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Abstract. In this paper, we prove a fixed point result in the framework of partially ordered

metric spaces satisfying a generalized contractive condition of rational type. The result

generalize and extend some known results in the literature.

1. Introduction and Preliminaries

In [9], Jaggi and Dass proved the following fixed point theorem.

Theorem 1.1. Let T be a continuous self map defined on a complete metric
space (X, d). Suppose that T satisfies the following contractive condition:

d(Tx, Ty) ≤ α

(
d(x, Tx)d(y, Ty)

d(x, y) + d(x, Ty) + d(y, Tx)

)
+ β(d(x, y)) (1.1)

for all x, y ∈ X, x ≥ y and for some α, β ∈ [0, 1) with α+ β < 1, then T has
a unique fixed point in X.

The aim of this paper is to give a version of Theorem 1.1 in partially ordered
metric spaces.
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The Banach contraction mapping is one of the pivotal results of analysis.
It is very popular tool for solving existence problems in many different fields
of mathematics. There are a lot of generalizations of the Banach contraction
principle in the literature (see [1]-[11] and references cited therein).

Ran and Reurings [11] extended the Banach contraction principle in par-
tially ordered sets with some applications to linear and nonlinear matrix equa-
tions. While Nieto and Rodŕiguez-López [10] extended the result of Ran and
Reurings and applied their main theorems to obtain a unique solution for a
first order ordinary differential equation with periodic boundary conditions.
Bhaskar and Lakshmikantham [2] introduced the concept of mixed monotone
mappings and obtained some coupled fixed point results. Also, they applied
their results on a first order differential equation with periodic boundary con-
ditions. Recently, many researchers have obtained fixed point, common fixed
point results in metric spaces and partially ordered metric spaces. The pur-
pose of this paper is to establish a fixed point result satisfying a generalized
contraction mappings of rational type in partially ordered metric spaces.

2. Main Results

Definition 2.1. Suppose (X,≤) is a partially ordered set and T : X → X. T
is said to be monotone nondecreasing if for all x, y ∈ X,

x ≤ y implies Tx ≤ Ty. (2.1)

Theorem 2.2. Let (X,≤) be a partially ordered set and suppose that there ex-
ists a metric d on X such that (X, d) is a complete metric space. Suppose that
T is a continuous self-mapping on X, T is monotone nondecreasing mapping
and

d(Tx, Ty) ≤ α

(
d(x, Tx)d(y, Ty)

d(x, y) + d(x, Ty) + d(y, Tx)

)
+ β(d(x, y)) (2.2)

for all x, y ∈ X, x ≥ y and for some α, β ∈ [0, 1) with α + β < 1. If there
exists x0 ∈ X with x0 ≤ Tx0, then T has a fixed point.

Proof. If Tx0 = x0, then we have the result. Suppose that x0 < Tx0. Since T
is a monotone nondecreasing mapping, we obtain by induction that

x0 < Tx0 ≤ T 2x0 ≤ . . . ≤ Tnx0 ≤ Tn+1x0 ≤ . . . . (2.3)

By induction, we can construct a sequence {xn} in X such that xn+1 = Txn,
for every n ≥ 0. Since T is monotone nondecreasing mapping, we obtain

x0 ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ xn+1 ≤ . . . .
If there exists n ≥ 1 such that xn+1 = xn, then from xn+1 = Txn = xn, xn is
a fixed point and the proof is finished. Suppose that xn+1 6= xn, for all n ≥ 1.
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Since xn > xn−1, for all n ≥ 1, from (2.2), we have

d(xn+2, xn+1) = d(Txn+1, Txn)

≤ α

(
d(xn+1, Txn+1)d(xn, Txn)

d(xn+1, xn) + d(xn+1, Txn) + d(xn, Txn+1)

)
+β(d(xn+1, xn))

= α

(
d(xn+1, xn+2)d(xn, xn+1)

d(xn+1, xn) + d(xn, xn+2)

)
+ β(d(xn+1, xn))

≤ α

(
d(xn+1, xn+2)d(xn, xn+1)

d(xn+1, xn+2)

)
+ β(d(xn+1, xn))

= α(d(xn, xn+1)) + β(d(xn+1, xn))

= (α+ β)d(xn+1, xn), (2.4)

which implies that

d(xn+2, xn+1) ≤ (α+ β)d(xn+1, xn). (2.5)

Using, mathematical induction we have

d(xn+2, xn+1) ≤ (α+ β)n+1d(x1, x0). (2.6)

Put k = α+ β < 1. Now, we shall prove that {xn} is a Cauchy sequence. For
m ≥ n, we have

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + ...+ d(xn+1, xn)

≤
(
km−1 + km−2 + ...+ kn

)
d(x1, x0)

≤
(

kn

1− k

)
d(x1, x0), (2.7)

which implies that d(xm, xn) → 0, as m,n → ∞. Thus {xn} is a Cauchy
sequence in a complete metric space X. Therefore, there exits u ∈ X such
that limn→∞ xn = u. By the continuity of T , we have

Tu = T ( lim
n→∞

xn) = lim
n→∞

Txn = lim
n→∞

xn+1 = u.

Hence u is a fixed point of T . �

In what follows, we prove that Theorem 2.2 is still valid for T , not necessarily
continuous, assuming the following hypothesis in X.

If {xn} is a non-decreasing sequence in X such that xn → x, then x =
sup{xn}.

Theorem 2.3. Let (X,≤) be a partially ordered set and suppose that there
exists a metric d on X such that (X, d) is a complete metric space. Suppose
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that T is a self-mapping on X, T is monotone nondecreasing mapping and

d(Tx, Ty) ≤ α

(
d(x, Tx)d(y, Ty)

d(x, y) + d(x, Ty) + d(y, Tx)

)
+ β(d(x, y)) (2.8)

for all x, y ∈ X, x ≥ y and for some α, β ∈ [0, 1) with α+ β < 1.
Assume that {xn} is a non-decreasing sequence in X such that xn → x,

then x = sup{xn}. If there exists x0 ∈ X with x0 ≤ Tx0, then T has a fixed
point.

Proof. Following the proof of Theorem 2.2, we have {xn} is a Cauchy sequence.
Since {xn} is a non-decreasing sequence in X such that xn → u, then u =
sup{xn}. Particularly, xn ≤ u for all n ∈ N.

Since T is monotone nondecreasing mapping Txn ≤ Tu, for all n ∈ N or,
equivalently, xn+1 ≤ Tu, for all n ∈ N. Moreover, as xn < xn+1 ≤ Tu and
u = sup{xn}, we get u ≤ Tu.

Construct a sequence {yn} as y0 = u, yn+1 = Tyn, for all n ≥ 0. Since
y0 ≤ Ty0, arguing like above part, we obtain that {yn} is a non-decreasing
sequence and limn→∞ yn = y for certain y ∈ X, so we have y = sup{yn}. Since
xn < u = y0 ≤ Tu = Ty0 ≤ yn ≤ y, for all n, using (2.8), we have

d(xn+1, yn+1) = d(Txn, Tyn)

≤ α

(
d(xn, Txn)d(yn, T yn)

d(xn, yn) + d(xn, T yn) + d(yn, Txn)

)
+β(d(xn, yn))

= α

(
d(xn, xn+1)d(yn, yn+1)

d(xn, yn) + d(xn, yn+1) + d(yn, xn+1)

)
+β(d(xn, yn)). (2.9)

Letting n → ∞, we have d(u, y) ≤ βd(u, y). As β < 1, we have d(u, y) = 0.
Particularly, u = y = sup{yn}, and consequently, u ≤ Tu ≤ u. Hence we
conclude that u is a fixed point of T . �

Now, we shall prove the uniqueness of the fixed point.

Theorem 2.4. In addition to the hypotheses of Theorem 2.2 (or Theorem
2.3), suppose that for every x, y ∈ X, there exists z ∈ X that is comparable to
x and y, then T has a unique fixed point.

Proof. From Theorem 2.2 (or Theorem 2.3), the set of fixed points of T is
non-empty. Suppose that x, y ∈ X are two fixed points of T . We distinguish
two cases:
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Case 1. If x and y are comparable and x 6= y, then using (2.2), we have

d(x, y) = d(Tx, Ty)

≤ α

(
d(x, Tx)d(y, Ty)

d(x, y) + d(x, Ty) + d(y, Tx)

)
+ β(d(x, y))

= β(d(x, y)),

which implies that d(x, y) = 0, as β < 1. Hence x = y.
Case 2. If x is not comparable to y, there exists z ∈ X that is comparable
to x and y. Monotonicity implies that that Tnz is comparable to Tnx = x
and Tny = y for n = 0, 1, 2, . . .. If there exists n0 ≥ 1 such that Tn0z = x,
then as x is a fixed point, the sequence {Tnz : n ≥ n0} is constant, and,
consequently, limn→∞ T

nz = x. On the other hand, if Tnz 6= x for n ≥ 1,
using the contractive condition, we obtain, for n ≥ 2,

d(Tnz, x) = d(Tnz, Tnx)

≤ α

(
d(Tn−1x, Tnx)d(Tn−1z, Tnz)

d(Tn−1x, Tn−1z) + d(Tn−1x, Tnz) + d(Tn−1z, Tnx)

)
+β(d(Tn−1x, Tn−1z))

= α

(
d(x, x)d(Tn−1z, Tnz)

d(x, Tn−1z) + d(x, Tnz) + d(Tn−1z, x)

)
+ β(d(x, Tn−1z))

= β(d(x, Tn−1z)),

which implies that d(Tnz, x) ≤ β(d(Tn−1z, x)). Using mathematical induc-
tion, we have d(Tnz, x) ≤ βn(d(z, x)), for n ≥ 2, and as β < 1, we have
limn→∞ T

nz = x.
Using a similar argument, we can prove that limn→∞ T

nz = y. Now, the
uniqueness of the limit implies x = y. Hence T has a unique fixed point. �

Other consequences of our results are the following for the mappings involv-
ing contractions of integral type.

Denote by Λ the set of functions µ : [0,∞)→ [0,∞) satisfying the following
hypotheses:

(h1) µ is a Lebesgue-integrable mapping on each compact subset of [0,∞);
(h2) for any ε > 0, we have

∫ ε
0 µ(t)dt > 0.

Corollary 2.5. Let (X,≤) be a partially ordered set and suppose that there ex-
ists a metric d on X such that (X, d) is a complete metric space. Suppose that
T is a continuous self-mapping on X, T is monotone nondecreasing mapping
and ∫ d(Tx,Ty)

0
ψ(t)dt ≤ α

∫ d(x,Tx)d(y,Ty)
d(x,y)+d(y,Tx)+d(x,Ty)

0
ψ(t)dt+ β

∫ d(x,y)

0
ψ(t)dt
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for all x, y ∈ X for which x and y are comparable, ψ ∈ Λ and for some
α, β ∈ [0, 1) with α+ β < 1.

If there exists x0 ∈ X with x0 ≤ Tx0, then T has a fixed point.

Corollary 2.6. Let (X,≤) be a partially ordered set and suppose that there
exists a metric d on X such that (X, d) is a complete metric space. Suppose
that T is a self-mapping on X, T is monotone nondecreasing mapping and∫ d(Tx,Ty)

0
ψ(t)dt ≤ α

∫ d(x,Tx)d(y,Ty)
d(x,y)+d(x,Ty)+d(y,Tx)

0
ψ(t)dt+ β

∫ d(x,y)

0
ψ(t)dt,

for all x, y ∈ X for which x and y are comparable, ψ ∈ Λ and for some
α, β ∈ [0, 1) with α+ β < 1.

Assume that {xn} is a non-decreasing sequence in X such that xn → x,
then x = sup{xn}.

If there exists x0 ∈ X with x0 ≤ Tx0, then T has a fixed point.
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