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Abstract. The purpose of this article is to present some coincidence and fixed point theo-

rems for generalized contraction in partially ordered complete G-metric spaces. As an appli-

cation, we give an existence and uniqueness for the solution of some initial-boundary-value

problems. Our result generalizes and improves some theorems in the literature.

1. Introduction

The study of fixed points of mappings satisfying certain contractive condi-
tions has been at the center of rigorous research activity, see [14]–[18], [21, 22],
[24]–[27]. The notion of D-metric space is a generalization of usual metric
spaces and it is introduced by Dhage [1, 2]. Recently, Mustafa and Sims
[30, 31, 32, 34] have shown that most of the results concerning Dhage’s D-
metric spaces are invalid. In [31, 32], they introduced a improved version
of the generalized metric space structure which they called G-metric spaces.
For more results on G-metric spaces, one can refer to the papers [3]–[12],
[19, 23, 28, 29, 34, 35, 36]. Subsequently, several authors proved fixed point
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results in these spaces, some of them have given some applications to matrix
equations, ordinary differential equations, and integral equations.

2. Preliminaries

Definition 2.1. ([29]) Let X be a non-empty set, G : X ×X ×X → R+ be a
function satisfying the following properties

(G1) G(x, y, z) = 0 if x = y = z.
(G2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y.
(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y 6= z.
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) (symmetry in all three variables).
(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X (rectangle in-

equality).

Then the function G is called a generalized metric, or, more specially, a
G-metric on X, and the pair (X,G) is called a G-metric space.

Definition 2.2. ([29]) Let (X,G)be a G-metric space, and let (xn) be a
sequence of points of X. We say that (xn) is G-convergent to x ∈ X if

lim
n,m→∞

G(x;xn, xm) = 0, that is, for any ε > 0, there exists N ∈ N such that

G(x;xn, xm) < ε, for all n;m ≥ N . We call x the limit of the sequence and
write xn → x or lim

n→∞
xn = x.

Proposition 2.3. ([29]) Let (X,G) be a G-metric space. The following are
equivalent:

(1) (xn) is G-convergent to x.
(2) G(xn, xn, x)→ 0 as n→∞.
(3) G(xn, x, x)→ 0 as n→∞.
(4) G(xn, xm, x)→ 0 as n,m→∞.

Definition 2.4. ([29]) Let (X,G)be a G-metric space. A sequence (xn)
is called a G-Cauchy sequence if, for any ε > 0, there is N ∈ N such that
G(xn, xm, xl) < ε for all m,n, l ≥ N , that is G(xn, xm, xl)→ 0 as n,m, l→∞.

Proposition 2.5. ([29]) Let (X,G)be a G-metric space. Then the following
are equivalent:

(1) The sequence (xn) is G-Cauchy.
(2) For any ε > 0, there exists N ∈ N such that G(xn, xm, xm) < ε, for

all n,m ≥ N.
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Proposition 2.6. ([29]) Let (X,G)be a G-metric space. A mapping f : X →
X is G-continuous at x ∈ X if and only if it is G-sequentially continuous at
x, that is, whenever (xn) is G-convergent to x, f(xn) is G-convergent to f(x).

Proposition 2.7. ([29]) Let (X,G)be a G-metric space. Then the function
G(x, y, z) is jointly continuous all three of its variables.

Definition 2.8. ([29]) A G-metric space (X,G) is called G-complete if every
G-Cauchy sequence is G-convergent in (X,G).

Definition 2.9. (weakly compatible mappings ([29])) Two mappings f, g :
X → X are weakly compatible if they commute at their coincidence points,
that is ft = gt for some t ∈ X implies that fgt = gft.

Definition 2.10. (g−Non decreasing Mapping ([29])) Suppose (X,�) is a
partially ordered set and f, g : X → X are mappings. f is said to be g−Non
decreasing if for x, y ∈ X, gx � gy implies fx � fy.

Now, we are ready to state and prove our results.
Let Ψ denotes the class of the functions ψ : [0,+∞[→ [0,+∞[ which satisfies

the following conditions:

(1) ψ is nondecreasing.
(2) ψ is continuous.
(3) ψ(t) = 0 ⇐⇒ t = 0.

The elements of Ψ are called altering distance functions.

Remark 2.11. ([37]) If ψ ∈ Ψ and if φ : [0,+∞[→ [0,+∞[ is a continuous
function with the condition ψ (t) > φ (t) for all t > 0, then φ (0) = 0.

3. Main Results

Lemma 3.1. Let (X,G) be a G-metric space and (xn) be a sequence in X
such that G(xn+1, xn+1, xn) is decreasing and

lim
n→∞

G(xn+1, xn+1, xn) = 0. (3.1)

If (x2n) is not a Cauchy sequence, then there exists ε > 0 and two sequences
(mk) and (nk) of positive integers such that the following four sequences tends
to ε as k →∞ :

G(x2mk , x2mk , x2nk), G(x2mk , x2mk , x2nk+1
), (3.2)

G(x2mk−1
, x2mk−1

, x2nk), G(x2mk−1
, x2mk−1

, x2nk+1
).
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Proof. If (x2n) is not a Cauchy sequence, then there exists ε > 0 and two
sequences (mk) and (nk) of positive integers such that

nk > mk > k ; G(x2mk , x2mk , x2nk−2) < ε, G(x2mk , x2mk , x2nk) ≥ ε

for all integer k. Then

ε ≤ G(x2mk , x2mk , x2nk)

≤ G(x2mk , x2mk , x2nk−2) +G(x2mk−2
, x2nk−2

, x2nk−1)

+G(x2nk−1
, x2mk−1

, x2nk)

< ε+G(x2nk−2
, x2nk−2

, x2nk−1) +G(x2nk−1
, x2nk−1

, x2nk).

Using (3.1), we conclude that

lim
k→∞

G(x2mk , x2mk , x2nk) = ε. (3.3)

Further,

G(x2mk , x2mk , x2nk) ≤ G(x2mk , x2mk , x2nk+1
) +G(x2nk+1

, x2nk+1
, x2nk)

and

G(x2mk , x2mk , x2nk+1
) ≤ G(x2mk , x2mk , x2nk) +G(x2nk , x2nk , x2nk+1

).

Passing to the limit when k →∞ and using (3.1) and (3.3), we obtain

lim
k→∞

G(x2mk , x2mk , x2nk+1
) = ε.

The remaining two sequences in (b) tend to ε can be proved in a similar
way. �

Theorem 3.2. Let (X,�) be a partially ordered set and suppose that (X,G)
be a G-complete metric space. Let f, g : X → X be such that f(X) ⊆ g(X), f
is g−nondecreasing, g(X) is closed. Suppose that there exist a continuous
function φ : [0,+∞[→ [0,+∞[ with the condition ψ (t) > φ (t) for all t > 0
and ψ ∈ Ψ such that

ψ(G(fx, fy, fz)) ≤ φ(G(gx, gy, gz)) (3.4)

for all x, y, z ∈ X with gx � gy � gz. Assume that X is such that if an
increasing sequence

xn converges to x, then xn � x for each n ≥ 0. (3.5)

If there exists x0 ∈ X such that gx0 � fx0 , then f and g have a coincidence
point.
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Proof. By the condition of the theorem there exists x0 ∈ X such that gx0 �
fx0. Since f(X) ⊆ g(X), we can define x1 ∈ X such that gx1 = fx0 , then
gx0 � fx0 = gx1. Since f is g−nondecreasing, we have fx0 � fx1 . In this
way we construct the sequence (xn) recursively as

fxn = gxn+1, for all n ≥ 1 (3.6)

for which

gx0 � fx0 = gx1 � fx1 = gx2 � fx2 � · · · (3.7)

� fxn−1 = gxn � fxn = gxn+1 � · · · .

First, we suppose that there exists n0 ∈ N such that ψ(G(fxn0 , fxn0 , fxn0+1))
= 0, then it follows from the properties of ψ, G(fxn0 , fxn0 , fxn0+1) = 0, so,
fxn0 = fxn0+1 we have gxn0+1 = fxn0+1 and xn0+1 is a coincidence point of
f and g. Now we suppose ψ(G(fxn0 , fxn0 , fxn0+1)) 6= 0. The elements gxn
and gxn+1 are comparable, substituting x = y = xn and z = xn+1 in (3.4),
using (3.5)and (3.7), we have

ψ(G(fxn, fxn, fxn+1)) ≤ φ(G(gxn, gxn, gxn+1)) (3.8)

≤ φ(G(fxn−1, fxn−1, fxn)).

Using the condition of the Theorem 3.2, we obtain

G(fxn, fxn, fxn+1) < G(fxn−1, fxn−1, fxn).

Hence the sequence (G(fxn, fxn, fxn+1)) is decreasing and consequently, there
exists r ≥ 0 such that lim

n→∞
G(fxn, fxn, fxn+1) = r ≥ 0.

By going to the limit in (3.8), we get

ψ (r) ≤ ϕ (r) .

By using the condition of the Theorem 3.2, we obtain r = 0 and hence

lim
n→∞

G(fxn, fxn, fxn+1) = 0.

Now in what follows we show that (fxn) is a Cauchy sequence. Suppose that
(fxn) is not a Cauchy sequence. Using Lemma, we know that there exist ε > 0
and two sequences (mk) and (nk) of positive integers such that the following
four sequences tend to ε as k goes to infinity:

G(fx2mk , fx2mk , fx2nk), G(fx2mk , fx2mk , fx2nk+1
),

G(fx2mk−1
, fx2mk−1

, fx2nk), G(fx2mk−1
, fx2mk−1

, fx2nk+1
).

Putting in the contractive condition x = y = x2mk and z = fx2nk+1
, using

(3.5) and (3.7), it follows that

ψ(G(fx2mk , fx2mk , fx2nk+1
)) ≤ φ(G(fx2mk−1

, fx2mk−1
, fx2nk))
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by going to the limit, we have

ψ(ε) ≤ φ(ε).

By the condition of the Theorem 3.2, we get ε = 0, which contradicts ε > 0.
This shows that (fxn) is a Cauchy sequence in (X,G). Since (X,G) is a
complete metric space, there exists a ∈ X such that lim

n→∞
fxn = a. Since g(X)

is closed, then a = gz, for some z ∈ X. Using (3.5) we get

lim
n→∞

gxn = lim
n→∞

fxn = gz. (3.9)

Now we prove that z is a coincidence point of f and g. From (3.7), we have
(gxn) is a non-decreasing sequence in X. By (3.5) and by (3.9) we have

gxn � gz. (3.10)

Putting x = y = xn in (3.4), by the virtue of (3.10), we get

ψ(G(fxn, fxn, fz)) ≤ φ(G(gxn, gxn, gz) for each n ≥ 1.

Taking n→∞ in the above inequality, using (3.9) , we obtain

ψ(G(gz, gz, fz)) ≤ ϕ(G(gz, gz, gz)) = ϕ(0) = 0.

Therefore, we get G(gz, gz, fz) = 0 and so we have

fz = gz. (3.11)

This proves that z is a coincidence point. This completes the proof. �

Theorem 3.3. If in Theorem 3.2, it is additionally assumed that

gz � ggz, (3.12)

where z is as in the condition of theorem and f and g are weakly compatible,
then f and g have a common fixed point in X.

Proof. Following the proof of the Theorem 3.2, we have (3.9), that is, a non
decreasing sequence (gxn) converging to gz. Then by (3.12) we have gz � ggz.
Since f and g are weakly compatible, by (3.11), we have fgz = gfz. We set

w = gz = fz. (3.13)

Therefore, we have

gz � ggz = gw. (3.14)

Also

fw = fgz = gfz = gw. (3.15)

If z = w, then z is a common fixed point. If z 6= w, then, by (3.4) and by
(3.10), we have

ψ(G(fxn, fxn, fw)) ≤ φ(G(gxn, gxn, gw).
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Taking n→∞ in the above inequality, using (3.9) , we obtain

ψ(G(gz, gz, fw)) ≤ ϕ(G(gz, gz, gw))

≤ ϕ(G(gz, gz, fw)).

From the condition of the Theorem 3.2, we get ψ (G(gz, gz, fw)) = 0 which
implies G(gz, gz, fw) = 0, so gz = fw. Then, by (3.13) and (3.15), we have
w = gw = fw. This completes the proof. �

Theorem 3.4. Let (X,�) be a partially ordered set and suppose that (X,G)
be a G-complete metric space. Let f : X → X be a nondecreasing function.
Suppose that there exist a continuous function φ : [0,+∞[→ [0,+∞[ with the
condition ψ (t) > φ (t) for all t > 0 and ψ ∈ Ψ such that

ψ(G(fx, fy, fz)) ≤ φ(G(x, y, z)) (3.16)

for all x, y, z ∈ X with x � y � z. Assume that f is continuous or X is such
that if a nondecreasing sequence

xn converges to x, then xn � x for each n ≥ 0. (3.17)

If there exists x0 ∈ X such that x0 � fx0, then f has a fixed point.

Proof. Following the proof of Theorem 3.2, with g = idX , we have from (3.9)
a nondecreasing sequence (xn) converging to z. Now we show that z is a fixed
point of f . If f is continuous, then

z = lim
n→∞

fn(x0) = lim
n→∞

fn+1(x0) = f( lim
n→∞

fn(x0)) = f(z)

and hence f(z) = z.
If the second condition of the theorem holds, then we have As (xn) is a

nondecreasing sequence in X and lim
n→∞

xn = x. The condition (3.8) gives us

that xn ≤ x for every n ≥ 0, consequently,

ψ (G (xn+1, f(z), f(z))) = ψ (G (f(xn), f(z), f(z))) ≤ φ (G(xn, xn, z)) .

Letting n→∞ and taking into account that ψ ∈ Ψ, we have by using Remark
2.11

ψ(G(z, fz, fz)) ≤ φ(0) = 0,

which implies that ψ(G(z, fz, fz)) = 0. Thus G(z, fz, fz) = 0 or equivalently,
z = fz. �

In what follows, we give a sufficient condition for the uniqueness of the fixed
point in Theorem 3.3 and in Theorem 3.4. This condition is as follows:

For x, y ∈ X, there exists a lower bound or an upper bound. (3.18)
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In [13], it is proved that the condition (3.18) is equivalent to

For x, y ∈ X, there exists z ∈ X which is comparable to x and y. (3.19)

Theorem 3.5. Adding the condition (3.19) to the hypothesis of Theorem 3.3
(resp. Theorem 3.4), we obtain the uniqueness of the fixed point of f .

Proof. Suppose that there exist x, y which are fixed points. We distinguish
the following two cases:

Case 1. If y is comparable to z, then fn(y) = y is comparable to fn(z) = z
for n ≥ 0 and

ψ (G (z, z, fnx)) = ψ (G (fnz, fnz, fnx)) (3.20)

≤ ϕ
(
G
(
fn−1z, fn−1z, fn−1x

))
≤ ϕ

(
G
(
z, z, fn−1x

))
Hence, ψ ∈ Ψ, then (G (z, z, fnx)) is a nonnegative decreasing sequence, and
consequently, there exists γ such that

lim
n→∞

G (z, z, fnx) = γ.

Letting n → ∞ in (3.20) and taking account that ψ and φ are continuous
functions, we obtain

ψ (γ) ≤ φ (γ) .

This and the condition of Theorem 3.2 implies φ (γ) = 0 and consequently,
γ = 0. Analogously, it can be proved that

lim
n→∞

G (y, y, fnx) = 0.

Finally, as

lim
n→∞

G (z, z, fnx) = 0 = lim
n→∞

G (y, y, fnx) .

The uniqueness of the limit gives us y = z.

Case 2. If y is not comparable to z, then there exists x ∈ X comparable to y
and z. Monotonicity of f implies that fn(x) is comparable to fn(y) and fn(z)
for n ≥ 0. Moreover

ψ (G (z, z, fn(x))) = ψ (G (fn(z), fn(z), fn(x))) (3.21)

≤ ϕ
(
G
(
fn−1(z), fn−1(z), fn−1(x)

))
≤ ϕ

(
G
(
z, z, fn−1(x)

))
.

Hence, by the same way as above, we obtain

lim
n→∞

G (z, z, fn(x)) = 0.
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Analogously, it can be proved that

lim
n→∞

G (y, y, fn(x)) = 0.

Finally, as

lim
n→∞

G (z, z, fn(x)) = lim
n→∞

G (y, y, fn(x)) = 0.

The uniqueness of the limit gives us y = z. This finishes the proof. �

Remark 3.6. Under the assumption of Theorem 3.2, it can be proved that
for every x ∈ X, lim

n→∞
fnx = z, where z is the fixed point.

Let S denotes the class of the functions β: [0;+∞) → [0; 1) which satisfies
the condition β (tn)→ 1 implies tn → 0 and continuous.

Corollary 3.7. Let (X,�) be a partially ordered set and suppose that (X,G)
be a G- complete metric space. Let f, g : X → X be such that f(X) ⊆ g(X), f
is g−nondecreasing, g(X) is closed. Suppose that there exist β ∈ S and ψ ∈ Ψ
such that

ψ(G(fx, fy, fz)) ≤ β (ψ(G(gx, gy, gz)))ψ(G(gx, gy, gz)) (3.22)

for all x, y, z ∈ X with gx � gy � gz. Assume that X is such that if an
increasing sequence xn converges to x, then xn � x for each n ≥ 0. If there
exists x0 ∈ X such that gx0 � fx0 , then f and g have a coincidence point.

Proof. It follows from Theorem 3.2, by choosing φ (x) = β (ψ (x))ψ (x). �

Later, from the previous obtained results, we deduce some coincidence point
results for mappings satisfying a contraction of an integral type as an appli-
cation of theorem 3.2 above. For this purpose, let

Y =

 χ, χ : R+ → R+, satisfies that χ is Lebesgue integrable,
summable on each compact of subset of R+

and
∫ ε
0 χ (t) dt > 0 for each ε > 0

 .

Theorem 3.8. Let (X,�) be a partially ordered set and suppose that (X,G)
be a G-complete metric space. Let f, g : X → X be such that f(X) ⊆ g(X),
f is g−nondecreasing, g(X) is closed. Suppose that there exist a continuous
function φ : [0,+∞[→ [0,+∞[ with the condition ψ (t) > φ (t) for all t > 0
and ψ ∈ Ψ such that for χ ∈ Y∫ ψ(G(fx,fy,fz))

0
χ (t) dt ≤

∫ ϕ(G(gx,gy,gz))

0
χ (t) dt, (3.23)
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for all x, y, z ∈ X with gx � gy � gz. Assume that X is such that if an
increasing sequence xn converges to x, then xn � x for each n ≥ 0. If there
exists x0 ∈ X such that gx0 � fx0 , then f and g have a coincidence point.

Proof. For χ ∈ Y , consider the function Λ : R+ → R+ defined by Λ (x) =∫ x
0 χ (t) dt we note that Λ ∈ Ψ. Thus the inequality (3.23) becomes

Λ (ψ(G(fx, fy, fz))) ≤ Λ (ϕ(G(gx, gy, gz))) . (3.24)

Setting Λ ◦ ψ = ψ1 , ψ1 ∈ Ψ, Λ ◦ ϕ = ψ1 , ϕ1 ∈ Ψ and so we obtain

ψ1(G(fx, fy, fz)) ≤ ϕ1(G(gx, gy, gz)).

Therefore by Theorem 3.2 above, f and g have a coincidence point. �

Corollary 3.9. Let (X,�) be a partially ordered set and suppose that (X,G)
be a G-complete metric space. Let f : X → X be a nondecreasing function.
Suppose that there exist a continuous function φ : [0,+∞[→ [0,+∞[ with the
condition ψ (t) > φ (t) for all t > 0 and ψ ∈ Ψ such that for χ ∈ Y∫ ψ(G(fx,fy,fz))

0
χ (t) dt ≤

∫ ϕ(G(x,y,z))

0
χ (t) dt, (3.25)

for all x, y, z ∈ X with x � y � z. Assume that either f is continuous or X
is such that if an increasing sequence xn converges to x, then xn � x for each
n ≥ 0. If there exists x0 ∈ X such that x0 � fx0 , then f has a fixed point.

Corollary 3.10. Let (X,�) be a partially ordered set and suppose that (X,G)
be a G-complete metric space. Let f, g : X → X be such that f(X) ⊆ g(X),
f is g−nondecreasing, g(X) is closed. Suppose that there exist ψ,ϕ ∈ Ψ with
the condition ψ (t) > φ (t) for all t > 0 such that

ψ(G(fx, fy, fz)) ≤ ψ(G(fx, fy, fz))− φ(G(gx, gy, gz))

for all x, y, z ∈ X with gx � gy � gz. Assume that X is such that if an
increasing sequence xn converges to x, then xn � x for each n ≥ 0. If there
exists x0 ∈ X such that gx0 � fx0 , then f and g have a coincidence point.

Proof. It results by taking in Theorem 3.23, φ(x) = ψ(x)− ϕ (x) . �

Corollary 3.11. Let (X,�) be a partially ordered set and suppose that (X,G)
be a G-complete metric space. Let f, g : X → X be such that f(X) ⊆ g(X),
f is g−nondecreasing, g(X) is closed. Suppose that there exist ψ ∈ Ψ and
β ∈ S, with the condition ψ (t) > β (t) t for all t > 0 such that

ψ(G(fx, fy, fz)) ≤ β(G(fx, fy, fz))G(gx, gy, gz)
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for all x, y, z ∈ X with gx � gy � gz. Assume that X is such that if an
increasing sequence xn converges to x, then xn � x for each n ≥ 0. If there
exists x0 ∈ X such that gx0 � fx0 , then f and g have a coincidence point.

Proof. It results by taking in Theorem 3.2, φ(x) = β(x)x. �

4. Application to ordinary differential equations

In this section, we study the existence of solution for the following first-order
periodic problem:  u

′,(t) = f(t, u(t)), t ∈ [0, T ] ,

u(0) = u(T ),
(4.1)

where T > 0 and f : I×R→ R is a continuous function. Previously, we consid-
ered the space C(I = [0, T ]) of continuous functions defined on I. Obviously,
this space with the metric given by

G(x, y, z) = sup
t∈I
|x(t)− y(t)|+ sup

t∈I
|y(t)− z(t)|+ sup

t∈I
|z(t)− x(t)| ,

for x, y, z ∈ C(I) is a complete metric space. C(I) can also be equipped with
a partial order given by

x, y ∈ C(I), x ≤ y ⇐⇒ x(t) ≤ y(t) for t ∈ I.

Clearly, (C(I),≤) satisfies the condition (3.18) since for x, y ∈ C(I), the func-
tion max{x, y} and min{x, y} are the least upper and the greatest lower bounds
of x and y, respectively. Moreover, it is proved in [13] that (C(I),≤) with the
above mentioned metric satisfies the condition (3.17) .

Now we give the following definition.

Definition 4.1. A lower solution for (4.1) is a function α ∈ C(1)(I) such that α
′
(t) ≤ f(t, α(t)), for t ∈ [0, T ] ,

α(0) ≤ α(T ).

Theorem 4.2. Consider the problem (4.1) with f : I × R → R continuous,
suppose that there exist λ, α > 0 with

α ≤

(
2

3

λ
(
eλT − 1

)
T (eλT + 1)

) 1
2
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such that for x, y ∈ R with x ≥ y

0 ≤ f(t, x) + λx− [f(t, y) + λy] ≤ α
√

ln
[
(x− y)2 + 1

]
.

Then the existence of a lower solution for (4.1) provides the existence of a
unique solution of (4.1).

Proof. The problem (4.1) can be written as u
′
(t) + λu(t) = f(t, u(t)) + λu(t), for t ∈ [0, T ] ,

u(0) = u(T ).

This problem is equivalent to the integral equation

u(t) =

∫ T

0
G(t, s) [f(s, u(s)) + λu(s)] ds,

where G(t, s) is the Green function given by

G(t, s) =


eλ(T+s−t)

eλT−1 , 0 ≤ s < t ≤ T,

eλ(s−t)

eλT−1 , 0 ≤ t < s ≤ T.

Define F : C(I)→ C(I) by

(Fu)(t) =

∫ T

0
G(t, s) [f(s, u(s)) + λu(s)] ds.

Note that if u ∈ C(I) is a fixed point of F , then u ∈ C ′(I) is a solution of (4.1).
In what follows, we check that the hypotheses in Theorems 3.4, and 3.5 are
satisfied. The mapping F is nondecreasing for u ≥ v. Using our assumption,
we can obtain

f(t, u(t)) + λu(t) ≥ f(t, v(t)) + λv(t)

which implies, since G(t, s) > 0, that for t ∈ I,

(Fu)(t) =

∫ T

0
G(t, s) [f(s, u(s)) + λu(s)] ds

≥
∫ T

0
G(t, s) [f(s, v(s)) + λv(s)] ds = (Fv)(t).
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Besides, for u ≥ v,we have

sup
t∈I
|(Fu)(t)− (Fv)(t))| (4.2)

= sup
t∈I

∫ T

0
G(t, s) [f(s, u(s)) + λu(s)− f(s, v(s))− λv(s)] ds

≤ sup
t∈I

∫ T

0
G(t, s)α

√
ln
[
(u(s)− v(s))2 + 1

]
ds.

Using the Cauchy-Schwartz inequality in the last integral, we get∫ T

0
G(t, s)α

√
ln
[
(u(s)− v(s))2 + 1

]
ds (4.3)

≤
(∫ T

0
G(t, s)2ds

) 1
2
(∫ T

0
α2 ln

[
(u(s)− v(s))2 + 1

]
ds

) 1
2

.

The first integral gives us∫ T

0
G(t, s)2ds =

∫ t

0
G(t, s)2ds+

∫ T

t
G(t, s)2ds (4.4)

=

∫ t

0

e2λ(T+s−t)

(eλT − 1)
2ds+

∫ T

t

e2λ(s−t)

(eλT − 1)
2ds

=
e2λ(T−1)

2λ (eλT − 1)
2 =

e2λT + 1

2λ (eλT − 1)
.

The second integral in (4.2) gives us the following estimate:∫ T

0
α2 ln

[
(u(s)− v(s))2 + 1

]
ds ≤ α2 ln

[
||u− v||2 + 1

]
.T (4.5)

≤ α2 ln
[
G(u, v, w)2 + 1

]
.T (4.6)

Taking into account (4.4) and (4.5), we obtain

sup
t∈I
|(Fu)(t)− (Fv)(t))| (4.7)

≤ sup
t∈I

(
e2λT + 1

2λ (eλT − 1)

) 1
2

α.
√
T ln

[
G(u, v, w)2 + 1

]
.

With the same way for v ≥ w, we have

sup
t∈I
|(Fv)(t)− (Fw)(t))| (4.8)

≤ sup
t∈I

(
e2λT + 1

2λ (eλT − 1)

) 1
2

α.
√
T ln

[
G(u, v, w)2 + 1

]
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and for u ≥ w, we have

sup
t∈I
|(Fu)(t)− (Fw)(t))| (4.9)

≤ sup
t∈I

(
e2λT+1

2λ (eλT − 1)

) 1
2

α.
√
T ln

[
G(u, v, w)2 + 1

]
.

From the inequalities above, we obtain

G(Fu, Fv, Fw)2 ≤ 3
e2λT + 1

2λ (eλT − 1)
.Tα2 ln

[
G(u, v, w)2 + 1

]
or equivalently

2λ
(
eλT − 1

)
G(Fu, Fv, Fw)2 ≤ 3

(
e2λT + 1

)
.Tα2 ln

[
G(u, v, w)2 + 1

]
.

By our assumption, as

α ≤

(
2

3

λ
(
eλT − 1

)
T (eλT + 1)

) 1
2

.

The last inequality gives us

2λ
(
eλT − 1

)
G(Fu, Fv, Fw)2 ≤ 2λ

(
eλT − 1

)
ln
[
G(u, v, w)2 + 1

]
and hence

G(Fu, Fv, Fw)2 ≤ ln
[
G(u, v, w)2 + 1

]
. (4.10)

Put ψ (x) = x2 and φ (x) = ln
(
1 + x2

)
. Obviously, ψ ∈ Ψ, ψ and φ satisfy the

condition of ψ (x) > φ (x) for x > 0. From (4.10), we obtain for u ≥ v ≥ w

ψ (G(Fu, Fv, Fw)) ≤ φ (G(u, v, w)) .

Finally, let α (t) be a lower solution for (4.1). We claim that α ≤ F (α). In
fact

α’ (t) + λα (t) ≤ f(t, α(t)) + λα (t) , for t ∈ I
multiplying by eλt

α (t) eλt
′ ≤ [f(t, α(t)) + λα (t)] eλt, for t ∈ I

we get

α (t) eλt ≤ α (0) +

∫ t

0
[f(s, α(s)) + λα (s)] eλsds, for t ∈ I. (4.11)

As α (0) ≤ α (T ), the last inequality gives us

α (0) eλt
′ ≤ α (T ) eλt

′ ≤ α (0) +

∫ T

0
[f(s, α(s)) + λα (s)] eλsds
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and so

α (0) ≤
∫ T

0

eλs

eλT − 1
[f(s, α(s)) + λα (s)] ds.

This and (4.10) give us

α (t) eλt ≤
∫ t

0

eλ(T+s)

eλT − 1
[f(s, α(s)) + λα (s)] eλsds

+

∫ T

t

eλs

eλT − 1
[f(s, α(s)) + λα (s)] ds

and consequently

α (t) ≤
∫ t

0

eλ(T+s−t)

eλT − 1
ds+

∫ T

t

eλ(s−t)

eλT − 1
[f(s, α(s)) + λα (s)] ds

=

∫ T

0
G(t, s) [f(s, α(s)) + λα (s)] ds

= (Fα) (t) , for t ∈ I.
Finally, Theorems 3.4 and 3.5 give that F has a unique fixed point. �

The second example where our results can be applied is the following two-
point boundary value problem of the second order differential equation −

d2x
dt2

= f(t, x), x ∈ [0,∞), t ∈ [0, 1] ,

x(0) = x(1) = 0.

(4.12)

It is well known that x ∈ C2 ([0, 1]), a solution of (4.12), is equivalent to
x ∈ C ([0, 1]), a solution of the integral equation

x(t) =

∫ 1

0
G(t, s)f(s, x(s))ds, for t ∈ [0, 1] ,

where G(t, s) is the green function given by

G(t, s) =

 t(1− s), 0 ≤ t ≤ s ≤ 1,

s(1− t), 0 ≤ s ≤ t ≤ 1.
(4.13)

Theorem 4.3. Consider the problem (4.12) with f : I×R→ [0,∞) continuous
and nondecreasing with respect to the second variable, and suppose that there
exists 0 ≤ α ≤ 8

3 such that for x, y ∈ R with y ≥ x

f(t, y)− f(t, x) ≤ α
√

ln
[
(y − x)2 + 1

]
. (4.14)

Then our problem (4.12) has a unique nonnegative solution.
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Proof. Consider the cone

P = {x ∈ C ([0, 1]) : x(t) ≥ 0}.
Obviously, (P,G) with

G(x, y, z) = sup
t∈I
|x(t)− y(t)|+ sup

t∈I
|y(t)− z(t)|

+ sup
t∈I
|z(t)− x(t)| , for x, y, z ∈ C(I)

is a complete metric space. Consider the operator given by

(Tx)(t) =

∫ 1

0
G(t, s)f(s, x(s))ds, for x ∈ P,

where G(t, s) is the Green function appearing in (4.13).
As f is nondecreasing with respect to the second variable, then for x, y ∈ P

with y ≥ x and t ∈ [0, 1], we have

(Ty)(t) =

∫ 1

0
G(t, s)f(s, y(s))ds ≥

∫ 1

0
G(t, s)f(s, x(s))ds ≥ (Tx)(t)

and this proves that T is a nondecreasing operator.
Besides, for z ≥ y ≥ x and taking into account (4.13), we obtain

G(Tz, Ty, Tx) = sup
t∈I
|T (x(t))− T (y(t))|+ sup

t∈I
|T (y(t))− T (z(t))|

+sup
t∈I
|T (z(t)− T (x(t))|

= sup
t∈I

(T (x(t))− T (y(t))) + sup
t∈I

(T (y(t))− T (z(t)))

+sup
t∈I

(T (z(t)− T (x(t))),

sup
t∈I

(T (x(t))−T (y(t))) = sup
t∈I

∫ 1

0
G(t, s)(f(s, x(s))−f(s, y(s))) ds (4.15)

≤ sup
t∈I

∫ 1

0
G(t, s)α

√
ln
[
‖y − x‖2 + 1

]
ds

= α

√
ln
[
‖y − x‖2 + 1

]
sup
t∈I

∫ 1

0
G(t, s)ds.

It is easy to verify that ∫ 1

0
G(t, s)ds = −−t

2

2
+
t

2

and that

sup
t∈I

∫ 1

0
G(t, s)ds =

1

8
.
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These facts, the inequality (4.15), and the hypothesis 0 < α < 8 give us

sup
t∈I

(T (x(t))− T (y(t))) ≤ α

8

√
ln
[
‖y − x‖2 + 1

]
≤ α

8

√
ln [G(x, y, z)2 + 1].

With the same way we get

sup
t∈I

(T (z(t))− T (y(t))) ≤ α

8

√
ln [G(x, y, z)2 + 1]

and

sup
t∈I

(T (z(t)− T (x(t))) ≤ α

8

√
ln [G(x, y, z)2 + 1]

from the above inequalities, we obtain

G(Tx, Ty, Tz)2 ≤ 3α

8

√
ln [G(x, y, z)2 + 1] ≤ ln

[
G(x, y, z)2 + 1

]
.

Put ψ (x) = x2 and φ (x) = ln
(
1 + x2

)
. Obviously, ψ ∈ Ψ, ψ and φ satisfy

the condition of ψ (x) > φ (x) for x > 0. From the last inequality, we have

ψ (G(Fu, Fv, Fw)) ≤ φ (G(u, v, w)) .

Finally, as f and G are non negative functions,

T0 =

∫ 1

0
G(t, s)f(s, 0)ds ≥ 0.

Theorem 3.4 and 3.5 tell us that F has a unique nonnegative solution. �

In the third example, We show the existence of solution for the following
initial-value problem by using Theorems 3.5 and 3.7. ut (x, t) = uxx (x, t)+F (x, t, u, ux) , −∞ < x <∞, 0 < t < T,

u (x, t) = ϕ (x) , −∞ < x <∞.
(4.16)

Where we assumed that ϕ is continuously differentiable and that ϕ and
ϕ′are bounded and F (x, t, u, ux) is a continuous function.

Definition 4.4. We mean a solution of an initial-boundary-value problem for
any ut (x, t) = uxx (x, t) + F (x, t, u, ux) in R× I, where I = [0, T ] a function
u = u(x, t) defined in R× I, such that

(a) u ∈ C (R× I),
(b) ut, ux, uxx ∈ C (R× I),
(c) ut and ux are bounded in R× I,
(d) ut (x, t) = uxx (x, t) + F (x, t, u (x,t) , ux (x, t)) for all (x, t) ∈ R× I.



240 M. Bousselsal and Bader Almohaimeed

Now we consider the space Ω = {v (x, t) : v, vx ∈ C (R× I) and ‖v‖ <∞},
where

‖v‖ = sup
x∈R, t∈I

|v (x, t)|+ sup
x∈R, t∈I

|vx (x, t)| .

The set Ω with the norm ‖·‖ is a Banach space. Obviously, the space with the
G-metric given by

G(u, v, w) = sup
x∈R, t∈I

|u (x, t)− v (x, t)|+ sup
x∈R, t∈I

|ux (x, t)− vx (x, t)|

+ sup
x∈R, t∈I

|v (x, t)− w (x, t)|+ sup
x∈R, t∈I

|vx (x, t)− wx (x, t)|

+ sup
x∈R, t∈I

|u (x, t)− w (x, t)|+ sup
x∈R, t∈I

|ux (x, t)− wx (x, t)|

is a complete G-metric space. The set Ω can also equipped with the a partial
order given by

u, v ∈ Ω, u � v ⇐⇒ u (x, t) ≤ v (x, t) , ux (x, t) ≤ vx (x, t)

for any x ∈ R and t ∈ I. Obviously, (Ω,�) satisfies the condition (ii) since,
for any u, v ∈ Ω, max{u, v} and min{u, v} are the least and greatest lower
bounds of u and v, respectively. Taking a monotone nondecreasing sequence
{vn} ⊆ Ω converging to v in Ω, for any x ∈ R and t ∈ I,

v1 (x, t) ≤ v2 (x, t) ≤ · · · ≤ vn (x, t) ≤ · · ·
and

v1x (x, t) ≤ v2x (x, t) ≤ · · · ≤ vnx (x, t) ≤ · · · .
Further, since the sequences {vn (x, t)} and {vnx (x, t)} of real numbers con-
verge to v (x, t) and vx (x, t), respectively, it follows that, for all x ∈ R , t ∈ I
and n ≥ 1, vn (x, t) ≤ v (x, t) and vnx (x, t) ≤ vx (x, t). Therefore, vn ≤ v for
all n ≥ 1 and so (Ω,�) with the above mentioned metric satisfies the condition
(I).

Definition 4.5. A lower solution of the initial-value problem (4.16) is a func-
tion u ∈ Ω such that ut (x, t) = uxx (x, t)+F (x, t, u, ux) , −∞ < x <∞, 0 < t < T,

u (x, t) = ϕ (x) , −∞ < x <∞,

where we assume that ϕ is continuously differentiable and that ϕ and ϕ′ are
bounded, the set Ω is defined in above and F (x, t, u, ux) is a continuous func-
tion.

Theorem 4.6. Consider the problem (4.16) with F : R × I × R × R → R
continuous and assume the following:
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(1) For any c > 0 with |s| < c and |p| < c, the function F (x, t, s, p) is
uniformly Holder continuous in x and t for each compact subset of
R× I.

(2) There exists a constant cF ≤ 1
3(T + 2π

−1
2 T

1
2 )−1 such that

0 ≤ F (x, t, s2, p2)− F (x, t, s1, p1) ≤ cF ln(s2 − s1 + p2 − p1 + 1)

for all (s1, p1) and (s2, p2) in R× R with s1 ≤ s2 and p1 ≤ p2.
(3) F is bounded for bounded s and p.

Then the existence of a lower solution for the initial-value problem (4.16) pro-
vides the existence of the unique solution of the problem (4.16).

Proof. The problem (4.16) is equivalent to the integral equation

u(x, t) =

∫ +∞

−∞
k(x− ξ, t)ϕ (ξ) dξ

+

∫ t

0

∫ +∞

−∞

∫ +∞

−∞
k(x− ξ, t− τ)F (ξ, τ, u (ξ, τ) , ux (ξ, τ)) dξdτ

for all x ∈ R and 0 < t ≤ T , where

k(x, t) =
1√
4πt

exp

{
−x2

4t

}
for all x ∈ R and t > 0. The initial-value (4.16) possesses a unique solution if
and only if the above integral differential equation possesses a unique solution
u such that u and ux are continuous and bounded for all x ∈ R and 0 < t ≤ T.
Define a mapping f : Ω→ Ω by

(fu) (x, t) =

∫ +∞

−∞
k(x− ξ, t)ϕ (ξ) dξ

+

∫ t

0

∫ +∞

−∞
k(x− ξ, t− τ)F (ξ, τ, u (ξ, τ) , ux (ξ, τ)) dξdτ

for all x ∈ R and t ∈ I. Note that, if u ∈ Ω is a fixed point of f , then u is a
solution of the problem (4.16).

Now, we show that the hypothesis in Theorems 3.5 and 3.6 are satisfied.
The mapping f is nondecreasing since, by hypothesis, for u ≥ v,

F (x, t, u (x, t) , ux (x, t)) ≥ F (x, t, v (x, t) , vx (x, t)) .
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By using that k(x, t) > 0 for all (x, t) ∈ R× (0, T ], we conclude that

(fu) (x, t) =

∫ +∞

−∞
k(x− ξ, t)ϕ (ξ) dξ

+

∫ t

0

∫ +∞

−∞
k(x− ξ, t− τ)F (ξ, τ, u (ξ, τ) , ux (ξ, τ)) dξdτ

≥
∫ +∞

−∞
k(x− ξ, t)ϕ (ξ) dξ

+

∫ t

0

∫ +∞

−∞
k(x− ξ, t− τ)F (ξ, τ, v (ξ, τ) , vx (ξ, τ)) dξdτ

= (fv) (x, t)

for all x ∈ R and t ∈ I. Besides, we have

|(fu) (x, t)− (fv) (x, t)| (4.17)

≤
∫ t

0

∫ +∞

−∞
k(x− ξ, t− τ)|F (ξ, τ, u (ξ, τ) , ux (ξ, τ))

−F (ξ, τ, v (ξ, τ) , vx (ξ, τ)) |dξdτ

≤
∫ t

0

∫ +∞

−∞
k(x− ξ, t− τ).cF ln (u (ξ, τ)− v (ξ, τ)

+ux (ξ, τ)− vx (ξ, τ) + 1) dξdτ

≤ cF ln (G(u, v, w) + 1)

∫ t

0

∫ +∞

−∞
k(x− ξ, t− τ)dξdτ

≤ cF ln (G(u, v, w) + 1) .T.

With the same way, we obtain

|(fv) (x, t)− (fw) (x, t)| ≤ cF ln (G(u, v, w) + 1) .T (4.18)

and

|(fu) (x, t)− (fw) (x, t)| ≤ cF ln (G(u, v, w) + 1) .T (4.19)

for all u ≥ v ≥ w. Similarly, we have∣∣∣∣∂fu∂x (x, t)− ∂fu

∂x
(x, t)

∣∣∣∣ (4.20)

≤ cF ln (G(u, v, w) + 1)

∫ t

0

∫ +∞

−∞

∣∣∣∣∂k∂x(x− ξ, t− τ)

∣∣∣∣ dξdτ
≤ cF ln (G(u, v, w) + 1) 2π

−1
2 T

1
2 ,
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∂x
(x, t)

∣∣∣∣ (4.21)

≤ cF ln (G(u, v, w) + 1)

∫ t

0

∫ +∞

−∞

∣∣∣∣∂k∂x(x− ξ, t− τ)

∣∣∣∣ dξdτ
≤ cF ln (G(u, v, w) + 1) 2π

−1
2 T

1
2 ,∣∣∣∣∂fu∂x (x, t)− ∂fw

∂x
(x, t)

∣∣∣∣ (4.22)

≤ cF ln (G(u, v, w) + 1)

∫ t

0

∫ +∞

−∞

∣∣∣∣∂k∂x(x− ξ, t− τ)

∣∣∣∣ dξdτ
≤ cF ln (G(u, v, w) + 1) 2π

−1
2 T

1
2 .

Combining (4.17) , (4.18) , (4.19) with (4.20) , (4.21), (4.22), we obtain

G(fu, fv, fw) ≤ 3cF (T + 2π
−1
2 T

1
2 ) ln (G(u, v, w) + 1) ≤ ln (G(u, v, w) + 1)

which implies

ln(G(fu, fv, fw) + 1) ≤ ln (ln (G(u, v, w) + 1) + 1) .

Put ψ (x) = ln(x + 1) and ϕ (x) = ln [ln(x+ 1) + 1]. Obviously, ψ : [0,∞) →
[0,∞) is continuous, nondecreasing and ψ is positive in (0,∞) with, ψ (0) = 0
and also ψ (x) > φ (x) for any x > 0.
Finally, let α (x, t) be a lower solution for (4.16). Then we show that α ≤ fα
integrating the following:

(α (ξ, τ) k (x− ξ, t− τ))τ − (αξ (ξ, τ) k (x− ξ, t− τ))ξ

+ (α (ξ, τ) kξ (x− ξ, t− τ))ξ

≤ F (ξ, τ, α (ξ, τ) , αξ (ξ, τ)) k (x− ξ, t− τ)

for −∞ < ξ <∞ and 0 < τ < t, we obtain the following:

α (x, t) ≤
∫ +∞

−∞
k (x− ξ, t)ϕ (ξ) dξ

+

∫ t

0

∫ +∞

−∞
k (x− ξ, t− τ)F (ξ, τ, α (ξ, τ) , αξ (ξ, τ)) dξdτ

= (fα)(x, t)

for all x ∈ R and t ∈ (0, T ]. Therefore, by Theorems 3.4 and 3.5, f has a
unique fixed point. This completes the proof. �
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