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Abstract. In this paper we present a generalized quasi-residual principle to select a value

for regularization parameter in the Browder–Tikhonov regularization method, for finding a

solution of a system of ill-posed equations involving potential, hemicontinuous and monotone

mappings on Banach spaces. An estimate of convergence rates for regularized solution is also

established.

1. Introduction

Let E be a real reflexive Banach space and E∗ be its dual space, which
both are assumed to be strictly convex. For the sake of simplicity, norms of
E and E∗ are denoted by the symbol ‖.‖ and 〈x∗, x〉 denotes the value of the
linear and continuous functional x∗ ∈ E∗ at the point x ∈ E. When {xn} is
a sequence in E, xn ⇀ x means that {xn} converges weakly to x and xn → x
means the strong convergence.
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In addition, we assume that E possesses the ES-property: weak convergence
and convergence in norms for any sequence in E follow its strong convergence.

Consider the problem of finding a solution for a system of the following
equations

Ai(x) = fi, fi ∈ E∗, i = 0, 1, . . . , N, (1.1)

where N is a fixed positive integer and Ai is a potential, hemicontinuous
and monotone mapping on E, i.e., D(Ai) ≡ E for i = 0, 1, . . . , N , and D(A)
denotes the domain of A. Recall that a mapping A of domain D(A) ⊆ E into
E∗ is called λ-inverse-strongly monotone, iff

〈A(x)−A(y), x− y〉 ≥ λ‖A(x)−A(y)‖2, ∀ x, y ∈ D(A),

where λ is a positive constant.

The examples of inverse-strongly monotone operators in the Banach space
setting can see in [3].

A is called monotone, iff A satisfies the following condition

〈A(x)−A(y), x− y〉 ≥ 0, ∀ x, y ∈ D(A);

strictly monotone at a point y ∈ D(A), iff the equality in the last inequality
follows x = y; and potential, iff A(x) = ϕ′(x), the Gâteaux derivative of a
convex functional ϕ(x).

Denote by Si the set of solutions for ith equation in (1.1). Throughout

this paper, we assume that S :=
⋂N
i=0 Si 6= ∅. We are specially interested in

the situation where the data fi is not exactly known, i.e., we have only the
approximations f δi ∈ E∗, satisfying

‖fi − f δi ‖ ≤ δ, δ → 0, (1.2)

for i = 0, 1, . . . , N .

It is well-known in [1] that each equation in (1.1), in general, is ill-posed,
by this we mean that the solutions do not depend continuously on the data
fi. Consequently, the system of equations (1.1), in general, is ill-posed. Many
practical inverse problems are naturally formulated in such a way and some
methods are studied for solving (1.1) (see, [4]–[7]). In 2006, to solve (1.1) in
the case that fi = θ-the null element in E∗, and Ai is a potential, hemicontin-
uous and monotone mapping on E, in [8], Buong presented the regularization
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method of Browder–Tikhonov type:

N∑
i=0

αµjAhi (x) + αU(x) = θ,

µ0 = 0 < µi < µi+1 < 1, i = 1, 2, . . . , N − 1,

(1.3)

where Ahi is a hemicontinuous and monotone approximation for Ai, U is the
normalized duallity mapping of E, i.e., U : E → 2E

∗
, that satisfies the condi-

tion

〈U(x), x〉 = ‖x‖‖U(x)‖ and ‖U(x)‖ = ‖x‖,
for all x ∈ E, and α is a regularization parameter, whose value α = α(h) is
selected by the equation ρ̃(α) = α−qhp with ρ̃(α) = α(a0 + ‖xhα‖) and a0, q, p
are some fixed positive constants. Further, in [9] and [10], method (1.3) was
modified for the case, when A0 is a Lipschitz continuous and monotone map-
ping and the other Ai is a λi-inverse-strongly monotone mapping in Hilbert
spaces.

For the stated problem, as in [8], we consider the following equation

N∑
i=0

αµi(Ai(x)− f δi ) + αU(x− x+) = θ,

µ0 = 0 < µi < µi+1 < 1, i = 1, 2, . . . , N − 1,

(1.4)

where the initial point x+ /∈ S. Formulating a procedure to numerically im-
plement (1.4) we can use an explicit method that are similar (27) and (28) in
[2].

Clearly, the mapping A(.) :=
∑N

i=0 α
µi(Ai(.) − f δi ) + αU , for each fixed

α > 0, is hemicontinuous and monotone with D(A) = E. Hence, A is maximal
monotone (see [1], Theorem 1.4.6). So, equation (1.4) possesses a unique
solution xδα, for each α > 0. By the similar argument, as in [8], we have that
if α, δ/α→ 0 then xδα converges strongly to x0 ∈ S, satisfying

‖x0 − x+‖ = min
z∈S

‖z − x+‖. (1.5)

In this paper, we consider a choice α = α(δ) by using the principle

ρ(α) := α‖xδα − x+‖ = α−qδp, (1.6)

where p, q are some positive constants and estimate convergence rates for xδα(δ)
under the following conditions:

‖A0(y)− f0 −A′0(x0)∗(y − x0)‖ ≤ τ‖A0(y)− f0‖, (1.7)
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for y in some neighbourhood of x0 ∈ S, where A′0(x) denotes the derivative of
A0 at x ∈ E, A′0(x)∗ is the adjoint of A′0(x), τ is some positive constant, and

〈U(x)− U(y), x− y〉 ≥ mU‖x− y‖s, ∀ x, y ∈ E, s ≥ 2, mU > 0. (1.8)

Condition (1.7) is called the tangential cone condition and is widely used in
the analysis of regularization methods for solving nonlinear ill-posed inverse
problems (see [16]).

Note that when Ai(x) ≡ fi for i = 1, 2, . . . , N, we have ρ(α) = ‖A0(x
δ
α) −

f δ0‖. In addition, if q = 0, then we obtain the residual principle, investigated
in Chapter 3 of [1] and therein references. In the case that q > 0, (1.6) is
the generalized residual principle, that was first proposed in [11] for linear ill-
posed operator equations. Then, it was developed in [12] and [13]. Recently,
for nonlinear ill-posed problems involving mappings of monotone type, it was
studied in [14, 15], [17]–[20]. So, for the case Ai(x) 6= fi with i = 1, 2, . . . , N,
the principle above is named “generalized quasi-residual one”.

2. Main Results

First, we have to prove the following lemmas.

Lemma 2.1. Let E be a reflexive and strictly convex Banach space with the
ES-property and strictly convex E∗. Let {Ai}Ni=0 and {fi}Ni=0 be N+1 potential,
hemicontinuous and monotone mappings on E and N+1 elements in E∗ such
that the set S of solutions for (1.1) be nonempty. Then, we have:

(i) The function ρ(α), defined in (1.6), is continuous on (α0,+∞), for
each α0 > 0.

(ii) If AN is continuous at x+ and

‖AN (x+)− f δN‖ > 0, (2.1)

for all δ ≥ 0, where f0N = fN , then

lim
α→+∞

ρ(α) = +∞.

Proof. From (1.4) it follows

N∑
i=0

αµi〈Ai(xδα)− f δi , xδα − z〉+ α〈U(xδα − x+), xδα − z〉 = 0, ∀ z ∈ S.
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Or,

N∑
i=0

αµi〈Ai(xδα)−Ai(z) +Ai(z)− fi + fi − f δi , xδα − z〉

+ α〈U(xδα − x+), xδα − z〉 = 0, ∀ z ∈ S.

(2.2)

Then, by virtue of (1.2), (2.2) and the monotonicity of Ai, we have

〈U(xδα − x+), xδα − z〉 ≤ δ
N∑
i=0

1

α1−µi
‖xδα − z‖, ∀ z ∈ S. (2.3)

Therefore,

‖xδα−x+‖2−‖xδα−x+‖
[
‖z−x+‖+δ

N∑
i=0

1

α1−µi

]
−‖z−x+‖δ

N∑
i=0

1

α1−µi
≤ 0,

and hence,

0 ≤ ‖xδα − x+‖

≤ 1

2

{
‖x+ − z‖+ δ

N∑
i=0

1

α1−µi

+

√√√√(‖x+ − z‖+ δ
N∑
i=0

1

α1−µi

)2

+ 4‖x+ − z‖δ
N∑
i=0

1

α1−µi

}

≤ ‖z − x+‖+ δ
N∑
i=0

1

α1−µi
+

(
δ

N∑
i=0

1

α1−µi
‖z − x+‖

)1/2

.

(2.4)

Now, let α and β be any two numbers in (α0,+∞). From (1.4), we also have
that

N∑
i=0

αµi(Ai(x
δ
α)− f δi )−

N∑
i=0

βµi(Ai(x
δ
β)− f δi ) + αU(xδα − x+)

− βU(xδβ − x+) = 0.

Consequently,

α〈U(xδα − x+)− U(xδβ − x+), xδα − xδβ〉+ (α− β)〈U(xδβ − x+), xδα − xδβ〉

+
N∑
i=0

αµi〈Ai(xδα)−Ai(xδβ), xδα−xδβ〉+
N∑
i=0

(αµi−βµi)〈Ai(xδβ)−f δi , xδα−xδβ〉

= 0.
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The last equality together with the following property of U (see Lemma 1.5.4
in [1]),

〈U(x)− U(y), x− y〉 ≥ (‖x‖ − ‖y‖)2

for any x, y ∈ E, implies that

(‖xδα − x+‖ − ‖xδβ − x+‖)2

≤
[
|α− β|
α0

‖xδβ − x+‖+
N∑
i=1

|αµi − βµi |
α0

‖Ai(xδβ)− f δi ‖
]
(‖xδα‖+ ‖xδβ‖).

So, from the last inequality and (2.4) with α replaced by α0 in its right-hand
side, it follows the continuity of ‖xδα − x+‖ at any β ∈ (α0,+∞). Thus, ρ(α)
is continuous on (α0,+∞). Now, again from (1.4), we can write that

N∑
i=0

αµi(Ai(x
δ
α)−Ai(x+)) + αU(xδα − x+) =

N∑
i=0

αµi(f δi −Ai(x+)).

Acting on the last equality by xδα − x+ and using the monotonicity of Ai and
the definition of U , we obtain that

‖xδα − x+‖ ≤
N∑
i=0

1

α1−µi
‖f δi −Ai(x+)‖.

Thus,
lim

α→+∞
‖xδα − x+‖ = 0.

Clearly, the conclusion of the Lemma is followed from the last equality,

ρ(α) ≥ αµN
[
‖AN (xδα)− f δN‖ −

N−1∑
i=0

1

αµN−µi
‖Ai(xδα)− f δi ‖

]
,

the continuity of AN at x+, the local boundedness of Ai (see [1], Theorem
1.3.16), for i = 0, 1, . . . , N , and µN > µi. �

Lemma 2.2. Let E, Ai and fi be as in Lemma 2.1. For each p, q, δ > 0,
there exists at least a value α > 0 such that (1.6) holds.

Proof. Clearly, from Lemma 2.1, the function α → α1+q‖xδα − x0‖ = αqρ(α)
is continuous on (α0,+∞) for any α0 > 0 and

lim
α→+∞

αqρ(α) = +∞.

On the other hand, from (2.4) it follows that

αqρ(α) ≤ αq+1‖x+ − z‖+ αqδ
N∑
i=0

αµi + αq
(
αδ

N∑
i=0

αµi‖x+ − z‖
)1/2

.
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For each 0 < δ < 1, we can choose α > 0 such that

αq+1‖x+ − z‖, αqδ
N∑
i=0

αµi , αq
(
αδ

N∑
i=0

αµi‖x+ − z‖
)1/2

< δp/3.

So, αqρ(α) < δp for sufficiently small α. Hence, there exists at least a value
α = α(δ) such that α(δ)qρ(α(δ)) = δp. �

Lemma 2.3. Let E, Ai and fi be as in Lemma 2.1. Moereover, let any N
mappings of the system {Ai}Ni=0 be strictly monotone at x+. Then,

lim
δ→0

α(δ) = 0.

Proof. Without any loss of generality, we assume that Ai is a strictly monotone
mapping at x+ with i = 0, 1, . . . , N − 1. We shall prove by supposing that the
conclusion is not true. Then, there is a sequence δk → 0 as k → +∞ with

1) αk = α(δk)→ C0, some positive constant; or
2) αk → +∞.

In the case 1), from (1.6), is follows that C1+q
0 limk→+∞ ‖xδkαk − x

+‖ = 0.

Next, replacing δ, α and x in (1.4), respectively, by δk, αk and xδkαk , and passing
k → +∞, we obtain that

N∑
i=0

Cµi0 (Ai(x
+)−Ai(z)) = 0, z ∈ S. (2.5)

Acting on the equality by x+ − z and using the monotonicity of Ai for i =
0, 1, . . . , N , and C0 > 0, we have

〈Ai(x+)−Ai(z), x+ − z〉 = 0, i = 0, 1, . . . , N.

Since Ai is strictly monotone at x+ for i = 0, 1, . . . , N − 1, x+ ∈
⋂N−1
i=0 Si.

Therefore, from (2.5) it follows that x+ ∈ SN . Hence, x+ ∈ S, that contradicts
the assumption x+ /∈ S.

In the case 2), also from (1.6), it follows that

lim
k→+∞

‖xδkαk − x
+‖ = lim

k→+∞

ρ(αk)

αk
= lim

k→+∞

δpk
α1+q
k

= 0. (2.6)

Again, replacing δ, α and x in (1.4), respectively, by δk, αk and xδkαk , we obtain
that

αµNk

[
‖AN (xδkαk)−f δkN ‖−

N−1∑
i=0

1

αk
µN−µi ‖Ai(x

δk
αk

)−f δki ‖
]
−‖A0(x

δk
αk

)−f δk0 ‖

≤ αk‖xδkαk − x
+‖ = ρ(αk) = α−qk δpk.
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Tending k → +∞ in the last inequality and using (2.6), the local boundedness
of Ai, for i = 0, 1, . . . , N − 1, the continuity of AN at x+ with condition (2.1),
and the fact that αk → +∞ and δk → 0, we obtain the inequality +∞ ≤ 0,
that is impossible. This completes the proof. �

Lemma 2.4. Let E, Ai and fi be as in Lemma 2.3. If q ≥ p, then

lim
δ→0

δ/α(δ) = 0.

Proof. It is easy to see that[
δ

α(δ)

]p
= [δpα(δ)−q]α(δ)q−p = ρ(α(δ))α(δ)q−p.

On the other hand, from (2.4) it follows that

ρ(α(δ)) ≤ α(δ)‖x+ − z‖+ δ

N∑
i=0

αµi(δ) +

(
α(δ)δ

N∑
i=0

αµi(δ)‖x+ − z‖
)1/2

.

Therefore,

lim
δ→0

[
δ

α(δ)

]p
= 0.

The lemma is proved. �

Lemma 2.5. Let E, Ai and fi be as in Lemma 2.3. If 0 < p ≤ q, then

lim
δ→0

xδα(δ) = x0.

Proof. It follows from Lemmas 2.3, 2.4 and standard results about convergence
of the Browder–Tikhonov regularization method for (1.4) (see [8, 20]). �

Lemma 2.6. Let E, Ai and fi be as in Lemma 2.3 and let 0 < p ≤ q. Then,
there are constants C1, C2 > 0 such that, for sufficiently small δ > 0, the
relation

C1 ≤ δpα−1−q(δ) ≤ C2

holds.

Proof. Because of (1.2) and (1.5), we have, for all α > 0, f δi ∈ E∗,

ρ(α) = α(δ)‖xδα(δ) − x
+‖,

which together with Lemma 2.5 implies that

lim
δ→0

δpα−1−q(δ) = lim
δ→0

α−1(δ)ρ(α(δ))) = ‖x0 − x+‖ > 0.

This implies the conclusion of the lemma. �
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Theorem 2.7. Let E, Ai and fi be as in Lemma 2.3. In addition, assume
that the following conditions hold:

(i) the duality mapping U satisfies (1.8);
(ii) A0 is Fréchet differentiable at some neighbourhood of S with (1.7);

(iii) there exists an element ω ∈ E such that

A′0(x0)
∗ω = U(x0 − x+), and

(iv) the parameter α = α(δ) is chosen by (1.6) with q > p.

Then, we have

‖xδα(δ) − x0‖ = O(δη), η =
1

1 + q
min

{
(q − p)/(s− 1); pµ1/s

}
.

Proof. From (1.4), (1.8), the monotonicity of Ai and condition (iii) of the
theorem it follows

mU‖xδα − x0‖s ≤ 〈U(xδα − x+)− U(x0 − x+), xδα − x0〉

=
1

α

N∑
i=0

αµi
〈
f δi −Ai(xδα), xδα − x0

〉
+
〈
U(x0 − x+), x0 − xδα

〉
≤ δ

α

N∑
i=0

αµi‖xδα − x0‖+
〈
ω,A′0(x0)(x0 − xδα)

〉
≤ δ

α

N∑
i=0

αµi‖xδα − x0‖+ ‖ω‖‖A′0(x0)(x0 − xδα)‖.

(2.7)

On the other hand, from (1.7), we have that

‖A′0(x0)(x0 − xδα)‖

≤ (1 + τ)‖A0(x
δ
α)− f0‖ ≤ (1 + τ)

[
‖A0(x

δ
α)− f δ0‖+ δ

]
≤ (1 + τ)

[
δ +

N∑
i=1

αµi‖Ai(xδα)− f δi ‖+ α‖xδα − x+‖
]

≤ (1 + τ)

[
δ

N∑
i=0

αµi + α‖xδα − x+‖+

N∑
i=1

αµi‖Ai(xδα)−Ai(x0)‖
]
.

If α is chosen by (1.6), then ‖xδα(δ) − x0‖ < c, a sufficiently small and positive

constant, for sufficiently small δ, and α(δ) ≤ 1. Consequently, we have that
αµi(δ) ≤ αµ1(δ) and ‖Ai(xα(δ)) − Ai(x0)‖ ≤ C, a positive constant, because
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Ai is locally bounded at x0. Therefore, from (2.7) and Lemma 2.6, we obtain
that

mU‖xδα(δ) − x0‖
s ≤ (1 +N)C2δ

1−pαq(δ)‖xδα(δ) − x0‖

+ ‖ω‖(1 + τ)

[
δ(1 +N) + α−q(δ)δp + CNαµ1(δ)

]
≤ (1+N)C2C

−q/(1+q)
1 δ

1−p
1+q ‖xδα(δ)−x0‖+CNC

− µ1
1+q

1 δ
pµ1
1+q .

Using the implication

a, b, c ≥ 0, p > q, ap ≤ baq + c =⇒ ap = O(bp/(p−q) + c)

we obtain

‖xδα(δ) − x0‖ = O
(
δη
)
.

The theorem is proved. �
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