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Abstract. In this paper, we give some identities for the difference of majorization inequality

by using Abel-Gontscharoff’s interpolating polynomials and conditions on Green’s functions

as well as present the generalizations of majorization theorem for the class of n-convex func-

tions. We obtain the generalizations of classical and weighted majorization theorems. We

give bounds for identities related to the generalizations of majorization inequalities by using

Čebyšev functionals. We also give Grüss type inequalities and Ostrowski-type inequalities

for these functionals. We present mean value theorems and n-exponential convexity which

leads to exponential convexity and then log-convexity for these functionals. At the end, we

discuss some families of functions which enable us to construct a large families of functions

that are exponentially convex and also give Stolarsky type means with their monotonicity.

1. Introduction and preliminaries

Majorization (sub- or supermajorization) introduces a preorder into Rn.
For fixed m ≥ 2, let

x = (x1, ..., xm) , y = (y1, ..., ym)
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denote two m-tuples. Let

x[1] ≥ x[2] ≥ ... ≥ x[m], y[1] ≥ y[2] ≥ ... ≥ y[m],

x(1) ≤ x(2) ≤ ... ≤ x(m), y(1) ≤ y(2) ≤ ... ≤ y(m)

be their ordered components.

Majorization: ([18, p.319]) x is said to majorize y (or y is said to be ma-
jorized by x), in symbol, x � y, if

l∑
i=1

y[i] ≤
l∑

i=1

x[i] (1.1)

holds for l = 1, 2, ...,m− 1 and
m∑
i=1

xi =

m∑
i=1

yi.

Note that (1.1) is equivalent to

m∑
i=m−l+1

y(i) ≤
m∑

i=m−l+1

x(i)

holds for l = 1, 2, ...,m− 1.

The following theorem is well-known as the majorization theorem and a
convenient reference for its proof is given by Marshall and Olkin [15, p.11]
(see also [18, p.320]):

Theorem 1.1. Let x = (x1, ..., xm) ,y = (y1, ..., ym) be two m-tuples such that
xi, yi ∈ [a, b] (i = 1, ...,m). Then

m∑
i=1

φ (yi) ≤
m∑
i=1

φ (xi) (1.2)

holds for every continuous convex function φ : [a, b]→ R iff x � y holds.

The following theorem can be regarded as a generalization of Theorem 1.1
known as weighted majorization theorem and is proved by Fuchs in [11] (see
also [18, p.323]):

Theorem 1.2. Let x = (x1, ..., xm) ,y = (y1, ..., ym) be two decreasing real m-
tuples with xi, yi ∈ [a, b] (i = 1, ...,m), let w = (w1, ..., wm) be a real m-tuple
such that

l∑
i=1

wi yi ≤
l∑

i=1

wi xi for l = 1, ...,m− 1; (1.3)
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and
m∑
i=1

wi yi =

m∑
i=1

wi xi. (1.4)

Then for every continuous convex function φ : [a, b]→ R, we have
m∑
i=1

wi φ (yi) ≤
m∑
i=1

wi φ (xi) . (1.5)

The following theorem is a simple consequence of Theorem 12.14 in [20] (see
also [18, p.328]):

Theorem 1.3. Let x(t), y(t) : [a, b] → R, x(t) and y(t) be decreasing and
w : [a, b]→ R be continuous functions.
If ∫ ν

a
w(t) y(t) dt ≤

∫ ν

a
w(t)x(t) dt for every ν ∈ [a, b], (1.6)

and ∫ b

a
w(t) y(t) dt =

∫ b

a
w(t)x(t) dt (1.7)

hold, then for every continuous convex function φ we have∫ b

a
w(t)φ (y(t)) dt ≤

∫ b

a
w(t)φ (x(t)) dt. (1.8)

For discrete version and generalizations of majorization theorem see [16].
For integral version and generalizations of majorization theorem see [15, p.583],
[1, 2, 3, 4, 7, 14, 17].

In this paper, n always denotes a positive integer number. Throughout, in
what follows, we shall assume that the function φ that is n-times continuously
differentiable on the interval [a, b] (i.e., φ ∈ Cn[a, b]), although this restriction
is not necessary.

The Abel-Gontscharoff interpolation problem in the real case was intro-
duced in 1935 by Whittaker [21] and subsequently by Gontscharoff [12] and
Davis [9].

The Abel-Gontscharoff interpolating polynomial for two points with integral
remainder is given in [5]:

Theorem 1.4. Let n, k ∈ N, n ≥ 2, 0 ≤ k ≤ n− 1 and φ ∈ Cn[a, b]; then we
have

φ(t) = Qn−1 (a, b, φ, t) +R (φ, t) , (1.9)
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where Qn−1 is the Abel-Gontscharoff interpolating polynomial for two-points
of degree n− 1, i.e.,

Qn−1 (a, b, φ, t) =

k∑
i=0

(t− a)i

i!
φ(i)(a)

+
n−k−2∑
j=0

[
j∑
i=0

(t− a)k+1+i (a− b)j−i

(k + 1 + i)! (j − i)!

]
φ(k+1+j)(b)

and the remainder is given by

R (φ, t) =

∫ b

a
Gn(t, s)φ(n)(s)ds,

where Gn(t, s) be Green’s function [5, p.177]

Gn(t, s)

=
1

(n−1)!


∑k

i=0

(
n−1

i

)
(t−a)i (a−s)n−i−1 , a ≤ s ≤ t;

−
∑n−1

i=k+1

(
n−1

i

)
(t−a)i (a−s)n−i−1 , t ≤ s ≤ b.

(1.10)

Further, for a ≤ s, t ≤ b the following inequality hold

(−1)n−k−1∂
iGn(t, s)

∂ti
≥ 0, 0 ≤ i ≤ k, (1.11)

(−1)n−i
∂iGn(t, s)

∂ti
≥ 0, k + 1 ≤ i ≤ n− 1. (1.12)

We arrange the paper in this manner, in section 2, we give some identi-
ties for the difference of majorization inequality by using Abel-Gontscharoff
interpolating polynomial for two points and present the generalizations of ma-
jorization theorem for the class of n-convex functions. We also obtain the
generalizations of classical and weighted majorization theorems. In section
3, we give bounds for identities related to the generalizations of majorization
inequalities by using Čebyšev functionals and also give Grüss type inequalities
and Ostrowski-type inequalities for these functionals. In section 4, we present
Lagrange and Cauchy type mean value theorems related to the functionals
which are the differences of the generalizations of majorization inequality and
also give n-exponential convexity which leads to exponential convexity and
then log-convexity for these defined functionals. At the end, in section 5, we
discuss some families of functions which enable us to construct a large families
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of functions that are exponentially convex and also give Stolarsky type means
with their monotonicity.

2. Main results

We start this section with the identities of generalizations of majorization
inequality using Abel-Gontscharoff interpolating polynomial for two points.

Theorem 2.1. Let n, k ∈ N, n ≥ 2, 0 ≤ k ≤ n − 1, x = (x1, ..., xm) ,y =
(y1, ..., ym) and w = (w1, ..., wm) be m-tuples such that xr, yr ∈ [a, b] and
wr ∈ R (r = 1, ...,m). Let also φ ∈ Cn[a, b] and Gn be the Green function
defined as in (1.10), then

m∑
r=1

wr φ (xr)−
m∑
r=1

wr φ (yr)

=

k∑
i=0

φ(i)(a)

i!

[
m∑
r=1

wr (xr − a)i −
m∑
r=1

wr (yr − a)i
]

+
n−k−2∑
j=0

j∑
i=0

(−1)j−i (b− a)j−i

(k + 1 + i)!(j − i)!
φ(k+1+j)(b)

×

[
m∑
r=1

wr (xr − a)k+1+i −
m∑
r=1

wr (yr − a)k+1+i

]

+

∫ b

a

(
m∑
r=1

wrGn (xr, s)−
m∑
r=1

wrGn (yr, s)

)
φ(n)(s)ds. (2.1)

Proof. Consider the majorization difference
m∑
r=1

wrφ(xr)−
m∑
r=1

wrφ(yr). (2.2)

By using Theorem 1.4 we have

φ(t) =
k∑
i=0

(t− a)i

i!
φ(i)(a)

+

n−k−2∑
j=0

[
j∑
i=0

(t− a)k+1+i (−1)j−i (b− a)j−i

(k + 1 + i)! (j − i)!

]
φ(k+1+j)(b)

+

∫ b

a
Gn (t, s)φ(n)(s)ds. (2.3)

Substituting this value of φ in (2.2) and some arrangements, we get (2.1). �
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Integral version of the above theorem can be stated as:

Theorem 2.2. Let n, k ∈ N, n ≥ 2, 0 ≤ k ≤ n − 1, and x, y : [α, β] → [a, b],
w : [α, β] → R be continuous functions. Let also φ ∈ Cn[a, b] and Gn be the
Green function defined as in (1.10), then∫ β

α
w(t)φ (x(t)) dt−

∫ β

α
w(t)φ (y(t)) dt

=
k∑
i=0

φ(i)(a)

i!

[∫ β

α
w(t) (x(t)− a)i dt−

∫ β

α
w(t) (y(t)− a)i dt

]

+

n−k−2∑
j=0

j∑
i=0

(−1)j−i (b− a)j−i

(k + 1 + i)!(j − i)!
φ(k+1+j)(b)

×
[∫ β

α
w(t) (x(t)− a)k+1+i dt−

∫ β

α
w(t) (y(t)− a)k+1+i dt

]
+

∫ b

a
φ(n)(s)

(∫ β

α
w(t)Gn (x(t), s) dt−

∫ β

α
w(t)Gn (y(t), s) dt

)
ds. (2.4)

We give generalizations of majorization inequality for n−convex functions.

Theorem 2.3. Let n, k ∈ N, n ≥ 2, 0 ≤ k ≤ n − 1, x = (x1, ..., xm) ,y =
(y1, ..., ym) and w = (w1, ..., wm) be m-tuples such that xr, yr ∈ [a, b] and
wr ∈ R (r = 1, ...,m) and also Gn be the Green function defined as in (1.10).
If for all s ∈ [a, b]

m∑
r=1

wrGn (yr, s) ≤
m∑
r=1

wrGn (xr, s) , (2.5)

then for every n-convex function φ : [a, b]→ R, it holds

m∑
r=1

wr φ (xr)−
m∑
r=1

wr φ (yr)

≥
k∑
i=0

φ(i)(a)

i!

[
m∑
r=1

wr (xr − a)i −
m∑
r=1

wr (yr − a)i
]

+

n−k−2∑
j=0

j∑
i=0

(−1)j−i (b− a)j−i

(k + 1 + i)!(j − i)!
φ(k+1+j)(b)

×

[
m∑
r=1

wr (xr − a)k+1+i −
m∑
r=1

wr (yr − a)k+1+i

]
. (2.6)
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If the reverse inequality in (2.5) holds, then also the reverse inequality in (2.6)
holds.

Proof. Since the function φ is n-convex, therefore without loss of generality we
can assume that φ is n-times differentiable and φ(n)(x) ≥ 0, for all x ∈ [a, b].
Hence we can apply Theorem 2.1 to get (2.6). �

Integral version of the above theorem can be stated as:

Theorem 2.4. Let n, k ∈ N, n ≥ 2, 0 ≤ k ≤ n − 1, and x, y : [α, β] → [a, b],
w : [α, β] → R be continuous functions and also Gn be the Green function
defined as in (1.10). If for all s ∈ [a, b]

∫ β

α
w(t)Gn (y(t), s) dt ≤

∫ β

α
w(t)Gn (x(t), s) dt, (2.7)

then for every n-convex function φ : [a, b]→ R, it holds

∫ β

α
w(t)φ (x(t)) dt−

∫ β

α
w(t)φ (y(t)) dt

≥
k∑
i=0

φ(i)(a)

i!

[∫ β

α
w(t) (x(t)− a)i dt−

∫ β

α
w(t) (y(t)− a)i dt

]

+
n−k−2∑
j=0

j∑
i=0

(−1)j−i (b− a)j−i

(k + 1 + i)!(j − i)!
φ(k+1+j)(b)

×
[∫ β

α
w(t) (x(t)− a)k+1+i dt−

∫ β

α
w(t) (y(t)− a)k+1+i dt

]
. (2.8)

If the reverse inequality in (2.7) holds, then also the reverse inequality in (2.8)
holds.

The following theorem is the generalization of classical majorization theo-
rem:

Theorem 2.5. Let n, k ∈ N, n ≥ 2, 0 ≤ k ≤ n − 1, x = (x1, ..., xm) ,y =
(y1, ..., ym) be m-tuples such that xr, yr ∈ [a, b] and x � y and also Gn be the
Green function defined as in (1.10).
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(i) If k is odd and n is even or k is even and n is odd, then for every
n-convex function φ : [a, b]→ R, it holds

m∑
r=1

φ (xr)−
m∑
r=1

φ (yr)

≥
k∑
i=2

φ(i)(a)

i!

[
m∑
r=1

(xr − a)i −
m∑
r=1

(yr − a)i
]

+
n−k−2∑
j=0

j∑
i=0

(−1)j−i (b− a)j−i

(k + 1 + i)!(j − i)!
φ(k+1+j)(b)

×

[
m∑
r=1

(xr − a)k+1+i −
m∑
r=1

(yr − a)k+1+i

]
. (2.9)

Moreover if φ(i)(a) ≥ 0 for i = 0, ..., k and φ(k+1+j)(b) ≥ 0 if j − i
is even and φ(k+1+j)(b) ≤ 0 if j − i is odd for i = 0, ..., j and j =
0, ..., n − k − 2, then the right hand side of (2.9) will be non-negative
that is (1.2) holds.

(ii) If k and n both are even or odd, then for every n-convex function
φ : [a, b] → R, the reverse inequality in (2.9) holds. Moreover, if

φ(i)(a) ≤ 0 for i = 0, ..., k and φ(k+1+j)(b) ≤ 0 if j − i is even, and

φ(k+1+j)(b) ≥ 0 if j−i is odd for i = 0, ..., j and j = 0, ..., n−k−2, then
the right hand side of reverse inequality in (2.9) will be non-positive
that is the reverse inequality in (1.2) holds.

Proof. By using (1.11), for a ≤ s, t ≤ b the following inequality hold

(−1)n−k−1∂
2Gn(t, s)

∂t2
≥ 0,

we conclude easily that if k is odd and n is even or k is even and n is odd
then ∂2Gn(t, s)/∂t2 ≥ 0 and also if k and n both are even or odd then
∂2Gn(t, s)/∂t2 ≤ 0. So k is odd and n is even or k is even and n is odd,
Gn is convex with respect to first variable therefore by using Theorem 1.1 we
have

m∑
r=1

Gn (yr, s) ≤
m∑
r=1

Gn (xr, s) .

Hence by Theorem 2.3 for wr = 1, (r = 1, ...,m) we get (2.9).
By using the other conditions the non-negativity of the right-hand side of (2.9)
is obvious that is (1.2) holds. Similarly we can prove for part (ii). �
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The following theorem is the generalization of weighted majorization theo-
rem:

Theorem 2.6. Let n, k ∈ N, n ≥ 2, 0 ≤ k ≤ n − 1, x = (x1, ..., xm) ,y =
(y1, ..., ym) be decreasing and w = (w1, ..., wm) be any m-tuples such that xr,
yr ∈ [a, b] and wr ∈ R (r = 1, ...,m) satisfies (1.3) and (1.4) and also Gn be
the Green function defined as in (1.10).

(i) If k is odd and n is even or k is even and n is odd, then for every
n-convex function φ : [a, b]→ R, it holds

m∑
r=1

wr φ (xr)−
m∑
r=1

wr φ (yr)

≥
k∑
i=2

φ(i)(a)

i!

[
m∑
r=1

wr (xr − a)i −
m∑
r=1

wr (yr − a)i
]

+
n−k−2∑
j=0

j∑
i=0

(−1)j−i (b− a)j−i

(k + 1 + i)!(j − i)!
φ(k+1+j)(b)

×

[
m∑
r=1

wr (xr − a)k+1+i −
m∑
r=1

wr (yr − a)k+1+i

]
. (2.10)

Moreover, if φ(i)(a) ≥ 0 for i = 0, ..., k and φ(k+1+j)(b) ≥ 0 if j − i
is even and φ(k+1+j)(b) ≤ 0 if j − i is odd for i = 0, ..., j and j =
0, ..., n− k − 2, then the right hand side of (2.10) will be non-negative
that is (1.5) holds.

(ii) If k and n both are even or odd, then for every n-convex function
φ : [a, b] → R, the reverse inequality in (2.10) holds. Moreover, if

φ(i)(a) ≤ 0 for i = 0, ..., k and φ(k+1+j)(b) ≤ 0 if j − i is even, and

φ(k+1+j)(b) ≥ 0 if j − i is odd for i = 0, ..., j and j = 0, ..., n − k − 2,
then the right hand side of the reverse inequality in (2.10) will be non-
positive that is the reverse inequality in (1.5) holds.

Proof. The proof is similar to the proof of Theorem 2.5 but use Theorem 1.2
instead of Theorem 1.1. �

The following theorem is weighted majorization theorem for n-convex func-
tion in integral case:

Theorem 2.7. Let n, k ∈ N, n ≥ 2, 0 ≤ k ≤ n − 1, x, y : [α, β] → [a, b]
be increasing and w : [α, β] → R be continuous functions satisfying (1.6) and
(1.7) and also Gn be the Green function defined as in (1.10).
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(i) If k is odd and n is even or k is even and n is odd, then for every
n-convex function φ : [a, b]→ R, it holds∫ β

α
w(t)φ (x(t)) dt−

∫ β

α
w(t)φ (y(t)) dt

≥
k∑
i=2

φ(i)(a)

i!

[∫ β

α
w(t) (x(t)− a)i dt−

∫ β

α
w(t) (y(t)− a)i dt

]

+

n−k−2∑
j=0

j∑
i=0

(−1)j−i (b− a)j−i

(k + 1 + i)!(j − i)!
φ(k+1+j)(b)

×
[∫ β

α
w(t) (x(t)− a)k+1+i dt−

∫ β

α
w(t) (y(t)− a)k+1+i dt

]
. (2.11)

Moreover, if φ(i)(a) ≥ 0 for i = 0, ..., k and φ(k+1+j)(b) ≥ 0 if j − i
is even and φ(k+1+j)(b) ≤ 0 if j − i is odd for i = 0, ..., j and j =
0, ..., n− k − 2, then the right hand side of (2.11) will be non-negative
that is (1.8) holds.

(ii) If k and n both are even or odd, then for every n-convex function
φ : [a, b] → R, then the reverse inequality holds in (2.11). Moreover,

if φ(i)(a) ≤ 0 for i = 0, ..., k and φ(k+1+j)(b) ≤ 0 if j − i is even, and

φ(k+1+j)(b) ≥ 0 if j−i is odd for i = 0, ..., j and j = 0, ..., n−k−2, then
right hand side of the reverse inequality in (2.11) will be non-positive
that is the reverse inequality in (1.8) holds.

3. Bounds for identities related to generalizations of
majorization inequality

For two Lebesgue integrable functions f, h : [a, b] → R we consider the
Čebyšev functional

Ω(f, h) =
1

b− a

∫ b

a
f(t)h(t)dt− 1

b− a

∫ b

a
f(t)dt .

1

b− a

∫ b

a
h(t)dt. (3.1)

In [8], the authors proved the following theorems:

Theorem 3.1. Let f : [a, b] → R be a Lebesgue integrable function and h :

[a, b]→ R be an absolutely continuous function with (.−a)(b− .)[h′ ]2 ∈ L[a, b].
Then we have the inequality

| Ω(f, h) | ≤ 1√
2

[Ω(f, f)]
1
2

1√
b− a

(∫ b

a
(x− a)(b− x)

[
h
′
(x)
]2
dx

) 1
2

. (3.2)
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The constant 1√
2

in (3.2) is the best possible.

Theorem 3.2. Assume that h : [a, b] → R is monotonic nondecreasing on

[a, b] and f : [a, b] → R is absolutely continuous with f
′ ∈ L∞[a, b]. Then we

have the inequality

| Ω(f, h) |≤ 1

2(b− a)
‖ f ′ ‖∞

∫ b

a
(x− a)(b− x)dh(x). (3.3)

The constant 1
2 in (3.3) is the best possible.

In the sequel we use the above theorems to obtain generalizations of the
results proved in the previous section.
For m-tuples w = (w1, ..., wm), x = (x1, ..., xm) and y = (y1, ..., ym) with xr,
yr ∈ [a, b], wr ∈ R (r = 1, ...,m) and the function Gn as defined above, denote

Υ(t) =
m∑
r=1

wrGn (xr, s)−
m∑
r=1

wrGn (yr, s) , s ∈ [a, b], (3.4)

similarly for x, y : [α, β] → [a, b] and w : [α, β] → R be continuous functions
and for all s ∈ [a, b], denote

Υ̃(s) =

∫ β

α
w(t)Gn (x(t), s) dt−

∫ β

α
w(t)Gn (y(t), s) dt. (3.5)

Consider the Čebyšev functionals defined as:

Ω(Υ,Υ) =
1

b− a

∫ b

a
Υ2(s)ds−

(
1

b− a

∫ b

a
Υ(s)ds

)2

, (3.6)

Ω(Υ̃, Υ̃) =
1

b− a

∫ b

a
Υ̃2(s)ds−

(
1

b− a

∫ b

a
Υ̃(s)ds

)2

. (3.7)

Theorem 3.3. Let n, k ∈ N, n ≥ 2, 0 ≤ k ≤ n− 1, φ : [a, b]→ R be such that

φ ∈ Cn[a, b] with (. − a)(b − .)
[
φ(n+1)

]2 ∈ L[a, b], and x = (x1, ..., xm) ,y =
(y1, ..., ym) and w = (w1, ..., wm) be m-tuples such that xr, yr ∈ [a, b] and
wr ∈ R (r = 1, ...,m). Let the functions Gn,Υ and Ω be defined in (1.10),
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(3.4) and (3.6) respectively. Then

m∑
r=1

wr φ (xr)−
m∑
r=1

wr φ (yr)

=
k∑
i=0

φ(i)(a)

i!

[
m∑
r=1

wr (xr − a)i −
m∑
r=1

wr (yr − a)i
]

+

n−k−2∑
j=0

j∑
i=0

(−1)j−i (b− a)j−i

(k + 1 + i)!(j − i)!
φ(k+1+j)(b)

×

[
m∑
r=1

wr (xr − a)k+1+i −
m∑
r=1

wr (yr − a)k+1+i

]

+
φ(n−1)(b)− φ(n−1)(a)

b− a

∫ b

a
Υ(t)dt+H1

n(φ; a, b), (3.8)

where the remainder H1
n(φ; a, b) satisfies the estimation

∣∣H1
n(φ; a, b)

∣∣ ≤√b− a
2

[Ω(Υ,Υ)]
1
2

∣∣∣∣∫ b

a
(t− a)(b− t)

[
φ(n+1)(t)

]2
dt

∣∣∣∣
1
2

. (3.9)

Proof. If we apply Theorem 3.1 for f → Υ and h→ φ(n) we obtain∣∣∣∣ 1

b− a

∫ b

a
Υ(t)φ(n)(t)dt− 1

b− a

∫ b

a
Υ(t)dt.

1

b− a

∫ b

a
φ(n)(t)dt

∣∣∣∣
≤ 1√

2
[Ω(Υ,Υ)]

1
2

1√
b− a

∣∣∣∣∫ b

a
(t− a)(b− t)

[
φ(n+1)(t)

]2
dt

∣∣∣∣
1
2

.

Therefore we have∫ b

a
Υ(t)φ(n)(t)dt

=
φ(n−1)(b)− φ(n−1)(a)

b− a

∫ b

a
Υ(t)dt+H1

n(φ; a, b)

where the remainder H1
n(φ; a, b) satisfies the estimation (3.9). Now from the

identity (2.1) we obtain (3.8). �

Integral case of the above theorem can be given:

Theorem 3.4. Let n, k ∈ N, n ≥ 2, 0 ≤ k ≤ n − 1, φ : [a, b] → R be such

that φ ∈ Cn[a, b] with (.−a)(b− .)
[
φ(n+1)

]2 ∈ L[a, b], and x, y : [α, β]→ [a, b],
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w : [α, β]→ R be continuous functions and also let the functions Gn, Υ̃ and Ω
be defined in (1.10), (3.5) and (3.7) respectively. Then∫ β

α
w(t)φ (x(t)) dt−

∫ β

α
w(t)φ (y(t)) dt

=

k∑
i=0

φ(i)(a)

i!

[∫ β

α
w(t) (x(t)− a)i dt−

∫ β

α
w(t) (y(t)− a)i dt

]

+
n−k−2∑
j=0

j∑
i=0

(−1)j−i (b− a)j−i

(k + 1 + i)!(j − i)!
φ(k+1+j)(b)

×
[∫ β

α
w(t) (x(t)− a)k+1+i dt−

∫ β

α
w(t) (y(t)− a)k+1+i dt

]
+
φ(n−1)(b)− φ(n−1)(a)

b− a

∫ b

a
Υ̃(s)ds+ H̃1

n(φ; a, b), (3.10)

where the remainder H̃1
n(φ; a, b) satisfies the estimation∣∣∣H̃1

n(φ; a, b)
∣∣∣ ≤√b− a

2

[
Ω(Υ̃, Υ̃)

] 1
2

∣∣∣∣∫ b

a
(t− a)(b− t)

[
φ(n+1)(t)

]2
dt

∣∣∣∣
1
2

.

Using Theorem 3.2 we obtain the following Grüss type inequalities.

Theorem 3.5. Let n, k ∈ N, n ≥ 2, 0 ≤ k ≤ n− 1, φ : [a, b]→ R be such that

φ ∈ Cn[a, b] and φ(n+1) ≥ 0 on [a, b] and let the function Υ and Ω be defined
by (3.4) and (3.6) respectively. Then we have the representation (3.8) and the
remainder H1

n(φ; a, b) satisfies the bound∣∣H1
n(φ; a, b)

∣∣ ≤ ∥∥∥Υ
′
∥∥∥
∞

{
φ(n−1)(b)+φ(n−1)(a)

2
−φ

(n−2)(b)−φ(n−2)(a)

b− a

}
. (3.11)

Proof. Applying Theorem 3.2 for f → Υ and h→ φ(n) we obtain∣∣∣∣ 1

b− a

∫ b

a
Υ(t)φ(n)(t)dt− 1

b− a

∫ b

a
Υ(t)dt.

1

b− a

∫ b

a
φ(n)(t)dt

∣∣∣∣
≤ 1

2(b− a)

∥∥∥Υ
′
∥∥∥
∞

∫ b

a
(t− a)(b− t)φ(n+1)(t)dt. (3.12)

Since ∫ b

a
(t− a)(b− t)φ(n+1)(t)dt =

∫ b

a
[2t− (a+ b)]φ(n)(t)dt

= (b− a)
[
φ(n−1)(b) + φ(n−1)(a)

]
− 2

(
φ(n−2)(b)− φ(n−2)(a)

)
,
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using the identities (2.1) and (3.12) we deduce (3.11). �

Integral version of the above theorem can be given as:

Theorem 3.6. Let n, k ∈ N, n ≥ 2, 0 ≤ k ≤ n− 1, φ : [a, b]→ R be such that

φ ∈ Cn[a, b] and φ(n+1) ≥ 0 on [a, b] and also let the functions Υ̃ and Ω be
defined by (3.5) and (3.7) respectively. Then we have the representation (3.10)

and the remainder H̃1
n(φ; a, b) satisfies the bound

∣∣∣H̃1
n(φ; a, b)

∣∣∣ ≤ ∥∥∥Υ̃
′
∥∥∥
∞

{
φ(n−1)(b) + φ(n−1)(a)

2
− φ(n−2)(b)− φ(n−2)(a)

b− a

}
.

We give the Ostrowski-type inequalities related to the generalizations of
majorization inequality.

Theorem 3.7. Suppose that all the assumptions of Theorem 2.1 hold. Assume
(p, q) is a pair of conjugate exponents, that is 1 ≤ p, q ≤ ∞, 1

p + 1
q = 1. Let∣∣φ(n)

∣∣p : [a, b]→ R be an R-integrable function for some n ∈ N. Then we have

∣∣∣∣∣
m∑
r=1

wr φ (xr)−
m∑
r=1

wr φ (yr)−
k∑
i=0

φ(i)(a)

i!

[
m∑
r=1

wr (xr−a)i−
m∑
r=1

wr (yr−a)i
]

−
n−k−2∑
j=0

j∑
i=0

(−1)j−i (b− a)j−i

(k + 1 + i)!(j − i)!
φ(k+1+j)(b)

×

[
m∑
r=1

wr (xr − a)k+1+i −
m∑
r=1

wr (yr − a)k+1+i

]∣∣∣∣∣
≤
∥∥∥φ(n)

∥∥∥
p

(∫ b

a

∣∣∣∣∣
m∑
r=1

wrGn (xr, s)−
m∑
r=1

wrGn (yr, s)

∣∣∣∣∣
q

dt

) 1
q

. (3.13)

The constant on the right-hand side of (3.13) is sharp for 1 < p ≤ ∞ and the
best possible for p = 1.

Proof. As we have

Υ(s) =
m∑
r=1

wrGn (xr, s)−
m∑
r=1

wrGn (yr, s) , s ∈ [a, b].
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Using the identity (2.1) and applying Hölder’s inequality we obtain∣∣∣∣∣
m∑
r=1

wr φ (xr)−
m∑
r=1

wr φ (yr)

−
k∑
i=0

φ(i)(a)

i!

[
m∑
r=1

wr (xr − a)i −
m∑
r=1

wr (yr − a)i
]

−
n−k−2∑
j=0

j∑
i=0

(−1)j−i (b− a)j−i

(k + 1 + i)!(j − i)!
φ(k+1+j)(b)

×

[
m∑
r=1

wr (xr − a)k+1+i −
m∑
r=1

wr (yr − a)k+1+i

]∣∣∣∣∣
=

∣∣∣∣∫ b

a
Υ(t)φ(n)(t)dt

∣∣∣∣ ≤ ∥∥∥φ(n)
∥∥∥
p

(∫ b

a
|Υ(t)|q dt

) 1
q

.

For the proof of the sharpness of the constant
(∫ b

a |Υ(t)|q dt
) 1
q

let us find a

function φ for which the equality in (3.13) is obtained.
For 1 < p <∞ take φ to be such that

φ(n)(t) = sgnΥ(t) |Υ(t)|
1
p−1 .

For p =∞ take φ(n)(t) = sgnΥ(t).
For p = 1 we prove that∣∣∣∣∫ b

a
Υ(t)φ(n)(t)

∣∣∣∣ ≤ max
t∈[a,b]

|Υ(t)|
(∫ b

a

∣∣∣φ(n)(t)
∣∣∣ dt) (3.14)

is the best possible inequality. Suppose that |Υ(t)| attains its maximum at
t0 ∈ [a, b]. First we assume that Υ(t0) > 0. For ε small enough we define φε(t)
by

φε(t) :=


0, a ≤ t ≤ t0,

1
ε n! (t− t0)n , t0 ≤ t ≤ t0 + ε,

1
n! (t− t0)n−1 , t0 + ε ≤ t ≤ b.

Then for ε small enough∣∣∣∣∫ b

a
Υ(t)φ(n)(t)

∣∣∣∣ =

∣∣∣∣∫ t0+ε

t0

Υ(t)
1

ε
dt

∣∣∣∣ =
1

ε

∫ t0+ε

t0

Υ(t)dt.
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Now from the inequality (3.14) we have

1

ε

∫ t0+ε

t0

Υ(t)dt ≤ Υ(t0)

∫ t0+ε

t0

1

ε
dt = Υ(t0).

Since

lim
ε→0

1

ε

∫ t0+ε

t0

Υ(t)dt = Υ(t0)

the statement follows. In the case Υ(t0) < 0, we define φε(t) by

φε(t) :=


1
n! (t− t0 − ε)n−1 , a ≤ t ≤ t0,

− 1
ε n! (t− t0 − ε)n , t0 ≤ t ≤ t0 + ε,

0, t0 + ε ≤ t ≤ b,

and the rest of the proof is the same as above. �

Integral version of the above theorem can be stated as:

Theorem 3.8. Suppose that all the assumptions of Theorem 2.2 hold. Assume
(p, q) is a pair of conjugate exponents, that is 1 ≤ p, q ≤ ∞, 1

p + 1
q = 1. Let∣∣φ(n)

∣∣p : [a, b]→ R be an R-integrable function for some n ∈ N. Then we have∣∣∣∣∫ β

α
w(t)φ (x(t)) dt−

∫ β

α
w(t)φ (y(t)) dt

−
k∑
i=0

φ(i)(a)

i!

[∫ β

α
w(t) (x(t)− a)i dt−

∫ β

α
w(t) (y(t)− a)i dt

]

−
n−k−2∑
j=0

j∑
i=0

(−1)j−i (b− a)j−i

(k + 1 + i)!(j − i)!
φ(k+1+j)(b)

×
[∫ β

α
w(t) (x(t)− a)k+1+i dt−

∫ β

α
w(t) (y(t)− a)k+1+i dt

]∣∣∣∣
≤
∥∥∥φ(n)

∥∥∥
p

(∫ b

a

∣∣∣∣∫ β

α
w(t)Gn (x(t), s) dt−

∫ β

α
w(t)Gn (y(t), s) dt

∣∣∣∣q ds
) 1

q

.

(3.15)

The constant on the right-hand side of (3.15) is sharp for 1 < p ≤ ∞ and the
best possible for p = 1.
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4. n-exponential convexity and exponential convexity

Motivated by the inequality (2.6) and (2.8), we define functional Θ1(φ) and
Θ2(φ) by

Θ1(φ) =

m∑
r=1

wr φ (xr)−
m∑
r=1

wr φ (yr)

−
k∑
i=0

φ(i)(a)

i!

[
m∑
r=1

wr (xr − a)i −
m∑
r=1

wr (yr − a)i
]

−
n−k−2∑
j=0

j∑
i=0

(−1)j−i (b− a)j−i

(k + 1 + i)!(j − i)!
φ(k+1+j)(b)

×

[
m∑
r=1

wr (xr − a)k+1+i −
m∑
r=1

wr (yr − a)k+1+i

]
, (4.1)

Θ2(φ) =

∫ β

α
w(t)φ (x(t)) dt−

∫ β

α
w(t)φ (y(t)) dt

−
k∑
i=0

φ(i)(a)

i!

[∫ β

α
w(t) (x(t)−a)i dt−

∫ β

α
w(t) (y(t)−a)i dt

]

−
n−k−2∑
j=0

j∑
i=0

(−1)j−i (b− a)j−i

(k + 1 + i)!(j − i)!
φ(k+1+j)(b)

×
[∫ β

α
w(t) (x(t)−a)k+1+i dt−

∫ β

α
w(t) (y(t)−a)k+1+i dt

]
. (4.2)

Remark 4.1. Under the assumptions of Theorem 2.3 and Theorem 2.4, it
holds Θi(φ) ≥ 0, i = 1, 2 for all n-convex functions φ.

Lagrange and Cauchy type mean value theorems related to defined func-
tionals are given in the following theorems:

Theorem 4.2. Let φ : [a, b]→ R be such that φ ∈ Cn[a, b]. If the inequalities
in (2.5) (i = 1), (2.7) (i = 2) hold, then there exist ξi ∈ [a, b] such that

Θi(φ) = φ(n)(ξi)Θi(η), i = 1, 2, (4.3)

where η(x) = xn

n! and Θ1,Θ2 are defined in (4.1) and (4.2).

Proof. Similar to the proof of Theorem 7 in [6]. �
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Theorem 4.3. Let φ, ψ : [a, b] → R be such that φ, ψ ∈ Cn[a, b]. If the
inequalities in (2.5) (i = 1), (2.7) (i = 2) hold, then there exist ξi ∈ [a, b] such
that

Θi(φ)

Θi(ϕ)
=
φ(n)(ξi)

ψ(n)(ξi)
, i = 1, 2, (4.4)

provided that the denominators are non-zero and Θ1,Θ2 are defined in (4.1)
and (4.2).

Proof. Similar to the proof of Corollary 12 in [6]. �

Definition 4.4. ([18, p. 2]) A function φ : I → R is convex on an interval I if

φ(x1)(x3 − x2) + φ(x2)(x1 − x3) + φ(x3)(x2 − x1) ≥ 0, (4.5)

holds for all x1, x2, x3 ∈ I such that x1 < x2 < x3.

Now, let us recall some definitions and facts about exponentially convex
functions (see [13]):

Definition 4.5. A function φ : I → R is n-exponentially convex in the Jensen
sense on I if

n∑
k,l=1

αkαlφ

(
xk + xl

2

)
≥ 0

holds for αk ∈ R and xk ∈ I, k = 1, 2, ..., n.

Definition 4.6. A function φ : I → R is n-exponentially convex on I if it is
n-exponentially convex in the Jensen sense and continuous on I.

Remark 4.7. From the definition it is clear that 1-exponentially convex
functions in the Jensen sense are in fact non-negative functions. Also, n-
exponentially convex functions in the Jensen sense are m-exponentially convex
in the Jensen sense for every m ∈ N,m ≤ n.

Proposition 4.8. If φ : I → R is an n-exponentially convex in the Jensen

sense, then the matrix
[
φ
(
xk+xl

2

) ]m
k,l=1

is a positive semi-definite matrix for

all m ∈ N,m ≤ n. Particularly,

det

[
φ

(
xk + xl

2

)]m
k,l=1

≥ 0,

for all m ∈ N, m = 1, 2, ..., n.
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Definition 4.9. A function φ : I → R is exponentially convex in the Jensen
sense on I if it is n-exponentially convex in the Jensen sense for all n ∈ N.

Definition 4.10. A function φ : I → R is exponentially convex if it is expo-
nentially convex in the Jensen sense and continuous.

Remark 4.11. It is easy to show that φ : I → R is log-convex in the Jensen
sense if and only if

α2φ(x) + 2αβφ

(
x+ y

2

)
+ β2φ(y) ≥ 0

holds for every α, β ∈ R and x, y ∈ I. It follows that a function is log-convex
in the Jensen-sense if and only if it is 2-exponentially convex in the Jensen
sense.

Also, using basic convexity theory it follows that a function is log-convex if
and only if it is 2-exponentially convex.

Corollary 4.12. If φ : I → (0,∞) is an exponentially convex function, then
φ is a log-convex function that is

φ(λx+ (1− λ)y) ≤ φλ(x)φ1−λ(y), for all x, y ∈ I, λ ∈ [0, 1].

When dealing with functions with different degree of smoothness divided
differences are found to be very useful.

Definition 4.13. Let φ be a real-valued function defined on the segment
[a, b]. The divided difference of order n of the function φ at distinct points
x0, ..., xn ∈ [a, b] is defined recursively (see [5], [18]) by

φ[xi] = φ(xi), (i = 0, ..., n)

and

φ[x0, ..., xn] =
φ[x1, ..., xn]− φ[x0, ..., xn−1]

xn − x0
.

The value φ[x0, ..., xn] is independent of the order of the points x0, ..., xn.

The definition may be extended to include the case that some (or all) the

points coincide. Assuming that φ(j−1)(x) exists, we define

φ [x, ..., x]︸ ︷︷ ︸
j−times

=
φ(j−1)(x)

(j − 1)!
. (4.6)
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We use an idea from [13] to give an elegant method of producing an n-
exponentially convex functions and exponentially convex functions applying
the above functionals on a given family with the same property (see [19]):

Theorem 4.14. Let Φ = {φs : s ∈ J}, where J is an interval in R, be a
family of functions defined on an interval [a, b] in R such that the function
s 7→ φs [x0, ..., xl] is an n-exponentially convex in the Jensen sense on J for
every (l+ 1) mutually different points x0, ..., xl ∈ [a, b]. Let Θi(φs), i = 1, 2 be
linear functionals defined as in (4.1) and (4.2). Then the following statements
hold:

(i) The function s 7→ Θi(φs) is an n-exponentially convex function in the

Jensen sense on J and the matrix

[
Θi

(
φ si+sj

2

)]m
i,j=1

is a positive

semi-definite for all m ∈ N, m ≤ n, s1, ..., sm ∈ J . Particularly

det

[
Θi

(
φ si+sj

2

)]m
i,j=1

≥ 0 for all m ∈ N, m = 1, ..., n.

(ii) If the function s 7→ Θi(φs) is continuous on J , then it is n-exponentially
convex function on J .

Proof. (i) For ϑi ∈ R and si ∈ J , i = 1, ..., n we define the function

δ(x) =
n∑

i,j=1

ϑiϑjφ si+sj
2

(x).

Using the assumption that the function s 7→ φs [x0, ..., xl] is l-exponentially
convex in the Jensen sense, we have

δ [x0, ..., xl] =

n∑
i,j=1

ϑiϑjφ si+sj
2

[x0, ..., xl] ≥ 0,

which in turn implies that δ is a l-convex function on J , so it is Θi(δ) ≥ 0,
i = 1, 2 hence

n∑
i,j=1

ϑiϑjΘi(φ si+sj
2

) ≥ 0.

We conclude that the function s 7→ Θi(φs) is n-exponentially convex function
in the Jensen sense on J . The remaining part follows from Proposition 1.
(ii) If the function s 7→ Θi(φs) is continuous on J , then s 7→ Θi(φs) is n-
exponentially convex by definition. �

The following corollaries are an immediate consequences of the above the-
orem:
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Corollary 4.15. Let Φ = {φs : s ∈ J}, where J is an interval in R, be a
family of functions defined on an interval [a, b] in R such that the function
s 7→ φs [x0, ..., xl] is an exponentially convex in the Jensen sense on J for
every (l + 1) mutually different points x0, ..., xl ∈ [a, b]. Let Θi(φ), i = 1, 2 be
linear functionals defined as in (4.1) and (4.2). Then the following statements
hold:

(i) The function s 7→ Θi(φs) is an exponentially convex function in the

Jensen sense on J and the matrix

[
Θi

(
φ si+sj

2

)]m
i,j=1

is a positive

semi-definite for all m ∈ N, m ≤ n, s1, ..., sm ∈ J . Particularly

det

[
Θi

(
φ si+sj

2

)]m
i,j=1

≥ 0 for all m ∈ N, m = 1, ..., n.

(ii) If the function s 7→ Θi(φs) is continuous on J , then it is exponentially
convex function on J .

Corollary 4.16. Let Φ = {φs : s ∈ J}, where J is an interval in R, be a
family of functions defined on an interval [a, b] in R, such that the function
s 7→ φs [x0, ..., xl] is an 2-exponentially convex in the Jensen sense on J for
every (l + 1) mutually different points x0, ..., xl ∈ [a, b]. Let Θi(φ), i = 1, 2 be
linear functionals defined as in (4.1) and (4.2). Then the following statements
hold:

(i) If the function s 7→ Θi(φs) is continuous on J , then it is 2-exponentially
convex function on J . If s 7→ Θi(φs) is additionally strictly positive,
then it is log-convex on J . Furthermore, the Lypunov’s inequality holds
true:

[Θi(φs)]
t−r ≤ [Θi(φr)]

t−s [Θi(φt)]
s−r , i = 1, 2, (4.7)

for every choice r, s, t ∈ J , such that r < s < t.
(ii) If the function s 7→ Θi(φs) is strictly positive and differentiable on J ,

then for every s, q, u, v ∈ J , such that s ≤ u and q ≤ v, we have

µs,q (Θi,Φ) ≤ µu,v (Θi,Φ) , (4.8)

where

µs,q (Θi,Φ) =



(
Θi(φs)
Θi(φq)

) 1
s−q

, s 6= q,

exp

(
d
ds

Θi(φs)

Θi(φq)

)
, s = q,

(4.9)

for φs, φq ∈ Φ.
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Proof. (i) This is an immediate consequence of Theorem 4.14 and Remark
4.11.
(ii) Since s 7→ Θi(φs) is positive and continuous, by (i) we have that the
function s 7→ Θi(φs) is log-convex on J . So, we get

log Θi(φs)− log Θi(φq)

s− q
≤ log Θi(φu)− log Θi(φv)

u− v
(4.10)

for s ≤ u and q ≤ v, s 6= q, u 6= v, so we conclude that

µs,q (Θi,Φ) ≤ µu,v (Θi,Φ) .

Cases s = q and u = v follows from (4.10) as limiting cases. �

Remark 4.17. Note that the results from Theorem 4.14, Corollary 4.15 and
Corollary 4.16 still hold when two of the points x0, ..., xl ∈ [a, b] coincide, say
x1 = x0, for a family of differentiable functions φs such that the function
s 7→ φs [x0, ..., xl] is an n-exponentially convex in the Jensen sense (expo-
nentially convex in the Jensen sense, log-convex in the Jensen sense), and
furthermore, they still hold when all (l + 1) points coincide for a family of l
differentiable functions with the same property. The proofs are obtained by
(4.6) and suitable characterization of convexity.

5. Applications to Stolarsky type means

In this section, we present several families of functions which fulfill the
conditions of Theorem 4.14, Corollary 4.15, Corollary 4.16 and Remark 4.17.
This enable us to construct a large families of functions which are exponentially
convex. For a discussion related to this problem see [10].

Example 5.1. Let
Λ1 = {ψt : R→ R : t ∈ R}

be a family of functions defined by

ψt(x) =


etx

tn , t 6= 0;

xn

n! , t = 0.

We have dnψt
dxn (x) = etx > 0 which shows that ψt is n-convex on R for every

t ∈ R and t 7→ dnψt
dxn (x) is exponentially convex by definition. Using analogous

arguing as in the proof of Theorem 4.14 we also have that t 7→ ψt[x0, ..., xn]
is exponentially convex (and so exponentially convex in the Jensen sense).
Using Corollary 4.15 we conclude that t 7→ Θi(ψt), i = 1, 2 are exponentially
convex in the Jensen sense. It is easy to verify that this mapping is continuous
(although mapping t 7→ ψt is not continuous for t = 0), so it is exponentially
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convex.
For this family of functions, µt,q (Θi,Λ1), i = 1, 2 from (4.9), becomes

µt,q (Θi,Λ1) =



(
Θi(ψt)
Θi(ψq)

) 1
t−q

, t 6= q;

exp
(

Θi(id.ψt)
Θi(ψt)

− n
t

)
, t = q 6= 0;

exp
(

1
n+1

Θi(id.ψ0)
Θi(ψ0)

)
, t = q = 0,

where id is the identity function. Now, using (4.8) it is monotone function in
parameters t and q.

We observe here that

(
dnψt
dxn
dnψq
dxn

) 1
t−q

(lnx) = x so using Theorem 4.3 it follows

that

Mt,q(Θi,Λ1) = lnµt,q(Θi,Λ1), i = 1, 2

satisfies

a ≤Mt,q(Θi,Λ1) ≤ b, i = 1, 2.

This shows that Mt,q(Θi,Λ1) is mean for i = 1, 2. Because of the above
inequality (4.8), this mean is also monotonic.

Example 5.2. Let

Λ2 = {λt : (0,∞)→ R : t ∈ R}

be a family of functions defined by

λt(x) =


xt

t(t−1)...(t−n+1) , t /∈ {0,1,..., n-1};

xj lnx
(−1)n−1−jj!(n−1−j)! , t = j∈ {0,1,..., n-1}.

Here, dnλt
dxn (x) = xt−n = e(t−n)lnx > 0 which shows that λt is n-convex on

(0,∞) for every t ∈ R and t 7→ dnψt
dxn (x) is exponentially convex by definition.

Arguing as in Example 5.1 we get the mappings t 7→ Θi(λt), i = 1, 2 are
exponentially convex. In this case we assume that [a, b] ∈ R+.
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For this family of functions, µt,q (Θi,Λ1), i = 1, 2 from (4.9), becomes

µt,q (Θi,Λ2)

=



(
Θi(λt)
Θi(λq)

) 1
t−q

, t 6= q;

exp
(

(−1)n−1 (n−1)!Θi(λ0λt)
Θi(λt)

+
∑n−1

k=0
1
k−t

)
, t=q /∈ {0,1,..., n-1};

exp
(

(−1)n−1 (n−1)!Θi(λ0λt)
2Θi(λt)

+
∑n−1

k=0,k 6=t
1
k−t

)
, t=q ∈ {0,1,..., n-1}.

We observe that

(
dnλt
dxn
dnλq
dxn

) 1
t−q

(x) = x, so if Θi (i = 1, 2) are positive, then

Theorem 4.3 yield that there exists some ξi ∈ [a, b], i = 1, 2 such that

ξt−qi =
Θi(λt)

Θi(λq)
, i = 1, 2.

Since the function ξ → ξt−q is invertible for t 6= q, we then have

a ≤
(

Θi(λt)

Θi(λq)

) 1
t−q
≤ b, i = 1, 2.

This shows that µt,q (Θi,Λ2) is mean for i = 1, 2. Because of the above in-
equality (4.8), this mean is also monotonic.

Example 5.3. Let

Λ3 = {ζt : (0,∞)→ (0,∞) : t ∈ (0,∞)}

be a family of functions defined by

ζt(x) =


t−x

(lnt)n , t 6= 1;

xn

n! , t = 1.

Since dnζt
dxn (x) = t−x is the Laplace transform of a non-negative function (see

[22]) it is exponentially convex. Obviously ζt are n-convex functions for every
t > 0.
For this family of functions, µt,q (Θi,Λ3), i = 1, 2, in this case for [a, b] ∈ R+,



On generalizations of majorization inequality 325

from (4.9) becomes

µt,q (Θi,Λ3) =



(
Θi(ζt)
Θi(ζq)

) 1
t−q

, t 6= q;

exp
(
−Θi(id.ζt)

tΘi(ζt)
− n

t lnt

)
, t = q 6= 1;

exp
(
− 1
n+1

Θi(id.ζ1)
Θi(ζ1)

)
, t = q = 1.

This is monotonous function in parameters t and q by (4.8). Using Theorem
4.3 it follows that

Mt,q (Θi,Λ3) = −L(t, q)lnµt,q (Θi,Λ3) , i = 1, 2.

satisfy

a ≤Mt,q (Θi,Λ3) ≤ b, i = 1, 2.

This shows that Mt,q (Θi,Λ3) is mean for i = 1, 2. Because of the above
inequality (4.8), this mean is also monotonic. L(t, q) is logarithmic mean
defined by

L(t, q) =


t−q

log t−log q , t 6= q;

t, t = q.

Example 5.4. Let

Λ4 = {γt : (0,∞)→ (0,∞) : t ∈ (0,∞)}

be a family of functions defined by

γt(x) =
e−x
√
t

tn
.

Since dnγt
dxn (x) = e−x

√
t is the Laplace transform of a non-negative function (see

[22]) it is exponentially convex. Obviously γt are n-convex function for every
t > 0.
For this family of functions, µt,q (Θi,Λ4), i = 1, 2, in this case for [a, b] ∈ R+,
from (4.9) becomes

µt,q (Θi,Λ4) =


(

Θi(γt)
Θi(γq)

) 1
t−q

, t 6= q;

exp
(
− Θi(id.γt)

2
√
tΘi(γt)

− n
t

)
, t = q.
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This is monotonous function in parameters t and q by (4.8). Using Theorem
4.3 it follows that

Mt,q (Θi,Λ4) = −
(√

t+
√
q
)
lnµt,q (Θi,Λ4) , i = 1, 2

satisfy

a ≤Mt,q (Θi,Λ4) ≤ b, i = 1, 2.

This shows that Mt,q (Θi,Λ4) is mean for i = 1, 2. Because of the above
inequality (4.8), this mean is also monotonic.
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[3] M. Adil Khan, Sadia Khalid and J. Pečarić, Refinements of some majorization type
inequalities, J. Math. Inequal., 7(1) (2013), 73–92.
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