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Abstract. In this paper we present a generalized quasi-residual principle to select a value
for regularization parameter in the Browder—Tikhonov regularization method, for finding a
solution of a system of ill-posed equations involving potential, hemicontinuous and monotone
mappings on Banach spaces. An estimate of convergence rates for regularized solution is also
established.

1. INTRODUCTION

Let E be a real reflexive Banach space and E* be its dual space, which
both are assumed to be strictly convex. For the sake of simplicity, norms of
E and E* are denoted by the symbol ||.|| and (z*, z) denotes the value of the
linear and continuous functional z* € E* at the point € E. When {z,} is
a sequence in E, z, — x means that {x,} converges weakly to x and z,, — =
means the strong convergence.
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In addition, we assume that F possesses the ES-property: weak convergence
and convergence in norms for any sequence in F follow its strong convergence.

Consider the problem of finding a solution for a system of the following
equations

Al(a:) =fi, fi eFE", 1=0,1,...,N, (11)

where N is a fixed positive integer and A; is a potential, hemicontinuous
and monotone mapping on F, i.e., D(A4;) = FE for i = 0,1,..., N, and D(A)
denotes the domain of A. Recall that a mapping A of domain D(A) C FE into
E* is called A-inverse-strongly monotone, iff

(A(x) = Aly),z —y) > M A(z) — A@W)[*, ¥,y € D(A),
where A is a positive constant.

The examples of inverse-strongly monotone operators in the Banach space
setting can see in [3].

A is called monotone, iff A satisfies the following condition
(A(z) = A(y),x —y) 20, Va,yeDA);

strictly monotone at a point y € D(A), iff the equality in the last inequality
follows = y; and potential, iff A(z) = ¢'(x), the Gateaux derivative of a
convex functional ¢(z).

Denote by S; the set of solutions for ith equation in (1.1). Throughout
this paper, we assume that S := ﬂi]io S; # (. We are specially interested in
the situation where the data f; is not exactly known, i.e., we have only the
approximations f{ € E*, satisfying

Ifi = fol <6, 60, (1.2)

fori=0,1,...,N.

It is well-known in [1] that each equation in (1.1), in general, is ill-posed,
by this we mean that the solutions do not depend continuously on the data
fi. Consequently, the system of equations (1.1), in general, is ill-posed. Many
practical inverse problems are naturally formulated in such a way and some
methods are studied for solving (1.1) (see, [4]-[7]). In 2006, to solve (1.1) in
the case that f; = 0-the null element in E*, and A; is a potential, hemicontin-
uous and monotone mapping on E, in [8], Buong presented the regularization
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method of Browder—Tikhonov type:

N
lz:% ali Al (z) + aU(z) = 6, (1.3)

N0:0<Ni<ui+1<17 Z.:1727"‘7]\[_17

where A? is a hemicontinuous and monotone approximation for A;, U is the
normalized duallity mapping of E, i.e., U : E — 2F" that satisfies the condi-
tion

(U(z),z) = [lzl[|U()]| and [U(z)] = [l],

for all x € E, and « is a regularization parameter, whose value a« = «(h) is
selected by the equation p(a) = a~9hP with p(a) = a(ag + ||lz|)) and ag, ¢, p
are some fixed positive constants. Further, in [9] and [10], method (1.3) was
modified for the case, when Ag is a Lipschitz continuous and monotone map-
ping and the other A; is a A;-inverse-strongly monotone mapping in Hilbert
spaces.

For the stated problem, as in [8], we consider the following equation

N

S 0t (Ai(e) — ) + Uz — a*) =6,

=0

N0:0<Hi<ﬂi+1<1a i:1727"‘7N_17

(1.4)

where the initial point 7 ¢ S. Formulating a procedure to numerically im-
plement (1.4) we can use an explicit method that are similar (27) and (28) in

2].

Clearly, the mapping A(.) := Zi]\io ati(A;(.) — f?) + aU, for each fixed
a > 0, is hemicontinuous and monotone with D(A) = E. Hence, A is maximal
monotone (see [1], Theorem 1.4.6). So, equation (1.4) possesses a unique
solution z%, for each o > 0. By the similar argument, as in [8], we have that
if a, 6/ — 0 then 2 converges strongly to zg € S, satisfying

— 27| = mi -zt 1.5
lzo — 27| = min ||z — 27| (1.5)

In this paper, we consider a choice @ = «(¢) by using the principle
p(a) = alla?, — 2+ = a7, (1.6)

where p, q are some positive constants and estimate convergence rates for l‘i( 5)
under the following conditions:

[ 4o0(y) — fo — Ap(w0)"(y — o) | < 7[[Ao(y) — foll, (1.7)
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for y in some neighbourhood of zy € S, where Aj(z) denotes the derivative of
Ap at z € E, Aj(x)* is the adjoint of Af(z), T is some positive constant, and

(U(x) =U(y),z —y) >myllz—yl|®’, Va,yeE, s>2, my>0. (1.8)

Condition (1.7) is called the tangential cone condition and is widely used in
the analysis of regularization methods for solving nonlinear ill-posed inverse
problems (see [16]).

Note that when A;(x) = f; for i = 1,2,..., N, we have p(a) = ||Ag(z2) —
ng. In addition, if ¢ = 0, then we obtain the residual principle, investigated
in Chapter 3 of [1] and therein references. In the case that ¢ > 0, (1.6) is
the generalized residual principle, that was first proposed in [11] for linear ill-
posed operator equations. Then, it was developed in [12] and [13]. Recently,
for nonlinear ill-posed problems involving mappings of monotone type, it was
studied in [14, 15], [17]-[20]. So, for the case A;(z) # f; with i = 1,2,..., N,
the principle above is named “generalized quasi-residual one”.

2. MAIN RESULTS

First, we have to prove the following lemmas.

Lemma 2.1. Let E be a reflexive and strictly convex Banach space with the
ES-property and strictly convex E*. Let {A;})¥., and {f;}, be N+1 potential,
hemicontinuous and monotone mappings on E and N +1 elements in E* such
that the set S of solutions for (1.1) be nonempty. Then, we have:

(i) The function p(a), defined in (1.6), is continuous on (ag,+00), for
each o > 0.
(ii) If Ay is continuous at x+ and
JAx(a®) — 71> 0, (2.)
for all § >0, where f = fn, then
lim p(a) = +o0.

a—r—+00

Proof. From (1.4) it follows

N
3 ati(Ay(al) — fFal — 2) + Ul — at), 2l —2) =0, VzeS.
=0
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Or,
N
Dot (Ai(ad) = Ai(z) + Aiz) = fi+ fi = ol - 2)
i=0 (2.2)
+a(U@S —at),25 —2)=0, Vzes.
Then, by virtue of (1.2), (2.2) and the monotonicity of A;, we have
Yo
s +y .0 b
(Ul —x ),xa—z>§5zgalm||a:a—z||, VzeS. (2.3)
Therefore,
S| SN
5 _ 2 5+ + +
o 1P~ b= - 1+ o |l 193 G <0
and hence,
0 < fag, — 27|
N
1 . 1
< Z{Hx — 2| +5Z; p
(2.4)

N 1 2 N 1
+ <Hx+—z”—|—5zalm> +4||g;+_z||5zalm}
=0 =0
N 1 N 1 1/2
+ +
<|z—= H+5Z£al_m+<5zal_m”z—x y) .
1=

=0

Now, let @ and § be any two numbers in (ag,+00). From (1.4), we also have
that

N N
D ki (Aiad) = 1) = Y BHH(AuD) — 7)) + aU(af, — a™)
i=0 i=0

:ﬁU(mg —27) =0.

Consequently,
a(U(x), —2) = Ula) — 27),20 — 23) + (a = B)(U(af — a¥), 2, — )
N N
)k A(x0) — Ai(h), xh —ad) + Y (k=B (Ai(ah) - f7, ) — )
i=0 1=0

=0.
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The last equality together with the following property of U (see Lemma 1.5.4
in [1]),

(U() = U(y),z —y) = (|«] = llyl)?
for any z, y € E, implies that

1 — )
< [lesflyg +u+z'“ Tl asad) - £1] el + 1,

So, from the last inequality and (2.4) with a replaced by «q in its right-hand
side, it follows the continuity of |9 — x| at any 8 € (ag, +00). Thus, p(a)
is continuous on (g, +00). Now, again from (1.4), we can write that

é
(llrg — 2

N
Dok (Ailad) — Ai(e?)) +all(e Za“l () = Aia™)-
1=0

Acting on the last equality by % — ¥ and using the monotonicity of 4; and
the definition of U, we obtain that

N
1
s §
lee —2*l < Y = I1F) = A )]l
=0

Thus,
. ) o + _
im_[lad 2t =0
Clearly, the conclusion of the Lemma is followed from the last equality,
N1y
pla) = o |Lx(al) - 4] - > 48 = 71,
7=

the continuity of Ay at xt, the local boundedness of A; (see [1], Theorem
1.3.16), for i = 0,1,..., N, and un > p;. O

Lemma 2.2. Let E, A; and f; be as in Lemma 2.1. For each p, q, § > 0,
there exists at least a value o > 0 such that (1.6) holds.

Proof. Clearly, from Lemma 2.1, the function a — o' *9||z? — 20| = afp(a)
is continuous on (ay, +00) for any ap > 0 and

lim afp(a) = +o0.

a—r—+00

On the other hand, from (2.4) it follows that

N N 1/2
ap(a) < aftHjzT — 2| + ozq(SZoz’“ + af (a&Za’“Hm+ - z||> .
1=0 1=0
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For each 0 < § < 1, we can choose « > 0 such that
N N 1/2
Iz — 2], aq(sZa’“, ol (adZa“"||m+ - z||> < oP/3.
i=0 i=0

So, adp(a) < 6P for sufficiently small ov. Hence, there exists at least a value
@ = «(d) such that «(0)2p(a(d)) = P. O

Lemma 2.3. Let E, A; and f; be as in Lemma 2.1. Moereover, let any N
mappings of the system {Ai}i]\;o be strictly monotone at x*. Then,

%gr{l) a(0) =0.

Proof. Without any loss of generality, we assume that A; is a strictly monotone
mapping at 27 with 4 = 0,1,..., N — 1. We shall prove by supposing that the
conclusion is not true. Then, there is a sequence d; — 0 as k — 400 with

1) @ = a(dx) — Cp, some positive constant; or

2) ap — +oo.

In the case 1), from (1.6), is follows that C&ﬂ limg 400 Hx%’; —at| = 0.
Next, replacing 6, a and x in (1.4), respectively, by 0y, @ and :zg; , and passing
k — +o00, we obtain that

N
D CH(Ai(a") — Ai(2)) =0, z€S. (2.5)
i=0
Acting on the equality by 27 — 2 and using the monotonicity of A; for i =
0,1,...,N, and Cy > 0, we have
(A;(z1) — Ai(2), 2t —2) =0, i=0,1,...,N.

Since A; is strictly monotone at x* for i = 0,1,...,N — 1, 2t € ﬂi]igl S;.
Therefore, from (2.5) it follows that T € Sy. Hence, 1 € S, that contradicts
the assumption z* ¢ S.

In the case 2), also from (1.6), it follows that

lim H:Cgk — 27| = lim p(fék) = lim —% =0. (2.6)
k—+4o0 k k—+4oc0 QO k—+o00 ak+q

Again, replacing 9§, a and z in (1.4), respectively, by 0y, @y and a:g’“k, we obtain
that

N-1
1
— 0 0 é é é é
a,” HAN(‘TEI;)*f]\/EH*Z—aikuN_MHAi(xakk)*fikH —[lAo(z7, ) — fo"|l
=0

.5 _
< apllag, — ol = p(aw) =@, 5.
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Tending k — +oc in the last inequality and using (2.6), the local boundedness
of A;, for i =0,1,..., N — 1, the continuity of Ay at 2™ with condition (2.1),
and the fact that ap — +o0o and §; — 0, we obtain the inequality +oo < 0,
that is impossible. This completes the proof. O

Lemma 2.4. Let E, A; and f; be as in Lemma 2.3. If ¢ > p, then
lim 6 /a(d) = 0.
lim 5/a(5) = 0
Proof. 1t is easy to see that
s 1P
— [P —q a—p _ q-p
05| = 7000 a6 = pla(eats) .
On the other hand, from (2.4) it follows that

N N 1/2
pa(0) < al@)le” = 2] + 53" 0 (6) + (a5 X e @)~ 41)
=0 =0
Therefore,

i [am] =

The lemma is proved. O

Lemma 2.5. Let E/, A; and f; be as in Lemma 2.3. If 0 < p < g, then

. ) .
35y Fa =0

Proof. 1t follows from Lemmas 2.3, 2.4 and standard results about convergence
of the Browder-Tikhonov regularization method for (1.4) (see [8, 20]). O

Lemma 2.6. Let I/, A; and f; be as in Lemma 2.3 and let 0 < p < q. Then,
there are constants C1, Co > 0 such that, for sufficiently small § > 0, the
relation

Cy < Pa179(8) < Oy
holds.

Proof. Because of (1.2) and (1.5), we have, for all a > 0, f) € E*,
pla) = 04<5)H~7?6a(5) —a,
which together with Lemma 2.5 implies that

lim 6?a~179(8) = lim o (8)p(a(6))) = ||z — =T > 0.
0—0 0—0

This implies the conclusion of the lemma. O
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Theorem 2.7. Let E, A; and f; be as in Lemma 2.3. In addition, assume
that the following conditions hold:

(i) the duality mapping U satisfies (1.8);
(ii) Ao is Fréchet differentiable at some neighbourhood of S with (1.7);
(iii) there exists an element w € E such that

Ay(z0)*w =U(zo — 2"), and
(iv) the parameter o = () is chosen by (1.6) with g > p.

Then, we have

35— a0ll = 05", 0= - min { (g = p)/(s = 1) pur/s}.

Proof. From (1.4), (1.8), the monotonicity of A; and condition (iii) of the
theorem it follows

my |l — zo|l* < <U(wi —at) = Ulwo — 2™), a7, — o)

:—Za’“<f6 ; —$0>

+ <U zo — 1), 20 — mi)

IN

N

0 .

> > aki|zd, — zol| + (w, Ap(wo) (z0 — 3))
i=0

IN

N
— > allag — ol + lwlll| Ap (o) (wo — x|l
i=0

On the other hand, from (1.7), we have that
145 (o) (w0 — 22|

< (14 7)1 Ao(z2) — foll < (1+7) [Ile(xi) —foll+ 5}

[6+ZoﬂzuA il +alled x+||]

< nfryan valsd - +||+Zam||A - el
=0
If «v is chosen by (1.6), then Hxi(5) — x| < ¢, a sufficiently small and positive

constant, for sufficiently small §, and «(J) < 1. Consequently, we have that
ati(6) < a1 (6) and ||Ai(wqs)) — Ai(zo)|| < C, a positive constant, because
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A; is locally bounded at . Therefore, from (2.7) and Lemma 2.6, we obtain
that

my |5y — wol|* < (14 N)Cad"Pal(6) x5 — ol

+[|w|[(1+7)|6(1+ N) + " 9(5)6” + CNaH (6)

1- _m
< (N0 5T 0l ) o[ +ONCy ST,
Using the implication
a, b7 c > 0, p > q, apgbaq—i—c — ap:O(bp/(p_Q)+C)

we obtain
Hxi(a) — ol = 0(577)'
The theorem is proved. O
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