let 0 < α < 1 and the coefficient q(x) ∈ Cα(Ω). Then the

system has a unique solution y(x, t) ∈ C2+α,1+α
2 (ΩT ) provided that y0(x) ∈

C2+α(Ω).

The following theorem proves the existence of the optimal control q̃(x) ∈M
minimizing the cost functional J (q).

Theorem 2.3. Given y0(x) ∈ C2+α(Ω) and q(x) ∈ L2(Ω) there exists a solu-

tion q̃ ∈M and ỹ(x, t) ∈ C2+α,1+α
2 (ΩT ) of the minimization problem

J (q̃) = min
q∈M
J (q).

Proof. From the definition of J (q), note that the function is nonnegative and
thus it has the greatest lower bound. Let {yn, qn} be the minimizing sequence
of the minimization problem.

A = inf
q∈M
J (q) ≤ 1

2

∫
Ω

|yn(x, T ; q)−m(x)|2 dx+
N

2

∫
Ω

|∇qn|2 dx < A+
1

n
.

From this, {qn} is bounded in L2(Ω) and ‖∇qn‖L2(Ω) < C, where C is in-

dependent of n. Then by the classical Sobolev imbedding H1(Ω) ↪→ Cα(Ω),
‖qn‖C 1

2 (Ω)
≤ C. Thus by classical solution of parabolic equation, using energy

type estimate, we will show that the corresponding solution yn is bounded

on C2+ 1
2
,1+ 1

4 (ΩT ). More precisely, consider the equation (1.1) with the state
variable yn and the coefficient qn, we have

‖yn‖C2+1
2 ,1+

1
4 (ΩT )

≤ C.

Then there exists a subsequence {ynl , qnl} such that

qnl → q̃ ∈ C
1
2 (Ω) uniformly on Cα(Ω),

ynl → φ̃ uniformly on Cα,
α
2 (ΩT ) ∩ C2+α,1+α

2

loc
(ΩT ).

Hence replacing (y, q) in (1.1) by (ynl , qnl) and passing the limits one can see

that (φ̃, q̃) satisfies (1.1). Now consider∫
Ω

|∇(qnl − q̃)|
2 dx ≥ 0.
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It follows that

lim
l→∞
J (qnl) = lim

l→∞

1

2

∫
Ω

|ynl −m(x)|2 dx+ lim
l→∞

N

2

∫
Ω

|∇qnl |
2 dx

≥ 1

2

∫
Ω

|y(x, T, q)−m(x)|2 dx+
N

2

∫
Ω

|∇q̃|2 dx = J (q̃).

From this observation

min
q∈M
J (q) ≤ J (q̃) ≤ lim

n→∞
inf J (qnl) = min

q∈M
J (q).

Hence

J (q̃) = min
q∈M
J (q).

Thus, q̃ = q is an optimal solution of the control problem. �

Now we obtain the necessary optimality conditions which have to be satisfied
by each optimal control q. Suppose p is the solution of the adjoint system
associated with (1.1) of the form

−pt −∇(d(x)∇p) +
T∫
t

K(t, τ)p(x, τ) dτ + qp = 0, (x, t) ∈ ΩT ,

p(x, t) = 0, (x, t) ∈ Σ,

p(x, T ) = y(x, T )−m(x), x ∈ Ω,

(2.4)

where m is the value of the solution of the system (1.1) at the final time t = T .

Theorem 2.4. Let q̃ be the solution of the optimal control problem (P ). Then
there exists a set of functions (y, p, q) satisfying

T∫
0

∫
Ω

py(q − h) dx dt+N

∫
Ω

∇q · ∇(h− q) dx ≥ 0, (2.5)

for any h ∈M.

Proof. For any h ∈M and 0 ≤ δ ≤ 1, set

qδ = (1− δ)q + δh ∈M.

Then there exists a solution yδ of the equation (1.1) with the coefficient q = qδ
satisfying

Jδ = J (qδ) =
1

2

∫
Ω

|y(x, T ; qδ)−m(x)|2 dx+
N

2

∫
Ω

|∇qδ|2 dx. (2.6)
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Now taking Fréchet derivative of Jδ with optimal solution q̃ we have

dJδ
dδ

∣∣∣∣
δ=0

=

∫
Ω

[y(x, T )−m(x)]
∂y

∂δ

∣∣∣∣
δ=0

dx+N

∫
Ω

∇q · ∇(h− q) dx ≥ 0. (2.7)

If we take yδ =
∂yδ
∂δ

, then yδ satisfies the following system with the coefficient
qδ,

(yδ)t−∇(d(x)∇yδ)+

t∫
0

K(t, τ)yδ dτ+qyδ=(q − h)yδ, (x, t) ∈ ΩT ,

yδ(x, t) = 0, (x, t) ∈ Σ,

yδ(x, 0) = 0, x ∈ Ω.

Taking ζ = yδ|δ=0, we see that ζ satisfies the following system
ζt −∇(d(x)∇ζ) +

t∫
0

K(t, τ)ζ dτ + qζ = (q − h)y, (x, t) ∈ ΩT ,

ζ(x, t) = 0, (x, t) ∈ Σ,

ζ(x, 0) = 0, x ∈ Ω.

(2.8)

Then the optimality condition becomes∫
Ω

[y(x, T )−m(x)]ζ(x, T ) dx+N

∫
Ω

∇q · ∇(h− q) dx ≥ 0. (2.9)

Let Lζ ≡ ζt−∇(d(x)∇ζ) +
t∫

0

K(t, τ)ζdτ + qζ and suppose p is the solution of

the following problem
L∗p ≡ −pt −∇(d(x)∇p) +

T∫
t

K(τ, t)p dt+ qp = 0, (x, t) ∈ ΩT ,

p(x, t) = 0, (x, t) ∈ Σ,

p(x, T ) = y(x, T )−m(x), x ∈ Ω,

(2.10)

where L∗ is the adjoint operator of L. From (2.8) we have
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0 =

T∫
0

∫
Ω

ζL∗p dx dt

= −
∫
Ω

ζ(x, T )[y(x, T )−m(x)] dx+

T∫
0

∫
Ω

pLζ dx dt,

0 = −
∫
Ω

ζ(x, T )[u(x, T )−m(x)] dx+

T∫
0

∫
Ω

py(q − h) dx dt. (2.11)

Substituting (2.11) into (2.9) leads to

T∫
0

∫
Ω

py(q − h) dx dt+N

∫ ∫
Ω

∇q · ∇(h− q) dx ≥ 0. (2.12)

Hence the theorem. �

3. Main results

In this section, we establish a stability estimate for the inverse problem
of retrieving the smooth coefficient q(x) in the given system. Main theorem
estimates the discrepancy in the coefficients q(x) of the material with an upper
bound given by some Sobolev norms of the solutions at t = T . The optimal
control problem established in the previous section will be the key ingredient
in the proof of such a stability estimate.

The following lemmas form the most fundamental tool in proving the main
result of this section.

Lemma 3.1. Let y be the solution of the system (1.1). Then we have the
following estimate:

max
0≤t≤T

∫
Ω

|y|2 dx+ 2d1

T∫
0

∫
Ω

|∇y|2 dx dt

≤M1

∫
Ω

|y0|2 dx+

T∫
0

∫
Ω

|f |2 dx dt

 ,

(3.1)

where the constant M1 = exp
[
2T (2q1 + 2 + ‖K‖2L∞T 2)

]
.
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Proof. Multiply the equation (1.1) by y and integrate over Ω to obtain

1

2

d

dt

∫
Ω

|y|2 dx+ d1

∫
Ω

|∇y|2 dx = −
∫
Ω

q|y|2 dx+

∫
Ω

fy dx−
∫
Ω

y(Kt
0 ∗ y) dx,

where Kt
0 ∗ y =

∫ t
0 K(t, τ)y dτ and satisfies

t∫
0

∫
Ω

|Kt
0 ∗ y|2 dx dt ≤ ‖K‖2L∞T 2

t∫
0

∫
Ω

|y|2 dx dt.

Using the assumption on the coefficient q and applying Cauchy’s inequality,
we have

1

2

d

dt

∫
Ω

|y|2 dx+ d

∫
Ω

|∇y|2 dx

≤ (q1 + 1)

∫
Ω

|y|2 dx+
1

2

∫
Ω

|f |2 dx+
1

2

∫
Ω

t∫
0

t∫
0

|K(t, τ)|2|y|2 dτ dτ dx

≤
[
q1 + 1 +

1

2
‖K‖2L∞T 2

] ∫
Ω

|y|2 dx+
1

2

∫
Ω

|f |2 dx.

Integrate with respect to t from 0 to t, we obtain∫
Ω

|y|2 dx+ 2d1

t∫
0

∫
Ω

|∇y|2 dx dt

≤ 2(q1 + 1 +
1

2
‖K‖2L∞T 2)

t∫
0

∫
Ω

|y|2 dx+

t∫
0

∫
Ω

|f |2 dx dt+

∫
Ω

|y0|2 dx.

Using Gronwall’s inequality, the proof of Lemma 3.1 is completed. �

Lemma 3.2. Let p be the solution of the system (2.4). Then we have the
following estimate:

max
0≤t≤T

∫
Ω

|p|2 dx+ 2d1

T∫
0

∫
Ω

|∇p|2 dx dt ≤M2

∫
Ω

|u(x, T )−m(x)|2 dx, (3.2)

where the constant M2 = exp
[
2T (2q1 + 1 + ‖K‖2L∞T 2)

]
.
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Proof. Multiply the equation (2.4) by p and integrate over Ω to obtain

−1

2

d

dt

∫
Ω

|p|2 dx+ d1

∫
Ω

|∇p|2 dx = −
∫
Ω

q|p|2 dx−
∫
Ω

p (KT
t ∗ p) dx,

where KT
t ∗ p =

∫ T
t K(t, τ)p dτ. Using the assumption on the coefficient q and

applying Cauchy’s inequality, we have

− 1

2

d

dt

∫
Ω

|p|2 dx+ d1

∫
Ω

|∇p|2 dx

≤ (q1 +
1

2
)

∫
Ω

|p|2 dx+
1

2
‖K‖2L∞T 2

∫
Ω

|p|2 dx.

Integrate with respect to t from t to T , we obtain∫
Ω

|p|2 dx+ 2d1

T∫
t

∫
Ω

|∇p|2 dx dt

≤
(
2q1 + 1 + ‖K‖2L∞T 2

) T∫
t

∫
Ω

|p|2 dx dt+

∫
Ω

|u(x, T )−m(x)|2 dx.

Using Gronwall’s inequality, the proof of Lemma 3.2 is thus completed. �

Lemma 3.3. Let Y be the solution of the system (1.4). Then we have the
following estimate:

max
0≤t≤T

∫
Ω

|Y |2 dx+ 2d1

T∫
0

∫
Ω

|∇Y |2 dx dt ≤M1 max |Q|2
T∫

0

∫
Ω

|ỹ|2 dx dt, (3.3)

where M1 is the constant defined in Lemma 3.1.

Proof. Multiply the equation (1.4) by Y and integrate over Ω to obtain

1

2

d

dt

∫
Ω

|Y |2 dx+ d1

∫
Ω

|∇Y |2 dx

= −
∫
Ω

[
(Kt

0 ∗ Y )Y + q|Y |2 +QỹY
]

dx.

Using the assumption on the coefficient q and applying Cauchy’s inequality,
we have
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1

2

d

dt

∫
Ω

|Y |2 dx+ d1

∫
Ω

|∇Y |2 dx

≤ q1

∫
Ω

|Y |2 dx+
1

2

∫
Ω

|Y |2 dx+
1

2

∫
Ω

|Y |2 dx

+
1

2
max |Q|2

∫
Ω

|ỹ|2 dx+
1

2

∫
Ω

|Kt
0 ∗ Y |2 dx.

Integrate with respect to t from 0 to t, we obtain∫
Ω

|Y |2 dx+ 2d1

t∫
0

∫
Ω

|∇Y |2 dx dt

≤ (2q1 + 2 + ‖K‖2L∞)

t∫
0

∫
Ω

|Y |2 dx dt+ max |Q|2
t∫

0

∫
Ω

|ỹ|2 dx dt.

Using Gronwall’s inequality, the proof of Lemma 3.3 is thus completed. �

Suppose that p, p̃ are the solutions of the adjoint system with coefficients q
and q̃ respectively. By setting P = p− p̃, we get
−Pt −∇(d(x)∇P ) +

T∫
t

K(τ, t)P (x, τ)dτ + qP = −Qp̃, (x, t) ∈ ΩT ,

P (x, t) = 0, (x, t) ∈ Σ,

P (x, T ) = Y (x, T )− (m− m̃), x ∈ Ω.

(3.4)

Lemma 3.4. Let P be the solution of the system (3.4). Then we have the
following estimate:

max
0≤t≤T

∫
Ω

|P |2 dx+ 2d1

T∫
0

∫
Ω

|∇P |2 dx dt

≤M1

max |Q|2
T∫

0

∫
Ω

[
|p̃|2+M1 max |Q|2|ỹ|2

]
dx dt+

∫
Ω

|m− m̃|2 dx


(3.5)

where M1 is the constant, defined in Lemma 3.1.

Proof. Multiply the equation (3.4) by P and integrate over Ω

−1

2

d

dt

∫
Ω

|P |2 dx+ d1

∫
Ω

|∇P |2 dx = −
∫
Ω

[
q|P |2 + P (KT

t ∗ P ) +Qp̃P
]

dx.
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Using the assumption on the coefficient q and applying Cauchy’s inequality,
we have

−1

2

d

dt

∫
Ω

|P |2 dx+ d1

∫
Ω

|∇P |2 dx

≤ q1

∫
Ω

|P |2 dx+
1

2

∫
Ω

|P |2 dx+
1

2

∫
Ω

|KT
t ∗ P |2 dx+

1

2
max |Q|2

∫
Ω

|p̃|2 dx.

Integrate with respect to t from t to T and rearranging terms, we obtain∫
Ω

|P |2 dx+ 2d1

T∫
t

∫
Ω

|∇P |2 dx dt

≤ (2q1 + 2 + ‖K‖2L∞T 2)

T∫
t

∫
Ω

|P |2 dx dt+ max |Q|2
T∫
t

∫
Ω

|p̃|2 dx dt

+

∫
Ω

|Y (x, T )− (m− m̃)|2 dx.

Using Gronwall’s inequality, one can easily conclude the proof by applying
Lemma 3.3. �

Now we are ready to state and prove the main result of this article with the
help of the lemmas that we have established in the preceding section.

Theorem 3.5. Let y and p be the solutions of the equation (1.1) and the
adjoint equation (2.4) respectively and suppose there exists a point x0 ∈ Ω
such that q(x0) = q̃(x0). Then there exists an instant of time T0 such that,
for T ≥ T0, there exists a constant C > 0, independent of q0, satisfying the
following estimate

max
x∈Ω
|q − q̃|2 ≤ CT

2N
`M1M2

∫
Ω

|m− m̃|2 dx (3.6)

where the constants M1 and M2 are defined in Lemma 3.1 and Lemma 3.2.

Proof. If y, p are the solutions of the equation (1.1) and the adjoint equation
(2.4) respectively with the coefficient q then for the choice h = q̃ ∈ M in the
first order necessary optimality condition (2.5) gives

T∫
0

∫
Ω

py(q − q̃) dx dt+N

∫
Ω

∇q · ∇(q̃ − q) dx ≥ 0. (3.7)
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Similarly, if ỹ, p̃ are the solutions of the equation (1.3) and its adjoint equation
respectively with the coefficient q̃ then for the choice h = q ∈ M in the first
order necessary optimality condition (2.5) gives

T∫
0

∫
Ω

p̃ỹ(q̃ − q) dx dt+N

∫
Ω

∇q̃ · ∇(q − q̃) dx ≥ 0. (3.8)

Adding the above two optimality condition we have the following inequality

N

∫
Ω

|∇Q|2 dx ≤
T∫

0

∫
Ω

Q(py − p̃ỹ) dx dt ≤
T∫

0

∫
Ω

[QpY +QPỹ] dx dt.

Applying Cauchy’s Schwartz inequality and the estimates in Lemmas 3.1-3.3

N

∫
Ω

|∇Q|2 dx

≤ 1

2
max |Q|2

T∫
0

∫
Ω

|p|2 dx dt+
1

2

T∫
0

∫
Ω

|Y |2 dx dt

+
1

2
max |Q|2

T∫
0

∫
Ω

|ỹ|2 dx dt+
1

2

T∫
0

∫
Ω

|P |2 dx dt

≤ 1

2
max |Q|2


T∫

0

∫
Ω

|p̃|2 dx dt+

T∫
0

∫
Ω

|ỹ|2 dx dt


+

1

2


T∫

0

∫
Ω

|Y |2 dx dt+

T∫
0

∫
Ω

|P |2 dx dt


≤ 1

2
max |Q|2


T∫

0

∫
Ω

|ỹ|2 dx dt+

T∫
0

∫
Ω

|p̃|2 dx dt


+
M1T

2
max |Q|2

T∫
0

∫
Ω

|ỹ|2 dx dt+
M1T

2
max |Q|2

T∫
0

∫
Ω

|p̃|2 dx dt

+
M2

1T

2

T∫
0

∫
Ω

|ỹ|2 dx dt+
M1T

2

∫
Ω

|m− m̃|2 dx.

(3.9)
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Besides, from Lemma 3.1 and an analogue of Lemma 3.2, there exists a con-
stant Γ > 0 such that

T∫
0

∫
Ω

|ỹ|2 dx dt ≤M1TΓ and

T∫
0

∫
Ω

|p̃|2 dx dt ≤ T 2M1M2Γ. (3.10)

Moreover, taking into account and applying Hölder’s inequality, we get

|Q(x)| =

∣∣∣∣∣∣
x∫

x0

[Q(z)]′ dz

∣∣∣∣∣∣ ≤ √`
 x∫
x0

|∇Q|2 dz

 1
2

so that

max
x∈Ω
|Q(x)| ≤

√
`‖∇Q(x)‖L2(Ω), ∀x ∈ Ω. (3.11)

Combining the preceding estimates with (3.9), we arrive at

max
x∈Ω
|Q|2 ≤ `‖∇Q(x)‖2L2(Ω)

≤ CT max |Q|2 +
CM1M2T`

2N

∫
Ω

|m− m̃|2 dx

where the constant CT =
1

2N
M1TΓ`

[
1 +M2T +M1T +M1M2T

2 +M2
1T
]
.

Now by choosing T0 > 0 such that CT0 < 1, one can complete the proof. �

Remark 3.6. From Theorem 3.5, we can easily see that if the final measure-
ments of the systems (1.1) and (1.3) are equal, that is y(x, T ) = ỹ(x, T ) then
the data q can be determined uniquely, that is, q(x) = q̃(x) in Ω, for some
small T0 > 0. In fact, from (3.9)-(3.11), one indeed gets∫

Ω

|∇Q|2 dx ≤ CT
∫
Ω

|∇Q|2 dx.

Again, choosing T0 > 0 such that CT0 < 1; one can conclude that∫
Ω

|∇Q|2 dx ≤ 0.

Taking the assumption q(x0) = q̃(x0) into account that, we deduce that q(x) =
q̃(x) for all x ∈ Ω.
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