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Abstract. In this article, we extend and generalize the results of Ahmad et al., and to

establish the existence and the uniqueness of common fixed points for a pair of self mappings

on a closed ball in complex valued b-metric space. Our results generalize well-known results

in the literature.

1. Introduction

The first important result on fixed points for contractive type mapping was
the well-known Banach’s contraction principle [10] which was published in
1922. After this classical result, several authors have proved various extensions
and generalizations of that result by considering contractive mappings on many
different metric spaces. In 1989, Bakhtin [11] introduced the concept of b-
metric space as a generalization of metric spaces.

Recently, Azam et al., [1] first introduced the concept of complex valued
metric spaces which is more general than well-known metric space and also
established the common fixed results for a pair of contractive type mappings
satisfying some rational expressions.

Subsequently, many authors have obtained the existence and uniqueness
of fixed points and common fixed points of self-mappings in the context of
complex-valued metric spaces [4, 6, 12, 13, 16, 18, 19, 20].

In 2013, Rao et al., [17] introduced the notion of complex valued b-metric
space which was more general than the well known complex valued metric
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spaces [1]. Afterwards, A.A. Mukheimer [14, 15] proved some common fixed
point theorems of two self mappings satisfying some contraction condition on
complex valued b-metric spaces.

The purpose of this paper is to extend and generalize the results of Ahmad
et al., [5] and obtain common fixed points for a pair of self mappings on a
closed ball in complex valued b-metric space. The results given in this paper
substantially extend and strengthen the results given in [1, 5, 13, 14, 16, 17].

2. Preliminaries

The following definitions and results will be needed in the sequel.

Let C be the set of complex number and z1, z2 ∈ C. Define a partial order
- on C as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2). Consequently, one
can infer that z1 - z2 if one of the following conditions is satisfied:

(i) Re(z1) = Re(z2), Im(z1) < Im(z2),
(ii) Re(z1) < Re(z2), Im(z1) = Im(z2),

(iii) Re(z1) < Re(z2), Im(z1) < Im(z2),
(iv) Re(z1) = Re(z2), Im(z1) = Im(z2).

In particular, we write z1 � z2 if z1 6= z2 and one of (i), (ii) and (iii) is satisfied
and we write z1 ≺ z2 if only (iii) is satisfied. Notice that

0 - z1 � z2 ⇒ |z1| < |z2|,
z1 - z2, z2 ≺ z3 ⇒ z1 ≺ z3.

Definition 2.1. ([17]) Let X be a nonempty set and let s ≥ 1 be a given real
number. A function d : X ×X → C is called a complex valued b-metric on X
if for all x, y, z ∈ X the following conditions are satisfied:

(i) 0 - d(x, y) and d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);

(iii) d(x, y) - s[d(x, z) + d(z, y)].

Then pair (X, d) is called a complex valued b-metric space.

Example 2.2. ([17]) Let X = [0, 1]. Define the mapping d : X ×X → C by
d(x, y) = |x− y|2 + i|x− y|2, for all x, y ∈ X. Then (X, d) is a complex valued
b-metric space with s = 2.

Definition 2.3. ([17]) Let (X, d) be a complex valued b-metric space.

(i) A point x ∈ X is called interior point of a set A ⊆ X whenever there
exists 0 ≺ r ∈ C such that B(x, r) = {y ∈ X : d(x, y) ≺ r} ⊆ A, where
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B(x, r)is an open ball. Then B(x, r) = {y ∈ X : d(x, y) - r} is a
closed ball.

(ii) A point x ∈ X is called a limit point of a set A whenever for every
0 ≺ r ∈ C, B(x, r) ∩ (A− {x}) 6= φ.

(iii) A subset A ⊆ X is called open whenever each element of A is an
interior point of A.

(iv) A subset B ⊆ X is called closed whenever each limit point of B belongs
to B. The family F = {B(x, r) : x ∈ X, 0 ≺ r} is a sub-basis for a
Hausdorff topology τ on X.

Definition 2.4. ([17]) Let (X, d) be a complex valued b-metric space, {xn}be
a sequence in X and x ∈ X.

(i) If for every c ∈ C, with 0 ≺ r there is N ∈ N such that for all n > N,
d(xn, x) ≺ c, then {xn} is said to be convergent, {xn}converges to x
and x is the limit point of {xn}. We denote this by limn→∞xn = x or
{xn} → x asn→∞.

(ii) If for every c ∈ C, with 0 ≺ r there is N ∈ N such that for all
n > N, d(xn, xn+m) ≺ c, where m ∈ N, then {xn}is said to be Cauchy
sequence.

(iii) If every Cauchy sequence in X is convergent, then (X, d) is said to be
a complete complex valued b-metric space.

Lemma 2.5. ([17]) Let (X, d) be a complex valued b-metric space and let
{xn}be a sequence in X. Then {xn}converges to x if and only if |d(xn, x)| → 0
as n→∞.

Lemma 2.6. ([17]) Let (X, d) be a complex valued b-metric space and let
{xn}be a sequence in X. Then {xn} is a Cauchy sequence if and only if
|d(xn, xn+m)| → 0 as n→∞, where m ∈ N.

3. Main Results

Theorem 3.1. Let (X, d) be a complete complex valued b-metric space with
the coefficient s ≥ 1 and x0 ∈ X. Let 0 ≺ r ∈ C and A,B,C,D and E are
nonnegative reals such that A + B + C + 2sD + 2sE < 1. Let S, T : X → X
are mappings satisfying:

d(Sx, Ty) - Ad(x, y) +B
d(x, Sx)d(y, Ty)

1 + d(x, y)
+ C

d(y, Sx)d(x, Ty)

1 + d(x, y)

+D
d(x, Sx)d(x, Ty)

1 + d(x, y)
+ E

d(y, Sx)d(y, Ty)

1 + d(x, y)
(3.1)
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for all x, y ∈ B(x0, r). If

|d(x0, Sx0)| ≤ (1− λ)|r| (3.2)

where λ = max
{

A+sD
1−B−sD ,

A+sE
1−B−sE

}
, then there exists a unique point u ∈

B(x0, r) such that u = Su = Tu.

Proof. Let x0 be an arbitrary point in X and define x2n+1 = Sx2n and x2n+2 =

Tx2n+1, where n = 0, 1, 2, · · · . We will prove that xn ∈ B(x0, r) for all n ∈ N
by mathematical induction. Using inequality (3.2) and the fact that λ =

max
{

A+sD
1−B−sD ,

A+sE
1−B−sE

}
< 1, we have |d(x0, Sx0)| ≤ |r|. It implies that

x1 ∈ B(x0, r). Let x2, x3, · · ·xk ∈ B(x0, r) for some k ∈ N.
If k = 2n + 1, where n = 0, 1, 2, · · · , k−12 , or k = 2n + 2, where n =

0, 1, 2, · · · , k−22 , we obtain by using inequality (3.1)

d(x2n+1, x2n+2) = d(Sx2n, Tx2n+1)

- Ad(x2n, x2n+1) +B
d(x2n+1, Tx2n+1)d(x2n, Sx2n)

1 + d(x2n, x2n+1)

+ C
d(x2n, Tx2n+1)d(x2n+1, Sx2n)

1 + d(x2n, x2n+1)
+D

d(x2n, Tx2n+1)d(x2n, Sx2n)

1 + d(x2n, x2n+1)

+ E
d(x2n+1, Tx2n+1)d(x2n+1, Sx2n)

1 + d(x2n, x2n+1)

- Ad(x2n, x2n+1) +B
d(x2n+1, x2n+2)d(x2n, x2n+1)

1 + d(x2n, x2n+1)

+D
d(x2n, x2n+2)d(x2n, x2n+1)

1 + d(x2n, x2n+1)
.

This implies that

|d(x2n+1, x2n+2)| ≤ A|d(x2n, x2n+1)|+B
|d(x2n+1, x2n+2)||d(x2n, x2n+1)|

|1 + d(x2n, x2n+1)|

+D
|d(x2n, x2n+2)||d(x2n, x2n+1)|

|1 + d(x2n, x2n+1)|
.

Since |1 + d(x2n, x2n+1)| > |d(x2n, x2n+1)|, we have

|d(x2n+1, x2n+2)| ≤ A|d(x2n, x2n+1)|+B|d(x2n+1, x2n+2)|+D|d(x2n, x2n+2)|
≤ A|d(x2n, x2n+1)|+B|d(x2n+1, x2n+2)|

+ sD {|d(x2n, x2n+1)|+ |d(x2n+1, x2n+2)|} .
This implies that

|d(x2n+1, x2n+2)| ≤
A+ sD

1−B − sD
|d(x2n, x2n+1)|. (3.3)
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Similarly, we get

|d(x2n+2, x2n+3)| ≤
A+ sE

1−B − sE
|d(x2n+1, x2n+2)|. (3.4)

Putting λ = max
{

A+sD
1−B−sD ,

A+sE
1−B−sE

}
, we obtain

|d(xk, xk+1)| ≤ λk|d(x0, x1)| (3.5)

for all k ∈ N.

|d(x0, xk+1)|
≤ s|d(x0, x1)|+ s|d(x1, xk+1)|
≤ s|d(x0, x1)|+ s2|d(x1, x2)|+ s2|d(x2, xk+1)|

≤ s|d(x0, x1)|+ s2|d(x1, x2)|+ s3|d(x2, x3)|+ · · ·+ sk+1|d(xk, xk+1)|

≤ s|d(x0, x1)|+ s2λ|d(x0, x1)|+ s3λ2|d(x0, x1)|+ · · ·+ sk+1λk|d(x0, x1)|

= |d(x0, x1)|[s+ s2λ+ s3λ2 + · · ·+ sk+1λk]

≤ (1− λ)|r|1− (sλ)k+1

1− sλ
≤ |r|

gives xk+1 ∈ B(x0, r). Hence xn ∈ B(x0, r) for all n ∈ N and

|d(xn, xn+1)| ≤ λn|d(x0, x1)| (3.6)

for all n ∈ N. Without loss of generality, we take m > n, then

|d(xn, xm)| ≤ s|d(xn, xn+1)|+ s|d(xn+1, xm)|
≤ s|d(xn, xn+1)|+ s2|d(xn+1, xn+2)|+ s2|d(xn+2, xm)|
≤ s|d(xn, xn+1)|+ s2|d(xn+1, xn+2)|+ · · ·

+ sm−n−1|d(xm−2, xm−1)|+ sm−n|d(xm−1, xm)|.

By using (3.6), we get

|d(xn, xm)| ≤ sλn|d(x0, x1)|+ s2λn+1|d(x0, x1)|+ s3λn+2|d(x0, x1)|+ · · ·
+ sm−n−1λm−2|d(x0, x1)|+ sm−nλm−1|d(x0, x1)|

=

m−n∑
i=1

siλi+n−1|d(x0, x1)|,

|d(xn, xm)| ≤ (sλ)n

1− sλ
|d(x0, x1)| → 0 as m, n→∞.

This implies that the sequence {xn} is a Cauchy sequence in B(x0, r). There-

fore, there exists a point u ∈ B(x0, r) with limn→∞ xn = u.
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We prove that that u = Su. Let us consider

|d(u, Su)|
≤ s|d(u, x2n+2)|+ s|d(Su, Tx2n+1)|

≤ s|d(u, x2n+2)|+ sA|d(x2n+1, u)|+ sB
|d(x2n+1, Tx2n+1)||d(u, Su)|

|1 + d(u, x2n+1)|

+ sC
|d(x2n+1, Su)||d(u, Tx2n+1)|

|1 + d(u, x2n+1)|
+ sD

|d(u, Tx2n+1)||d(u, Su)|
|1 + d(u, x2n+1)|

+ sE
|d(x2n+1, Tx2n+1)||d(x2n+1, Su)|

|1 + d(u, x2n+1)|
.

Notice that,

lim
n→∞

|d(u, x2n+2)| = lim
n→∞

|d(x2n+1, u)| = |d(x2n+1, Su)| = 0.

Hence |d(u, Su)| = 0, that is, u = Su. It follows similarly that u = Tu.

For uniqueness, assume that u? in B(x0, r) is a another common fixed point
of S and T. Then

|d(u, u?)| ≤ A|d(u, u?)|+B
|d(u, Su)||d(u?, Tu?)|
|1 + d(u, u?)|

+ C
|d(u?, Su)||d(u, Tu?)|
|1 + d(u, u?)|

+D
|d(u, Su)||d(u, Tu?)|
|1 + d(u, u?)|

+ E
|d(u?, Su)||d(u?, Tu?)|
|1 + d(u, u?)|

.

Since |1 + d(u, u?)| > |d(u, u?)|, so we have

|d(u, u?)| ≤ (A+ C)|d(u, u?)|.

This is contradiction because A + C < 1. Hence u? = u. Therefore, u is a
unique common fixed point of S and T . This completes the proof of the
Theorem. �

Corollary 3.2. Let (X, d) be a complete complex valued b-metric space with
the coefficient s ≥ 1 and x0 ∈ X. Let 0 ≺ r ∈ C and A,B,C,D and E are
nonnegative reals such that A + B + C + 2sD + 2sE < 1. Let T : X → X
satisfy:

d(Tx, Ty) - Ad(x, y) +B
d(x, Tx)d(y, Ty)

1 + d(x, y)
+ C

d(y, Tx)d(x, Ty)

1 + d(x, y)

+D
d(x, Tx)d(x, Ty)

1 + d(x, y)
+ E

d(y, Tx)d(y, Ty)

1 + d(x, y)

for all x, y ∈ B(x0, r). If

|d(x0, Tx0)| ≤ (1− λ)|r|,
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where λ = max
{

A+sD
1−B−sD ,

A+sE
1−B−sE

}
, then there exists a unique point u ∈

B(x0, r) such that u = Tu .

Proof. We can prove this result by applying Theorem 3.1 by setting S = T . �

Remark 3.3. The result of Theorem 3.1 remains true if the condition (3.2)
is replaced by the condition |d(x0, Tx0)| ≤ (1− λ)|r|.

Corollary 3.4. Suppose that (X, d) is a complete complex valued b-metric
space with the coefficient s ≥ 1 and x0 ∈ X. Let 0 ≺ r ∈ C and A,B,C,D be
four nonnegative reals such that A+B +C + 2sD < 1. Let S, T : X → X are
mappings satisfying:

d(Sx, Ty) - Ad(x, y) +B
d(x, Sx)d(y, Ty)

1 + d(x, y)
+ C

d(y, Sx)d(x, Ty)

1 + d(x, y)

+D
d(x, Sx)d(x, Ty)

1 + d(x, y)

for all x, y ∈ B(x0, r). If

|d(x0, Sx0)| ≤ (1− λ)|r|,

where λ = max
{

A+sD
1−B−sD ,

A
1−B

}
, then there exists a unique point u ∈ B(x0, r)

such that u = Su = Tu .

Proof. We can prove this result by applying Theorem 3.1 by setting E = 0. �

Corollary 3.5. Suppose that (X, d) is a complete complex valued b-metric
space with the coefficient s ≥ 1 and x0 ∈ X. Let 0 ≺ r ∈ C and A,B,C,D be
four nonnegative reals such that A+B+C+2sD < 1. Let T : X → X satisfy:

d(Tx, Ty) - Ad(x, y) +B
d(x, Tx)d(y, Ty)

1 + d(x, y)
+ C

d(y, Tx)d(x, Ty)

1 + d(x, y)

+D
d(x, Tx)d(x, Ty)

1 + d(x, y)

for all x, y ∈ B(x0, r). If

|d(x0, Tx0)| ≤ (1− λ)|r|,

where λ = max
{

A+sD
1−B−sD ,

A
1−B

}
, then there exists a unique point u ∈ B(x0, r)

such that u = Tu.

Proof. We can prove this result by applying Corollary 3.4 by setting S =
T . �
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Corollary 3.6. Suppose that (X, d) is a complete complex valued b-metric
space with the coefficient s ≥ 1 and x0 ∈ X. Let 0 ≺ r ∈ C and A,B,C and E
be four nonnegative reals such that A+ B + C + 2sE < 1. Let S, T : X → X
are mappings satisfying:

d(Sx, Ty) - Ad(x, y) +B
d(x, Sx)d(y, Ty)

1 + d(x, y)
+ C

d(y, Sx)d(x, Ty)

1 + d(x, y)

+ E
d(y, Sx)d(y, Ty)

1 + d(x, y)

for all x, y ∈ B(x0, r). If

|d(x0, Sx0)| ≤ (1− λ)|r|,

where λ = max
{

A
1−B ,

A+sE
1−B−sE

}
, then there exists a unique point u ∈ B(x0, r)

such that u = Su = Tu .

Proof. We can prove this result easily by applying Theorem 3.1 by setting
D = 0. �

Corollary 3.7. Suppose that (X, d) is a complete complex valued b-metric
space with the coefficient s ≥ 1 and x0 ∈ X. Let 0 ≺ r ∈ C and A,B,C and
E be four nonnegative reals such that A+B + C + 2sE < 1. Let T : X → X
satisfy:

d(Tx, Ty) - Ad(x, y) +B
d(x, Tx)d(y, Ty)

1 + d(x, y)
+ C

d(y, Tx)d(x, Ty)

1 + d(x, y)

+ E
d(y, Tx)d(y, Ty)

1 + d(x, y)

for all x, y ∈ B(x0, r). If

|d(x0, Tx0)| ≤ (1− λ)|r|,

where λ = max
{

A
1−B ,

A+sE
1−B−sE

}
, then there exists a unique point u ∈ B(x0, r)

such that u = Tu .

Proof. By setting S = T in Corollary 3.6, we get the required result of Corol-
lary 3.7. �

Corollary 3.8. Suppose that (X, d) is a complete complex valued b-metric
space with the coefficient s ≥ 1 and x0 ∈ X. Let 0 ≺ r ∈ C and A,B,C be
three nonnegative reals such that sA + B + C < 1. Let S, T : X → X are
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mappings satisfying:

d(Sx, Ty) - Ad(x, y) +B
d(x, Sx)d(y, Ty)

1 + d(x, y)
+ C

d(y, Sx)d(x, Ty)

1 + d(x, y)

for all x, y ∈ B(x0, r). If

|d(x0, Sx0)| ≤ (1− λ)|r|,

where λ = A
1−B , then there exists a unique point u ∈ B(x0, r) such that u =

Su = Tu .

Proof. We can prove this result by applying Theorem 3.1 by setting D = E =
0. Our result is the extension of the Theorem 2.1 of [16] to the closed ball in
complex valued b-metric space. �

Corollary 3.9. Suppose that (X, d) is a complete complex valued b-metric
space with the coefficient s ≥ 1 and x0 ∈ X. Let 0 ≺ r ∈ C and A,B,C be
three nonnegative reals such that sA+B + C < 1. Let T : X → X satisfy:

d(Tx, Ty) - Ad(x, y) +B
d(x, Tx)d(y, Ty)

1 + d(x, y)
+ C

d(y, Tx)d(x, Ty)

1 + d(x, y)

for all x, y ∈ B(x0, r). If

|d(x0, Tx0)| ≤ (1− λ)|r|,

where λ = A
1−B , then there exists a unique point u ∈ B(x0, r) such that u = Tu.

Proof. We can prove this result by applying Corollary 3.8 by setting S =
T . �

Corollary 3.10. Suppose that (X, d) is a complete complex valued b-metric
space with the coefficient s ≥ 1 and x0 ∈ X. Let 0 ≺ r ∈ C and A,B be
nonnegative reals such that sA + B < 1. Let S, T : X → X are mappings
satisfying:

d(Sx, Ty) - Ad(x, y) +B
d(x, Sx)d(y, Ty)

1 + d(x, y)

for all x, y ∈ B(x0, r). If

|d(x0, Sx0)| ≤ (1− λ)|r|,

where λ = A
1−B , then there exists a unique point u ∈ B(x0, r) such that u =

Su = Tu.

Proof. By setting C = D = E = 0 in Theorem 3.1, we get the required result
of Corollary 3.10. Our result is the extension of the Theorem 4 of [1] to the
closed ball in complex valued b-metric space. �
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Corollary 3.11. Suppose that (X, d) is a complete complex valued b-metric
space with the coefficient s ≥ 1 and x0 ∈ X. Let 0 ≺ r ∈ C and A,B be
nonnegative reals such that sA+B < 1. Let T : X → X satisfy:

d(Tx, Ty) - Ad(x, y) +B
d(x, Tx)d(y, Ty)

1 + d(x, y)

for all x, y ∈ B(x0, r). If

|d(x0, Tx0)| ≤ (1− λ)|r|,

where λ = A
1−B , then there exists a unique point u ∈ B(x0, r) such that u = Tu.

Proof. We can prove this result by applying Corollary 3.10 by setting S =
T. �

Corollary 3.12. Suppose that (X, d) is a complete complex valued b-metric
space with the coefficient s ≥ 1 and x0 ∈ X. Let 0 ≺ r ∈ C and A,B,C,D
and E be five nonnegative reals such that A + B + C + 2sD + 2sE < 1. Let
T : X → X satisfy:

d(Tnx, Tny) - Ad(x, y) +B
d(x, Tnx)d(y, Tny)

1 + d(x, y)
+ C

d(y, Tnx)d(x, Tny)

1 + d(x, y)

+D
d(x, Tnx)d(x, Tny)

1 + d(x, y)
+ E

d(y, Tnx)d(y, Tny)

1 + d(x, y)

for all x, y ∈ B(x0, r) and

|d(x0, T
nx0)| ≤ (1− λ)|r|,

where λ = max
{

A+sD
1−B−sD ,

A+sE
1−B−sE

}
, then there exists a unique point u ∈

B(x0, r) such that u = Tu.

Proof. For some fixed n, we obtain u ∈ B(x0, r) such that Tnu = u. The

uniqueness follows from

d(Tu, u) = d(TTnu, Tnu) = d(TnTu, Tnu)

- Ad(Tu, u) +B
d(Tu, TnTu)d(u, Tnu)

1 + d(Tu, u)
+ C

d(u, TnTu)d(Tu, Tnu)

1 + d(Tu, u)

+D
d(Tu, TnTu)d(Tu, Tnu)

1 + d(Tu, u)
+ E

d(u, TnTu)d(u, Tnu)

1 + d(Tu, u)

- Ad(Tu, u) + C
d(u, TTnu)d(Tu, u)

1 + d(Tu, u)
+D

d(Tu, TTnu)d(Tu, u)

1 + d(Tu, u)

- Ad(Tu, u) + C
d(u, Tu)d(Tu, u)

1 + d(Tu, u)
.



Nonlinear mixed vector variational inequality problems 267

Taking modulus in above, we get

|d(Tu, u)| ≤ A|d(Tu, u)|+ C
|d(u, Tu)||d(Tu, u)|
|1 + d(Tu, u)|

.

Since |1 + d(Tu, u)| > |d(Tu, u)|, so we get

|d(Tu, u)| ≤ (A+ C)|d(Tu, u)|,

a contradiction. So u = Tu.
Hence Tu = Tnu = u. Therefore, the fixed point of T is unique. This

completes the proof. �
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