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Abstract. In this paper, we give definition of quasiring as a new concept. Also, we introduce

the notions of quasimodule and normed quasimodule defined on a quasiring. We should

immediately note that a quasimodule is a generalization of quasilinear spaces. Similarly,

normed quasimodule is a generalization of normed quasilinear spaces defined by Aseev,

[3]. Moreover, we obtain some results about the relationships between these concepts. We

think that investigations on quasimodules may provide some important contributions to

improvement of some branches of quasilinear functional analysis such as the duality theory

of quasilinear spaces. Also we recognize that the notion of quasimodule is more suitable

backdrop as regards theory of quasilinear spaces in examination of quasilinear functional.

1. Introduction

As is known, many problems in real world are characterizated by differan-
tial equations containing of single valued functions. But some problems can
not be represented by means of these equations. Such these problems can be
characterizated with multivalued differential equations (known as set differen-
tial equations) generated by multivalued differential inclusions. Researches on
characterization of these problems have been presented in references such as
[1], [4], [8] and so on. In 1986, Aseev [3] introduced the concept of quasilinear

0Received November 22, 2014. Revised February 19, 2015.
02010 Mathematics Subject Classification: 05C25, 06E20, 06F25, 16W50, 16W80, 46H25.
0Keywords: Quasilinear spaces, quasimodules, normed quasimodules, set valued maps,

control theory, optimization theory.
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spaces both including classical linear spaces and modelling nonlinear spaces
of subsets and multivalued mappings from a single point of view. Then he
proceeded a similar way to linear functional analysis on quasilinear spaces by
introducing the notions of the norm, quasilinear operators and functionals.
Further, he presented some results which are quasilinear counterparts of fun-
damental definitions and theorems in linear functional analysis and differential
and integral calculus in Banach spaces. This pioneering work has motivated a
lot of author to introduce some new results concerning with quasilinear spaces,
[6], [7], [10], [11].

Section 2 has a preparatory character. It collects the definitions of some
algebraic structures which will be needed further on, such as ordered monoid,
ordered ring. Also, in this section, we present some definitions and prelimi-
naries results about quasilinear spaces and normed quasilinear spaces given in
[3] and [11]. One can see that, as different from linear spaces, Aseev used the
partial order relation when he defined quasilinear spaces and he gave coherent
counterparts of results in linear spaces.

In final section, firstly we introduce the concept of “quasiring” which is a
generalization of ring and semiring. Also this new concept is different from
ordered semiring. Moreover, in this section, we give the relation between
quasiring and field. Then we introduce “quasimodules” and “normed quasi-
modules” defined on a quasiring. We also obtain some results related to these
concepts.

We write Ω(R) and ΩC(R) to denote the family of all nonempty, closed-
bounded and nonempty, convex, closed-bounded subsets of R, respectively.

The purpose of this study is to give foundations of mathematical structures
of quasiring and quasimodules. Also this paper especially constitutes the ba-
sics of investigations concerning with quasimodules on the quasiring ΩC(R).
We think that investigations on quasimodules may provide some important
contributions to improvement of some branches of quasilinear functional anal-
ysis such as the duality theory of quasilinear spaces. We recognized that the
notion of quasimodules is more suitable backdrop as regards theory of quasi-
linear spaces in examination of quasilinear functional.

2. Preliminaries and Some Results About Quasilinear Spaces and
Normed Quasilinear Spaces

A semigroup is a set G together with a binary operation “ · ” (that is,
a function · : G × G → G ) that satisfies the associative property: for all
a, b, c ∈ G, the equation (a · b) · c = a · (b · c) holds.



On the quasimodules and normed quasimodules 271

An ordered semigroup is a semigroup (G, ·) together with a partial order
“ ≤ ” that is compatible with the semigroup operation, meaning that a ≤ b
implies a · c ≤ b · c and c · a ≤ c · b. for all a, b, c in G.

A monoid is a semigroup with an identity element e ∈ G such that e · a =
a · e = a.

An ordered monoid G is a monoid equipped with a partial order “ ≤ ”, such
that a · c ≤ b · c and c · a ≤ c · b if a ≤ b , for all a, b, c ∈ G.

A group G is a monoid with an inverse namely such that for every element
x ∈ G there exists an element y ∈ G such that xy = yx = e. An inverse is
unique and is denoted by x−1.

An ordered group is a group (G, ·) equipped with a partial order “ ≤ ” that
is translation-invariant; in other words, “ ≤ ” has the property that, for all
a, b and c in G, if a ≤ b then a · c ≤ b · c and c · a ≤ c · b.

A semiring is a set R equipped with two binary operations “ + ” and “ ·
” called addition and multiplication with the following properties; (R,+) is
a commutative monoid with identity element θ and (R, ·) is a monoid with
identity element 1 and further multiplication left and right distributes over
addition. Also multiplication by θ annihilates R, that is θ · a = a · θ = θ.

An ordered semiring is a semiring equipped with a partial order relation
“ ≤ ” such that

a+ c ≤ b+ c and c+ a ≤ c+ b if a ≤ b,
θ ≤ a · b if θ ≤ a and θ ≤ b,

for all a, b, c ∈ R.
An ordered ring is a ring (R,+, ·), together with a compatible partial order,

i.e., a partial order on the underlying set A that is compatible with the ring
operations in the sense that it satisfies: a ≤ b implies a+ c ≤ b+ c and θ ≤ a
and θ ≤ b imply that 0 ≤ a · b for all a, b, c ∈ R.

Let we recall some definitions and auxiliary facts introduced in [3], [6], [11].

Definition 2.1. ([3]) A set X is called a quasilinear space (qls, for short),
if a partial order relation “≤”, an algebraic sum operation, and an operation
of multiplication by real numbers are defined in it in such a way that the
following conditions hold for any elements x, y, z, v ∈ X and any real numbers
α, β:

x ≤ x, (QLS 1)

x ≤ z if x ≤ y and y ≤ z, (QLS 2)
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x = y if x ≤ y and y ≤ x, (QLS 3)

x+ y = y + x, (QLS 4)

x+ (y + z) = (x+ y) + z, (QLS 5)

there exists an element θ ∈ X such that x+ θ = x, (QLS 6)

α · (β · x) = (αβ) · x, (QLS 7)

α · (x+ y) = α · x+ α · y, (QLS 8)

1 · x = x, (QLS 9)

θ · x = θ, (QLS 10)

(α+ β) · x ≤ α · x+ β · x, (QLS 11)

x+ z ≤ y + v if x ≤ y and z ≤ v, (QLS 12)

α · x ≤ α · y if x ≤ y. (QLS 13)

A linear space is a qls with the partial order relation “=”. The most popular
example of quasilinear spaces which is not a linear space is the set of all closed
intervals of real numbers with the inclusion relation “⊆”, the algebraic sum
operation

A+B = {a+ b : a ∈ A, b ∈ B}
and the real-scalar multiplication

λA = {λa : a ∈ A} .
We denote this set by ΩC (R). Another one is Ω (R) which is the set of all
compact subsets of real numbers. In general, Ω (E) and ΩC (E) stand for
the space of all nonempty, closed, bounded and nonempty, convex and closed
bounded subsets of any normed linear space E, respectively. Also Ω (E) and
ΩC (E) are quasilinear spaces with the inclusion relation and with a slight
modification of addition defined by

A+B = {a+ b : a ∈ A, b ∈ B}
and with the real scalar multiplication above.

In a qls X, the element θ is minimal, i.e., x = θ if x ≤ θ. The element x′ is
called inverse of x if x+ x′ = θ. If the inverse of an element exists, then it is
unique.

An element x having inverse is called regular, otherwise is called singular.
Note that the minimality is not only a property of θ but also is shared by the
other regular elements, [11]. Xr and Xs stand for the sets of all regular and
singular elements in X, respectively.

It will be assumed that −x = (−1)x. An element x is regular if and only if
x− x = θ equivalently x′ = −x.

Suppose that any element x has inverse element x′ . Then the partial
order in X is determined by equality, the distributivity conditions hold and
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consequently, X is a linear space. In a real linear space, equality is the only
way to define a partial order such that the conditions (QLS 1)-(QLS 13) hold.

Suppose that X is a qls and Y ⊆ X. Then Y is called a subspace of X if
Y is a qls with the same partial order and the restriction of the operations on
X. Y is subspace of a qls X if and only if for every x, y ∈ Y and α, β ∈ R,
α · x+ β · y ∈ Y .

Let X be a qls and Y be a subspace of X. Suppose that each element x in
Y has inverse element x′ ∈ Y then the partial order on Y is determined by
the equality. In this case, the distibutivity conditions hold and Y is a linear
subspace of the qls X.

An element x ∈ X is called symmetric if −x = x and Xd denotes the set
of all symmetric elements.
Xr, Xd and Xs ∪ {0} are subspaces of X. Xr, Xd and Xs ∪ {0} are called

regular, symmetric and singular subspaces of X, respectively. For example,
let X = ΩC(R) and Z = {0} ∪ {[a, b] : a, b ∈ R and a < b}. Z is singular
subspace of X. On the other hand, the set of all singletons of real numbers
{{a} : a ∈ R} is regular subspace of X.

In a qls X, every regular element is minimal. For example, let X = ΩC(R)
and V be singular subspace of X. Then V is a set containing all closed intervals
in addition to {0} and so V is a qls with the partial order and operations on
X. {0} is the only minimal element in V , [11].

Definition 2.2. ([3]) Let X be a qls. A real function ‖·‖X : X −→ R is called
a norm if the following conditions hold:

‖x‖X > 0 if x 6= 0, (NQLS 1)

‖x+ y‖X ≤ ‖x‖X + ‖y‖X , (NQLS 2)

‖α · x‖X = |α| ‖x‖X , (NQLS 3)

‖x‖X ≤ ‖y‖X if x ≤ y, (NQLS 4)

if for any ε > 0 there exists an element xε ∈ X such that,

x ≤ y + xε and ‖xε‖X ≤ ε then x ≤ y. (NQLS 5)

A qls X with a norm defined on it is called normed quasilinear space (briefly,
normed qls). If any x ∈ X has inverse element x′ ∈ X then the concept of
normed qls coincides with the concept of real normed linear space.

Let X be a normed qls and x, y ∈ X. Hausdorff metric on X is defined by
the equality

hX(x, y) = inf {r ≥ 0 : x ≤ y + ar1, y ≤ x+ ar2, ‖ari ‖ ≤ r} .
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Since x ≤ y+ (x− y) and y ≤ x+ (y− x), the function hX is well-defined and
hX(x, y) ≤ ‖x− y‖X . It is not hard to see that this function hX satisfies all
of the metric axioms.

Lemma 2.3. ([3]) The operations of algebraic sum and multiplication by real
numbers are continuous with respect to the Hausdorff metric. The norm is a
continuous function with respect to the Hausdorff metric.

Lemma 2.4. ([3])

(a) Suppose that xn → x0 and yn → y0, and that xn ≤ yn for any positive
integer n. Then x0 ≤ y0.

(b) Suppose that xn → x0 and zn → x0. If xn ≤ yn ≤ zn for any n, then
yn → x0.

(c) Suppose that xn+ yn → x0 and yn → θ, then xn → x0.

Let X be a real complete normed linear space (a real Banach space). Then
X is a complete normed qls with partial order relation given by equality.
Conversely, if X is a complete normed qls and any x has inverse element x

′
,

then X is a real Banach space and the partial order relation on X is equality.
In this case hX(x, y) = ‖x− y‖X .

Let E be a real normed linear space. The norm on Ω(E) is defined by

‖A‖Ω(E) = sup ‖a‖E .

Then Ω(E) and ΩC(E) are normed quasilinear spaces. In this case the Haus-
dorff metric is defined as usual:

hΩ(A,B) = inf{r ≥ 0 : A ⊆ B + Sr(θ), B ⊆ A+ Sr(θ)},

where Sr(θ) stands for the closed ball centered at θ with radius r.
Let us write C(S,X) to denote the set of all continuous mappings f : S →

X. Then C(S,X) is a normed qls with the partial order relation

f1 ≤ f2 if f1(s) ≤ f2(s) for any s ∈ S
and the algebraic sum operation

(f1 + f2)(s) = f1(s) + f2(s)

and the operation of multiplication by real numbers

(α · f)(s) = α · f(s)

as well as the norm

‖f‖C = max
s∈S
‖f(s)‖X .
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3. The main results

In this section we introduce the notions of “quasimodules” and “normed
quasimodules” as a generalization of the quasilinear spaces and normed quasi-
linear spaces given in [3]. Also, we obtain some results concerning with these
concepts.

Definition 3.1. A quasiring is a nonempty set R equipped with a partial
order relation “ ≤ ” on R and two binary operations “ + ” and “ · ” called
addition and multiplication, respectively, such that

(QR 1) (R,+,≤) is a commutative ordered monoid with identity element θ :
(a) (a+ b) + c = a+ (b+ c),
(b) θ + a = a+ θ = a,
(c) a+ b = b+ a,
(d) a ≤ b⇒ a+ c ≤ b+ c,

(QR 2) (R, ·,≤) is an ordered monoid with identity element 1 :
(a) (a · b) · c = a · (b · c),
(b) there exists an element 1 ∈ R such that 1 · a = a · 1 = a,
(c) a · c ≤ b · c and c · a ≤ c · b if a ≤ b,

(QR 3) The multiplication operation sub distributes over the addition opera-
tion:
(a) a · (b+ c) ≤ a · b+ a · c,
(b) (a+ b) · c ≤ a · c+ b · c

hold, for all a, b, c ∈ R.

We write (R,+, ·,≤) to denote the quasiring defined in this way. Hence a
quasiring is a commutative ordered monoid with respect to “ + ” and ordered
monoid with respect to “ · ” and satisfies the condition (QR 3).

The following remark is important since it emphasizes that a quasiring is
different from ordered semiring.

Remark 3.2. The concept of quasiring is different from the notion of ordered
semiring. Because an ordered semiring is a semiring equipped with a partial
order relation “ ≤ ” such that

a+ c ≤ b+ c and c+ a ≤ c+ b if a ≤ b,
θ ≤ a · b if θ ≤ a and θ ≤ b,

for all a, b, c ∈ R. Whereas, a quasiring is a mathematical structure satisfying
the conditions (QR 1)-(QR 3).

Now we give an example account for this case:
The semiring (R,+, ·) is an ordered semiring with the partial order relation

“ ≤ ”, but (R,+, ·) is not a quasiring with the same partial order relation
“ ≤ ” since the condition (QR 2)-(c) can not be satisfied. To illustrate this,
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we consider the following fact

−3 ≤ −1 but − 3 · (−2) � −1 · (−2).

On the other hand (R,+, ·) is an ordered semiring and it is a quasiring when
the relation “ = ” is considered as partial ordered relation instead of the
relation “ ≤ ”.

A̧n ordered semiring (R,+, ·) is a quasiring when

x ≤ y if and only if x = y

holds.

Example 3.3. Every ring and every semiring is a quasiring with partial order
relation “ = ”.

Now, we will give an example showing that there exists a quasiring which
is not a ring. Since it shows that the concept of quasiring is a generalization
of the notion of ring, the following example is considerable.

Example 3.4. Consider the set ΩC(R) with the operations “ + ” and “ · ”
defined by

[a, b] + [c, d] = {u+ v : u ∈ [a, b], v ∈ [c, d]}
= [a+ c, b+ d],

and

[a, b] · [c, d] = {u · v : u ∈ [a, b], v ∈ [c, d]}
= [min(a · c, a · d, b · c, b · d),max(a · c, a · d, b · c, b · d)]

for all [a, b], [c, d] ∈ ΩC(R). It can be easily seen that the inclusion relation
defined by

[a, b] ≤ [c, d] if and only if [a, b] ⊆ [c, d]

is a partial order relation on ΩC(R).
Since it is easy to show that the conditions (QR 1)-(a),(b),(c) hold, we omit

its. Where, we only show that the condition (QR 1)-(d) holds:

[a, b] ⊆ [c, d]

⇒ (c ≤ a) ∧ (b ≤ d)

⇒ (c+ e ≤ a+ e) ∧ (b+ f ≤ d+ f)

⇒ [a+ e, b+ f ] ⊆ [c+ e, d+ f ]

⇒ [a, b] + [e, f ] ⊆ [c, d] + [e, f ]

for all [a, b], [c, d] ∈ ΩC(R). Hence (ΩC(R),+,⊆) is a commutative ordered
monoid. Moreover (ΩC(R), ·,⊆) is an ordered monoid (see [1]). The singletons



On the quasimodules and normed quasimodules 277

{0} and {1} are identity elements of addition and mutiplication operations,
respectively. Furthermore one can easily see that the includings

[a, b] · ([c, d] + [e, f ]) ⊆ [a, b] · [c, d] + [a, b] · [e, f ]

and

([a, b] + [c, d]) · [e, f ] ⊆ [a, b] · [e, f ] + [c, d] · [e, f ]

hold. So (ΩC(R),+, ·,⊆) is a quasiring.
Whereas (ΩC(R),+, ·) is not a ring since there exist some elements which

have not inverse in ΩC(R). For example the singular elements [a, b] (with the
condition a 6= b) have not inverse with respect to the operation “ + ”.

Example 3.5. Consider the set Ω(R) with the operations Minkowskii addition
and set multiplication defined by

A+B = {a+ b : a ∈ A and b ∈ B},

and

A ·B = {a · b : a ∈ A and b ∈ B},
respectively. Then (Ω(R),+,⊆) is a commutative ordered monoid and
(Ω(R), ·,⊆) is an ordered monoid (see [1]). So (Ω(R),+, ·,⊆) is a quasiring.

Definition 3.6. Let (R,+, ·,≤) is a quasiring and R′ ⊆ R. Then we say
that (R′,+, ·,≤) is a subquasiring of (R,+, ·,≤) if R′ is a quasiring with the
algebraic operations and partial order relation on R.

By the way, ΩC(R) is a subquasiring of Ω(R) with algebraic operations and
partial order relation defined before.

Proposition 3.7. θR is a minimal element of the quasiring (R,+, ·,≤).

Proof. Suppose that x ≤ θR for x ∈ R. Then we can write

(−1R) · x ≤ (−1R) · x,

where (−1R) is inverse of 1R with respect to ” + ”. From (QR 1)-(d), we can
write

x+ (−1R) · x ≤ θR + (−1R) · x = (−1R) · x. (3.1)

Also, by using the conditions (QR 1)-(b), (QR 3)-(b) and the relation (3.1),
we get

θR = (1R + (−1R)) · x ≤ x+ (−1R) · x ≤ (−1R) · x.
On the other hand, from (QR 2)-(c)

(−1R) · θR ≤ (−1R) · (−1R) · x = x (3.2)
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is obtained and we know that

(−1R) · θR = θR. (3.3)

Thus, (3.2) and (3.3) give us that

θR ≤ x.
Hence x = θR. This completes the proof. �

The following lemma gives the relation between quasiring and field:

Lemma 3.8. If every element of a quasiring R (except θR) has an inverse
with respect to “ + ” and “ · ”, the partial order relation “ ≤ ” turns to the
relation “ = ” and this quasiring becomes a field.

Proof. Assume that x ≤ y. Then, from (QR 1)-(d), we get

x+ y′ ≤ y + y′ = θR

where y′ is inverse of y with respect to “+”. The minimality of the element θR
implies that x+ y′ = θR. Since inverse element is unique, then x = y. In this
case, the relation “ ≤ ” turns to the relation “ = ” and (QR 1)-(d), (QR 2)-(c)
are automatically satisfied. Also (QR 3)-(a) and (QR 3)-(b) turn into the
property of distributivity. Consequently this quasiring becomes a field. �

A̧ny field is a quasiring if and only if the relation “ = ” is considered as
partial order relation.

Definition 3.9. An element of a quasiring R which has inverse with respect
to “ + ” is called additive regular element. Similarly an element of a quasiring
R is called multiplicative regular element if it has inverse with respect to “ · ”
It can be easily seen that if inverse of an element exists, then it is unique. Rar
and Rmr stand for the sets of all additive regular and multiplicative regular
elements in R, respectively. Note that the family of all additive and multi-
plicative regular elements of a quasiring R is subquasiring of R.

For example, a singleton in the quasiring ΩC(R) is an additive regular and
a multiplicative regular element. But, an interval has not inverse with respect
to addition and multiplication operation.

Proposition 3.10. In a quasiring (R,+, ·,≤), every additive regular element
is minimal.

Proof. We must show that y ≤ x implies y = x for each x ∈ Rar. Assume that
y ≤ x. Then, from (QR 1)-(d), we obtain

y + x−1 ≤ x+ x−1 = θR,
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where x−1 is inverse of x with respect to “ + ”. The minimality of the element
θR implies that y+x−1 = θR. Since inverse element is unique then y = x. �

Proposition 3.11. In a quasiring (R,+, ·,≤), every multiplicative regular
element is minimal.

Proof. Let x ∈ Rmr and y ≤ x. Then, using (QR 2)-(c) we get

y · x′ ≤ x · x′ = 1R,

where x′ is inverse of x with respect to “ · ”. The minimality of the additive
regular element 1R implies that y · x′ = 1R. Since inverse element is unique
then y = x. �

Proposition 3.12. Let (R,+, ·,≤) be a quasiring. Then

a ≤ b+ (a− b)
and

b ≤ a+ (b− a)

hold for every a, b ∈ R.

Proof. Since θR = (1R + (−1R)) · a ≤ 1R · a + (−1R) · a = a − a, taking into
account (QR 1)-(d) we have θR + b ≤ (a− a) + b, where −a denotes (−1R) · a.
On the other hand, we write b ≤ a+ (−a+ b) from the conditions (QR 1)-(a)
and (QR 1)-(c). Thus

b ≤ a+ (b+ (−1R) · a)

= a+ (b− a)

holds. Similarly it can be obtained that a ≤ b+ (a− b). �

Now let us now give another important definition.

Definition 3.13. Let X be a nonempty set and (R,+, ·,≤) is a quasiring.
Then X is called a quasimodule on the quasiring R if the following conditions
hold:

α� (β � x) = (α · β)� x, (QM 1)

α� (x⊕ y) = (α� x)⊕ (α� y), (QM 2)

1R � x = x, (QM 3)

0R � x = θ, (QM 4)

(α+ β)� x - (α� x)⊕ (β � x), (QM 5)

x - y and z - v ⇒ x⊕ z - y ⊕ v, (QM 6)

α ≤ β and x - y ⇒ α� x - β � y (QM 7)
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for all x, y, z, v ∈ X and α, β ∈ R. Where “⊕ ” and “� ” are two operations
defined by

⊕ : X ×X → X

(x, y)→ x⊕ y

and

� : R×X → X

(α, x)→ α� x

such that X is a commutative monoid with “⊕ ”.

Note that, since real numbers set R ,which has property of field is subquasir-
ing of Ω(R) and ΩC(R), then quasimodules on this field coincide with the
concept of qls. Hence quasimodules is a generalization of quasilinear spaces.

The principal aim of this paper is to give foundation of mathematical struc-
tures of quasiring and quasimodules which constitutes the basics of investi-
gations concerning with quasimodules especially on the quasiring ΩC(R). We
think that investigations on quasimodules on a quasiring may provide some
important contributions to improvement of some branches of quasilinear func-
tional analysis such as the duality theory of quasilinear spaces. Further the
notion of quasimodule is more suitable backdrop as regards theory of quasi-
linear spaces in examination of quasilinear functional.

Proposition 3.14. Every quasiring is a quasimodule on itself.

Proof. Assume that (Q,+, ·,≤) is a quasiring. Consider X = Q, R = Q and
- = ≤. If the operation “ ⊕ ” and “ � ” are considered as the addition and
multiplication operations on Q, respectively, then (R,+,≤) is a commutative
ordered monoid and the following conditions hold:

α · (β · x) = (α · β) · x,

α · (x+ y) = α · x+ α · y,
1R · x = x,

0R · x = θ,

(α+ β) · x ≤ α · x+ β · x.
If x ≤ y and z ≤ v then by using (QR 1)-(d) we write x+z ≤ y+z, y+z ≤ y+v
and since “ ≤ ” is a partial order relation we have x + z ≤ y + v. If α ≤ β
and x ≤ y then by using (QR 2)-(c) we get α · x ≤ α · y, α · y ≤ β · y and since
“ ≤ ” is a partial order relation we have α · x ≤ β · y. Hence the quasiring R
is a quasimodule on itself. �
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Definition 3.15. Let X be a quasimodule and Y ⊆ X. Then we called that
Y is a subquasimodules of X if Y is a quasimodule with the operations and
relation on X.

In a quasimodule, an element which has inverse is called regular element.
Since the operation of multiplication of an element with an interval is an exter-
nal operation, the notion of inverse of an element with respect to multiplication
operation is meaningless in a quasimodule in contrast to field. Hence it is not
need that concept of inverse of an element with respect to multiplication and
so inverse of an element means the inverse of this element respect to addition
operation, in a quasi module.

Definition 3.16. Let X be a quasimodule on a quasiring R. Then the set
of all regular (singular) elements is a quasimodule with the operations and
relation on X and this set is called regular (singular) subquasimodule of X
and denoted byXr andXs, respectively. An element x ∈ X is called symmetric
element if [−1,−1]�x = x, and Xd denotes the set of all symmetric elements.
Note that this set is a quasimodule with the operations and relation on X.

Proposition 3.17. Ω(R) is a quasimodule on the quasiring ΩC(R).

Proof. Consider the operations

⊕ : Ω(R)× Ω(R)→ Ω(R)

(A,B)→ A⊕B = {a+ b : a ∈ A, b ∈ B}
and

� : ΩC(R)× Ω(R)→ Ω(R)

(C,A)→ C �A = {c · a : c ∈ C, a ∈ A}

and the partial order relation “ ⊆ ” on Ω(R).
For every C,C ′ ∈ ΩC(R) and A,B,D,E ∈ Ω(R), the following equalities

hold:

C �
(
C ′ �A

)
= (C · C ′)�A,

C � (A⊕B) = (C �A)⊕ (C �B),

1R �A = {1 · a : a ∈ A} = {a : a ∈ A} = A,

θΩC(R) �A = {θ · a : a ∈ A} = {θ: θ ∈ Ω(R)} = θ,

(C + C ′)�A = (C �A)⊕ (C ′ �A),

if C ⊆ C ′ and A ⊆ B then C �A ⊆ C ′ �B,
and

if A ⊆ B and D ⊆ E then A⊕D ⊆ B ⊕ E,
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where 1ΩC(R) = {1}, 1 ∈ R and θΩC(R) = {0}, 0 ∈ R. Consequently, Ω(R) is a
quasimodule on the quasiring ΩC(R). �

Remark 3.18. The set ΩC(R) is not a quasimodule on the quasiring Ω(R)
although Ω(R) is a quasimodule on the quasiring ΩC(R). Because the operation

� : Ω(R)× ΩC(R)→ ΩC(R)

(A,B)→ A�B = {a · b : a ∈ A, b ∈ B}

is not well defined. Indeed, producting of a compact set with an interval
may not be interval. For example, for elements [3, 4] ∪ [9, 10] ∈ Ω(R) and
[1, 2] ∈ ΩC(R),

([3, 4] ∪ [9, 10])� [1, 2] = [3, 8] ∪ [9, 20]

but [3, 8] ∪ [9, 20] /∈ ΩC(R).

We denote by Ωn
C(R) the family of all n−tuples intervals which constitute

an important part of interval analysis.

Ωn
C(R) = {X = (X1, X2, ..., Xn) : Xi ∈ ΩC(R) for 1 ≤ i ≤ n} .

We emphasize that Ωn
C(R) is different from ΩC(Rn) which is the family of all

closed, bounded and convex subsets of Rn, [9].

Example 3.19. Ωn
C(R) is a quasimodule on ΩC(R) with the operations ⊕, �

and partial order relation � defined by

⊕ : Ωn
C(R)× Ωn

C(R)→ Ωn
C(R),

F ⊕G = (F1 +G1, F2 +G2, ..., Fn +Gn)

and

� : ΩC(R)× Ωn
C(R)→ Ωn

C(R),

A� F = (A · F1, A · F2, ..., A · Fn)

and

F � G ⇔ Fi ⊆ Gi for every i ∈ {1, 2, ..., n}

for F, G ∈ Ωn
C(R) and A ∈ ΩC(R).

We note that Ωn
C(R) is a commutative monoid with “ ⊕ ”. Since it is easy

to show that the conditions (QM 1)-(QM 4) hold, we only prove that the
conditions (QM 5)-(QM 7) hold for all F,G,H, I ∈ Ωn

C(R) and A,B ∈ ΩC(R):
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(QM 5)

(A+B)� F = (A+B)� (F1, F2, ..., Fn)

= ((A+B) · F1, (A+B) · F2, ..., (A+B) · Fn)

� (A · F1 +B · F1, A · F2 +B · F2, ..., A · Fn +B · Fn)

= (A · F1, A · F2, ..., A · Fn)⊕ (B · F1, B · F2, ..., B · Fn)

= (A� (F1, F2, ..., Fn))⊕ (B � (F1, F2, ..., Fn))

= (A� F )⊕ (B � F ),

(QM 6) Let F � G and H � I. Then Fi ⊆ Gi and Hi ⊆ Ii for all i ∈
{1, 2, ..., n}.

F ⊕H = (F1, F2, ..., Fn)⊕ (H1, H2, ...,Hn)

= (F1 +H1, F2 +H2, ..., Fn +Hn)

� (G1 + I1, G2 + I2, ..., Gn + In)

= (G1, G2, ..., Gn)⊕ (I1, I2, ..., In) = G⊕ I,

(QM 7) Let A ⊆ B and F � G. Then Fi ⊆ Gi for all i ∈ {1, 2, ..., n}.
A� F = A� (F1, F2, ..., Fn) = (A · F1, A · F2, ..., A · Fn)

� (B ·G1, B ·G2, ..., B ·Gn) = B � (G1, G2, ..., Gn)

= B �G.

Hence Ωn
C(R) is a quasimodule on ΩC(R).

Set valued maps provide a useful framework for control theory, optimiza-
tion theory, game theory, robotics, chemical engineering and mathematical
economics (See [4], [8], [9]). For this reason C ([a, b],ΩC(R)), which is a class
of interval valued maps, has an important place in set valued analysis. Now
we claim that C ([a, b],ΩC(R)) is a quasimodule on the quasiring ΩC(R).

Example 3.20. C ([a, b],ΩC(R)) is a quasimodule on ΩC(R) with the opera-
tions ⊕, � and partial order relation - defined by

⊕ : C ([a, b],ΩC(R))× C ([a, b],ΩC(R))→ C ([a, b],ΩC(R)) ,

(f ⊕ g)(t) = {f(t) + g(t) : t ∈ [a, b], f(t), g(t) ∈ ΩC(R)}
and

� : ΩC(R)× C ([a, b],ΩC(R))→ C ([a, b],ΩC(R)) ,

([c, d]� f)(t) = {s · f(t) : s ∈ [c, d], t ∈ [a, b]}
and

f - g ⇔ f(t) ⊆ g(t), for all t ∈ [a, b]
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for f, g ∈ C ([a, b],ΩC(R)) and [c, d] ∈ ΩC(R). Since it can be easily seen that
C ([a, b],ΩC(R)) is a commutative monoid with “⊕ ” and the conditions (QM
1)-(QM 4) hold, we give only the proof of the conditions (QM 5)-(QM 7):

(QM 5)

((A+B)� f)(t) = {(a+ b)v: a ∈ A , b ∈ B , v ∈ f(t)}
⊆ {(av + bv: a ∈ A , b ∈ B , v ∈ f(t)}
= ((A� f)⊕ (B � f))(t).

Hence we have (A+B)� f - A� f ⊕B � f .

(QM 6) If f - g and h - i then respectively f(t) ⊆ g(t) and h(t) ⊆ i(t) for all
t ∈ [a, b]. Thus

(f ⊕ h)(t) = f(t) + h(t) ⊆ g(t) + i(t) = (g ⊕ i)(t)
So we obtain f ⊕ h - g ⊕ i.

(QM 7) Let A ⊆ B and f - g. Then f(t) ⊆ g(t), for all t ∈ [a, b].

(A� f)(t) = {av : a ∈ A , v ∈ f(t)}
⊆ {av : a ∈ B , v ∈ g(t)} = (B � g)(t)

Thus we get A�f - B�g. Hence C ([a, b],ΩC(R)) is a quasimodule on ΩC(R).

Now, we introduce the notion of normed quasimodule which constitutes
another important part of this section. Note that we have inspired from Aseev
[3] for giving the following definition.

Definition 3.21. Let X be a quasimodule on the quasiring ΩC(R). A real
function ‖·‖ : X → R is called a norm if the following conditions hold:

‖x‖ = 0⇔ x = θ, (NQM 1)

‖α� x‖ = |α| ‖x‖ , α = [α, α], |α| = max{|α| , |α|}, (NQM 2)

‖x⊕ y‖ ≤ ‖x‖+ ‖y‖ , (NQM 3)

if x� y then ‖x‖ ≤ ‖y‖ , (NQM 4)

if for any ε > 0 there exists an element xε ∈ X such that (NQM 5)

x� y ⊕ xε and ‖xε‖ ≤ ε then x� y.

A quasimodule X on which a norm is defined is called normed quasimodule.

It is known that every field is a quasiring. When R is considered as quasiring,
the notion of normed qls defined in [3] is obtained. This implies that normed
quasimodules are a generalization of normed quasilinear spaces.
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We note that when quasimodules on the quasiring ΩC(R) is considered, it
should be recalled that ΩC(R) is normed qls. So ΩC(R) satisfies the conditions
(NQLS 1)-(NQLS 5), that is ΩC(R) already satisfies the following conditions

‖A‖ ≤ ‖B‖ , if A ⊆ B
and

if for any ε > 0 there exists an element Aε ∈ ΩC(R) such that

A ⊆ B +Aε and ‖Aε‖ ≤ ε then A ⊆ B.
On the other hand, conditions about accordance between norm on quasimodule
and partial order relation will present extra in Definition 3.21 (see (NQM
4) and (NQM 5)).

Ļet X be a quasimodule on the quasiring ΩC(R). Taking into account the
conditions of quasimodule, since ΩC(R) is a quasimodule, we get A�x� B�x
for A,B ∈ ΩC(R) and x ∈ X, when A ⊆ B. Then ‖A� x‖ ≤ ‖B � x‖ holds
by (NQM 4).

Example 3.22. ΩC(R) is a normed quasimodule with the following norm

‖A‖ = sup
a∈A
|a| .

Now let us define a norm function on the quasimodules Ω2
C(R).

Example 3.23. Ω2
C(R) is a normed quasimodule on the quasiring ΩC(R) with

the following norm

‖X‖ = ‖(X1, X2)‖ = |X1|+ |X2|

for X1 = [X1, X1] , X2 = [X2, X2] ∈ ΩC(R), where |X1| = max{
∣∣X1

∣∣ , ∣∣X1

∣∣},
|X2| = max{

∣∣X2

∣∣ , ∣∣X2

∣∣}.
Since it is easy to see that the conditions (NQM 1)-(NQM 4) hold we omit

its, we only show that the condition (NQM 5) holds.
Let X = (X1, X2), Y = (Y1, Y2) ∈ Ω2

C(R). Suppose that, for any ε > 0,
there exists an element Xε = (Xε,1, Xε,2) ∈ Ω2

C(R) such that

X � Y ⊕Xε and ‖Xε‖ ≤ ε.
Assume that X ≮≮ Y . Then we have X1  Y1 or X2  Y2. If X1  Y1 then
there exists an element x1 ∈ X1 such that x1 /∈ Y1. Since Y1 is closed, the
distance between the element x1 and the set Y1 is

d(x1, Y1) = inf
y∈Y1
‖x1 − y‖ 6= 0.

By the hypotesis, for

ε =
d(x1, Y1)

2
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there exists an Xε ∈ Ω2
C(R) such that X � Y ⊕Xε and ‖Xε‖ = |Xε,1|+|Xε,2| <

ε.
We note that X � Y ⊕Xε implies that X1 ⊆ Y1⊕Xε,1 and X2 ⊆ Y2⊕Xε,2.

Thus x1 ∈ X1 and x1 ∈ Y1 ⊕Xε,1. Then we have

x1 = y + xε,1

for y ∈ Y1 and xε,1 ∈ Xε,1. So

0 = ‖x1 − (y + xε,1)‖ ≥ |‖x1 − y‖ − ‖xε,1‖|
≥ |d(x1, Y1)− ‖xε,1‖|

≥
∣∣∣∣d(x1, Y1)− d(x1, Y1)

2

∣∣∣∣
=
d(x1, Y1)

2
= ε

This is a contradiction. Thus x1 ∈ Y1 and X1 ⊆ Y1. Analogously we obtain
X2 ⊆ Y2. Hence we get X � Y .

Example 3.24. C ([a, b],ΩC(R)) is a normed quasimodule on the quasiring
ΩC(R) with the following norm

‖f‖ = max
t∈[a,b]

{
‖f(t)‖ΩC(R)

}
= max

t∈[a,b]

{
sup
v∈f(t)

|v|

}
.

Since it can be easly seen that the conditions (NQM 1)-(NQM 3) hold, we
only show that (NQM 4) and (NQM 5) are satisfied:

Let f - g. Then f(t) ⊆ g(t) for all t ∈ [a, b]. Since f(t), g(t) ∈ ΩC(R) and
ΩC(R) is a normed qls, we have ‖f(t)‖ΩC(R) ≤ ‖g(t)‖ΩC(R) . So

max
t∈[a,b]

{
‖f(t)‖ΩC(R)

}
≤ max

t∈[a,b]

{
‖g(t)‖ΩC(R)

}
holds, that is ‖f‖ ≤ ‖g‖ .

Suppose that, for any ε > 0, there exists an element fε ∈ C ([a, b],ΩC(R))
such that

f - g ⊕ fε and ‖fε‖ ≤ ε.
By the hypotesis, we have

f(t) ⊆ (g ⊕ fε)(t) = g(t) + fε(t) and ‖fε(t)‖ΩC(R) ≤ ε

for all t ∈ [a, b]. Because of the fact that f(t), g(t), fε(t) ∈ ΩC(R) and ΩC(R)
is a normed qls, we obtain f(t) ⊆ g(t) for all t ∈ [a, b]. Hence f - g.
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Definition 3.25. Let (X, ‖·‖) be a normed quasimodule. Hausdorff metric
on X is defined by the equality

hX (x, y) = inf {r ≥ 0 : x� y ⊕ ar1, y � x⊕ ar2,
‖ari ‖X ≤ r, a

r
i ∈ X, i = 1, 2} . (3.4)

Since x � y ⊕ (x − y) and y � x ⊕ (y − x), hX is well defined for any
elements x, y ∈ X.

We note that the equality hX(x, y) = ‖x− y‖X may not be satisfied for
every x, y ∈ X. But, the inequality

hX(x, y) ≤ ‖x− y‖X (3.5)

is always true. Therefore, when we deal with topological properties of normed
quasimodules, to analyze according to the metric derived from this norm is
more convenient instead of using the norm. Because, the equality

d(x, y) = ‖x− y‖ (3.6)

doesn’t define a metric function. If X is a normed linear space then we know
that hX(x, y) = d(x, y).

It is not hard to see that hX satisfies all of the metric axioms. Further the
following conditions hold:

hX (A� x,A� y) = ‖A‖ΩC(R) · hX (x, y) ,

hX (x⊕ y , z ⊕ v) ≤ hX (x, z) + hX (y, v) .

Remark 3.26. We note that the metric d induced by a norm on a normed
quasimodule X is not translation invariant. But this metric satisfies the in-
equality

d(x⊕ a, y ⊕ a) ≤ d(x, y)

since

d(x⊕ a, y ⊕ a) ≤ d(x, y) + d(a, a) = d(x, y)

holds.

Definition 3.27. If a normed quasimodule X is complete according to the
Hausdorff metric on X then normed quasimodule is called complete normed
quasimodule.
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