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Abstract. The lasso of Tibshiranis(1996) is a least-squares regularized by the l1 norm.

In recent years, the lasso has been paid much attention due to the involvement of the l1

norm, which it’s property is promoted by the sparseness of the norm. Now, we have mostly

article studied it’s weak convergence to a solution of the lasso. It is the purpose of this

paper to show that under certain conditions, the iterative sequence {xn} converges strongly

to a solution of the lasso, is also the unique solution of the following variational inequality:

〈(I − h)x∗, x̃ − x∗〉 ≥ 0, ∀x∗ ∈ Fix(Vλ), where h : H → H is a contractive mapping and

Vλ : H → H is an averaged mapping.

1. Introduction

The lasso is short for the least absolute shrinkage and selection operator,
which was introduced by Tibshiranis [11] in 1996, and is formulated as the
minimization problem

min
x

1

2
‖Ax− b‖22 subject to ‖x‖1 ≤ t, (1.1)

where A is an n×m(real) matrix, x ∈ Rm, b ∈ Rn, t ≥ 0 is a tuning parameter.
An equivalent formulation of (1.1) is formulated as the following regularized
minimization problem
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min
x

1

2
‖Ax− b‖22 + γ‖x‖1, (1.2)

where γ ≥ 0 is a regularization parameter.

From now on, let H be a Hilbert space with inner product and norm,
respectively denote 〈·, ·〉 and ‖ · ‖. We use Fix(T ) to denote the set of fixed
points of a mapping T ; i.e., Fix(T ) = {x ∈ H : x = Tx}. We also use
“→ ”and “ ⇀ ” to denote the strong convergence and the weak convergence,
respectively.
A mapping T : H → H is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀ x, y ∈ H.
A mapping h : H → H is called ρ-contractive if there exists a contraction
constant ρ ∈ [0, 1) such that

‖h(x)− h(y)‖ ≤ ρ‖x− y‖, ∀ x, y ∈ H.
A mapping T : H → H is called L-Lipschitzian continuous if there exists a
constant L > 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖, ∀ x, y ∈ H.
A mapping F : H → H is called η-inverse strongly monotone(η-ism), if there
exists a constant η > 0 satisfing the following inequality

〈Fx− Fy, x− y〉 ≥ η‖Fx− Fy‖2, ∀ x, y ∈ H.
A mapping V : H → H is called α-averaged(α-av for short) if

V = (1− α)I + αT,

where α ∈ (0, 1), T : H → H is nonexpansive.

The lasso has been received much attention in recent years due to the in-
volvement of the l1 norm which promotes sparsity. If a certain appropriate
sparsity condition is imposed, then we can get a well result on solving the
problem of (1.1). We know some iterative methods for the lasso have been dis-
covered by other authors. However, up to now, only weak convergence results
have been discussed. But, it is well known that strongly convergent algorithms
are of fundamental importance for solving infinite dimensional problems.

We get the inspiration from Xu’s iterative methods for the lasso [14] and
Moudafi’s viscosity approximationn method [10], we transfer weak convergence
of the lasso’s certain iterative methods to convergence strongly. In the last part
of this paper we combine the proximal operators with a viscosity procedure to
get the strong convergent of the iterative sequence of iterates generated by our
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scheme. Meanwhile, we also get the convergent point of the sequence which is
the unique solution of the variational inequality.

2. Preliminaries

For the purpose, we first give some preliminaries, which will be needed to
prove our main results.

Lemma 2.1. For all x, y ∈ H, there holds the following relation:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉.

Lemma 2.2. ([1, 6]) Let F be µ-ism, thus we can get F is 1
µ -Lipschitzian

mapping with coefficient µ > 0, and λF is µ
λ -ism. If µ

λ >
1
2 , we know I − λF

is λ
2µ -av.

Lemma 2.3. ([2]) If T1, T2, · · · , Tn are averaged mappings, we can get that
TnTn−1 · · ·T1 is averaged. In particular, if Ti is αi-av, i=1,2, then T2T1 is
(α2 + α1 − α2α1)-av.

Lemma 2.4. ([12]) Let h : H → H be a ρ-contraction with ρ ∈ [0, 1) and
T : H → H be a nonexpansive mapping. Then

(i) I − h is (1− ρ)-strongly monotone:

〈(I − h)x− (I − h)y, x− y〉 ≥ (1− ρ)‖x− y‖2, ∀ x, y ∈ H.
(ii) I − T is monotone:

〈(I − T )x− (I − T )y, x− y〉 ≥ 0, ∀ x, y ∈ H.

Lemma 2.5. ([4], Demiclosedness Principle) Let H be a real Hilbert space,
and let T : H → H be a nonexpansive mapping with Fix(T ) 6= ∅. If {xn} is a
sequence in H converges weakly to x and if {(I − T )xn} converges strongly to
y, then (I − T )x = y; in particulary, if y = 0, then x ∈ Fix(T ).

Lemma 2.6. ([13]) Assume {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− γn)an + γnδn + βn, n ≥ 0, (2.1)

where {γn} and {βn} is a sequence in (0, 1) and {δn} is a sequence in R such
that

(i)
∑∞

n=0 γn =∞;
(ii) lim supn→∞ δn ≤ 0 or

∑∞
n=0 |γnδn| <∞;

(iii) Σ∞n=0βn <∞.
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Then limn→∞ an = 0.

3. Main results

Let H be a Hilbert space and let Γ0(H) be the space of convex functions in
H that are proper, lower semicontinuous and convex.

Definition 3.1. ([8, 9]) The proximal operator of ϕ ∈ Γ0(H) is defined by

proxϕ(x) = argmin
ν∈H

{
ϕ(ν) +

1

2
‖ν − x‖2

}
, x ∈ H.

The proximal operator of ϕ of order λ > 0 is defined as the proximal operator
of λϕ, that is,

proxλϕ(x) = argmin
ν∈H

{
ϕ(ν) +

1

2λ
‖ν − x‖2

}
, x ∈ H.

Lemma 3.2. The proximal identity

proxλϕx = proxµϕ(
µ

λ
x+ (1− µ

λ
)proxλϕx) (3.1)

holds for ϕ ∈ Γ0(H), λ > 0 and µ > 0.

We list some of the useful properties of the proximal operator.

Lemma 3.3. ([3, 7, 13]) Let ϕ ∈ Γ0(H) and λ ∈ (0,∞).

(i) If C is a nonempty closed convex subset of H and ϕ = IC is the
indicator function of C, then the proximal operators proxλϕ = PC for
all λ > 0, where PC is the metric projection from C onto H.

(ii) The operator proxλϕ is firmly nonexpansive(hence nonexpansive). Re-
call a mapping T : H → H is firmly nonexpansive if

‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉, x, y ∈ H.
(iii) The operator proxλϕ = (I + λ∂ϕ)−1 = Jλ

∂ϕ, the resolvent of the sub-
differential ∂ϕ of ϕ.

(iv) If f : H → R is a differentiable functional, then we denote by ∇f
the gradient of f . Assume that ∇f is Lipschitz continuous on H.
The operator Vλ = proxλg(I − λ∇f) is 2+λL

4 -av for each 0 < λ <
2
L .The proximal operator can be used to minimize the sum of two convex
functions

min
x∈H

f(x) + g(x), (3.2)

where f, g ∈ Γ0(H). It is often the case where one of them is differentiable.
The following is an equivalent fixed point formulation of (3.2).
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Lemma 3.4. ([14]) Let f, g ∈ Γ0(H). Let x∗ ∈ H and λ > 0. Assume that
f is finite-valued and differential on H. Then x∗ is a solution to (3.2) if and
only if x∗ solves the fixed point equation

x∗ = (proxλg(I − λ∇f))x∗. (3.3)

Theorem 3.5. Let f, g ∈ Γ0(H) and assume that (3.2) is consist. Given x0 ∈
H and define the sequence {xn} by the following viscosity proximal algorithm

xn+1 = αnh(xn) + (1− αn)Vλnxn, (3.4)

where h : H → H is ρ-contraction with constant ρ ∈ [0, 1), λn ∈ (0, 2
L),

αn ∈ (0, 2+λnL4 ), ∇f satisfies the Lipschitz continuity, and Vλn = proxλng(I −
λn∇f). Suppose that

(i) limn→∞ αn = 0 and
∑∞

n=1 αn =∞;
(ii)

∑∞
n=1 |αn+1 − αn| <∞;

(iii) 0 < lim infn→∞ λn ≤ lim supn→∞ λn <
2
L ;

(iv)
∑∞

n=1 |λn − λn−1| <∞.

Then {xn} converges strongly to x̃, where x̃ is a solution of (3.2). Meanwhile,
it is also the unique solution for the following variational inequality:

〈(I − h)x∗, x̃− x∗〉 ≥ 0, ∀ x̃ ∈ Fix(Vλ). (3.5)

Proof. Let S be the nonempty solution set of (3.2). The proof is divided into
several steps.

Step 1. Show that {xn} is bounded.
For any p ∈ S, we get

‖xn+1 − p‖
= ‖αnh(xn) + (1− αn)Vλnxn − p‖
= ‖αn(h(xn)− p) + (1− αn)(Vλnxn − p)‖
≤ αn‖h(xn)− h(p)‖+ αn‖h(p)− p‖+ (1− αn)‖Vλnxn − p‖
≤ αnρ‖xn − p‖+ αn‖h(p)− p‖+ (1− αn)‖xn − p‖

= (1− αn(1− ρ))‖xn − p‖+ αn(1− ρ)
‖h(p)− p‖

1− ρ
. (3.6)

So, by induction, we can conclude from (3.6) get that

‖xn − p‖ ≤ max

{
‖x0 − p‖,

‖h(p)− p‖
1− ρ

}
,

which implies that the sequence {xn} is bounded.

Step 2. Show that ‖xn+1 − xn‖ → 0.
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By the iterative scheme (3.4), we have

‖xn+1 − xn‖
= ‖αnh(xn) + (1− αn)Vλnxn − αn−1h(xn−1)− (1− αn−1)Vλn−1xn−1‖
≤ ‖αnh(xn)− αn−1h(xn−1)‖+ ‖(1− αn)Vλnxn − (1− αn−1)Vλn−1xn−1‖
≤ ‖αnh(xn)− αn−1h(xn) + αn−1h(xn)− αn−1h(xn−1)‖

+ ‖(1− αn)Vλnxn − (1− αn−1)Vλn−1xn−1‖
≤ |αn − αn−1|‖h(xn)‖+ ραn−1‖xn − xn−1‖

+ ‖(1− αn)Vλnxn − (1− αn−1)Vλn−1xn−1‖. (3.7)

As Vλn given in Lemma 3.3 is 2+λnL
4 -av, we can rewrite

Vλn = proxλng(I − λn∇f) = (I − γn)I + γnTn, (3.8)

where γn = 2+λnL
4 , Tn is nonexpansive. We then get

‖(1− αn)Vλnxn − (1− αn−1)Vλn−1xn−1‖
= ‖(1− αn)Vλnxn − (1− αn−1)Vλnxn + (1− αn−1)Vλnxn
− (1− αn−1)Vλn−1xn−1‖
≤ |αn − αn−1|‖Vλnxn‖+ (1− αn−1)‖Vλnxn − Vλn−1xn−1‖, (3.9)

where, we also know

‖Vλnxn − Vλn−1xn−1‖
= ‖Vλnxn − Vλn−1xn + Vλn−1xn − Vλn−1xn−1‖
≤ ‖Vλnxn − Vλn−1xn‖+ ‖xn − xn−1‖ (3.10)

and

‖Vλnxn − Vλn−1xn‖
= ‖progλng(I − λn∇f)xn − progλn−1g(I − λn−1∇f)xn‖

= ‖proxλn−1g(
λn−1
λn

(I − λn∇f)xn

+ (1− λn−1
λn

)proxλng(I − λn∇f)xn)− proxλn−1g(I − λn−1∇f)xn‖

≤ ‖λn−1
λn

(I − λn∇f)xn + (1− λn−1
λn

)proxλng(I − λn∇f)xn

− (I − λn−1∇f)xn‖

= ‖(1− λn−1
λn

)proxλng(I − λn∇f)xn − (1− λn−1
λn

)(I − λn∇f)xn‖

+ ‖(λn−1 − λn)∇f(xn)‖
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≤ |1− λn−1
λn
|‖proxλng(I − λn∇f)xn − (I − λn∇f)xn‖

+ |λn−1 − λn|‖∇f(xn)‖. (3.11)

Thus, we can get that

‖xn+1 − xn‖
≤ (αn − αn−1)‖h(xn)‖+ ραn−1‖xn − xn−1‖

+ |αn − αn−1|‖Vλnxn‖+ (1− αn−1)‖xn − xn−1‖

+ (1− αn−1)
(∣∣∣∣1− λn−1

λn

∣∣∣∣‖proxλng(I − λn∇f)xn − (I − λn∇f)xn‖

+ |λn − λn−1|‖∇f(xn)‖
)
. (3.12)

Namely,

‖xn+1 − xn‖
≤ (1− αn−1(1− ρ))‖xn − xn−1‖+ (αn − αn−1)(‖h(xn)‖+ ‖Vλnxn‖)

+ (1− αn−1)
(∣∣∣∣1− λn−1

λn

∣∣∣∣‖proxλng(I − λn∇f)xn − (I − λn∇f)xn‖

+ |λn−1 − λn|‖∇f(xn)‖
)
, (3.13)

where

γnδn

= (αn − αn−1)(‖h(xn)‖+ ‖Vλnxn‖)

+ (1− αn−1)
(∣∣∣∣1− λn−1

λn

∣∣∣∣‖proxλng(I − λn∇f)xn − (I − λn∇f)xn‖

+ |λn − λn−1|‖∇f(xn)‖
)
. (3.14)

We use the conditions to Lemma 2.6 can get that

∞∑
n=1

γnδn <∞.

Thus, we can get that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.15)

Step 3. Show that ‖xn − Vλnxn‖ → 0.
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It is easy to get

‖xn − Vλnxn‖
= ‖xn − (xn+1 − αnh(xn) + αnVλnxn)‖
≤ ‖xn+1 − xn‖+ αn‖h(xn)− Vλnxn‖ → 0 (n→∞). (3.16)

Step 4. Show that

ωw(xn) ⊂ S. (3.17)

Here, ωw(xn) is the set of all weak cluster points of {xn}. Note that {xn} is
bounded and (3.17) together guarantee that {xn} converges weakly to a point
in S and then the proof is consist. To see (3.17), we prove as follows. Take
x̃ ∈ ωw{xn} and assume that {xnj} is a subsequence of {xn} weakly converging
to x̃. Hence by (3.15), xnj+1 ⇀ x̃ as well. Without loss of generality, we may

assume λnj → λ, then 0 < λ < 2
L . Set Vλ = proxλg(I − λ∇f), then Vλ is

nonexpansive. Set

yj = xnj − λnj∇f(xnj ), zj = xnj − λ∇f(xnj ).

Using the proximal identify of Lemma 3.2, we deduce that

‖Vλnjxnj − Vλxnj‖
= ‖proxλnj gyj − proxλgzj‖

=

∥∥∥∥proxλg( λ

λnj
yj +

(
1− λ

λnj

)
proxλnj gyj

)
− proxλgzj

∥∥∥∥
≤
∥∥∥∥ λ

λnj
yj +

(
1− λ

λnj

)
proxλnj gyj − zj

∥∥∥∥
≤ λ

λnj
‖yj − zj‖+

(
1− λ

λnj

)
‖proxλnj gyj − zj‖

=
λ

λnj
|λnj − λ|‖∇f(xnj )‖+

(
1− λ

λnj

)
‖proxλnj gyj − zj‖. (3.18)

Since {xn} is bounded, ∇f is Lipschitz continuous, and λnj → λ, we immedi-
ately derive from the last relation that ‖Vλnjxnj − Vλxnj‖ → 0. As a result,

we find

‖xnj − Vλxnj‖ ≤ ‖xnj − Vλnjxnj‖+ ‖Vλnjxnj − Vλxnj‖ → 0. (3.19)

Now the demiclosedness of the nonexpansive mapping I − Vλ implies that
(I − Vλ)x̃ = 0. Namely, x̃ ∈ Fix(Vλ) = S. Therefore, (3.17) is proved.
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Step 5. Show that ‖xn − x∗‖ → 0, where x∗ is a unique solution of the
variational inequality 〈(I − h)x̃, x∗ − x̃〉 ≥ 0, ∀ x̃ ∈ Fix(Vλ). Then we have

‖xn+1 − x∗‖2

= ‖αnh(xn) + (1− αn)Vλnxn − x∗‖
= ‖αn(h(xn)− x∗) + (1− αn)(Vλnxn − x∗)‖2

≤ (1− αn)2‖Vλnxn − x∗‖2 + 2αn〈h(xn)− x∗, xn+1 − x∗〉
≤ (1− αn)2‖xn − x∗‖2 + 2αnρ‖xn − x∗‖‖xn+1 − x∗‖

+ 2αn〈h(x∗)− x∗, xn+1 − x∗〉
≤ (1− αn)2‖xn − x∗‖2 + αnρ‖xn − x∗‖2 + αnρ‖xn+1 − x∗‖2

+ 2αn〈h(x∗)− x∗, xn+1 − x∗〉. (3.20)

Thus, we get

‖xn+1 − x∗‖2

≤ (1− αn)2 + αnρ

1− αnρ
‖xn − x∗‖2 +

2αn
1− αnρ

〈h(x∗)− x∗, xn+1 − x∗〉

≤
(

1− 2αn(1 + ρ)

1− αnρ

)
‖xn − x∗‖2

+
2αn(1 + ρ)

1− αnρ
1

1 + ρ

(
〈h(x∗)− x∗, xn+1 − x∗〉+

αn
2
‖xn − x∗‖2

)
= (1− α̃n)‖xn − x∗‖2 + α̃nβ̃n, (3.21)

where

α̃n =
2αn(1 + ρ)

1− αnρ
,

β̃n =
1

1 + ρ

(
〈h(x∗)− x∗, xn+1 − x∗〉+

αn
2
‖xn − x∗‖2

)
.

We next show that

lim sup
n→∞

〈h(x∗)− x∗, xn+1 − x∗〉 ≤ 0. (3.22)

Indeed take a subsequence {xnk} of {xn} such that

lim sup
n→∞

〈h(x∗)− x∗, xn+1 − x∗〉 = lim
k→∞
〈h(x∗)− x∗, xnk − x

∗〉. (3.23)

We may assume that xnk ⇀ x̃. It follows from (3.5) that we get

lim sup
n→∞

〈h(x∗)− x∗, xn+1 − x∗〉 = 〈h(x∗)− x∗, x̃− x∗〉 ≤ 0. (3.24)
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It is easily seen that α̃n → 0, Σ∞n=1α̃n =∞, and lim supn→∞ β̃n ≤ 0 by (3.24).
Hence, by Lemma 2.6, the sequence {xn} converges strongly to x∗. �
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