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Abstract. We study the oscillatory behavior of solutions of second order neutral type

difference equation. We obtain conditions which ensure that all solutions are oscillatory.

Examples are provided to illustrate the results.

1. Introduction

In this article, we study the oscillatory behavior of solutions to the second
order nonlinear neutral type difference equation of the form

∆ (anψ(xn) (∆zn)α)) + qnf (xn−σ+1) = 0, (1.1)

where n ∈ N = {n0, n0+1, ...} , n0 a nonnegative integer, zn = xn + pnxn−τ
and α ≥ 1 is a ratio of odd positive integers. Throughout, we assume the
following conditions without further mention:

(C1) {an} , {pn} , {qn} are real sequences such that an > 0, 0 ≤ pn < 1,
qn ≥ 0 and qn is not identically zero for infinitely many values of n;

(C2) ψ and f are real-valued continuous function with ψ > 0, uf(u) > 0 for
all u 6= 0, and there exist two positive constants K and L such that

f(u)

uα
≥ K and φ(u) ≤ L−1 for all u 6= 0;

(C3) τ and σ are nonnegative integers;
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(C4) An =
∞∑
s=n

1

a
1/α
s

and An0 <∞.

By a solution of equation (1.1), we mean a real-valued sequence {xn} defined
for all n ≥ N1 ∈ N and satisfies equation (1.1)for all n ≥ N1. We consider any
solutions satisfying condition sup {|xn| : n ≥ N ≥ N1} > 0 and tacitly assume
that equation (1.1) possesses such solutions. As usual, a solution of equation
(1.1) is called oscillatory if it is neither eventually positive nor eventually
negative, and nonoscillatory otherwise.

It is well known that various types of neutral difference equations are often
appeared in applied problems in science and engineering, see,for example [1].
Recently, there is a great deal of attention in oscillatory properties of neutral
type difference equations, see for example [2]-[10].

Next, we briefly review the following related results that motivated our
study. Wang and Xu [9] obtained several oscillation criteria for equation (1.1)
when ψ(u) ≡ 1, one of which we presented below. For the convenience of the
reader, in what follows, we use the notations

b = kεα(1− p)α, Pn =
∞∑
s=n

1

a
1/α
s

.

Theorem 1.1. ([9], Theorem 2.1) Assume that σ > τ. If {pn} is nondecreas-
ing,

∞∑
n=n0

qn =∞,

and
n−τ+σ∑
s=n

qsps >
1

b

then every solution equation (1.1) is oscillatory.

Note that Theorem 1.1 is not valid for the difference equation

∆

(
3n
(
xn +

1

2n
xn−2

))
+ 3nxn−1 = 0,

since pn = 1/2n is decreasing and τ > σ. Therefore the main purpose of this
paper is to derive new oscillation criteria for equation (1.1) without requiring
the condition {pn} is nondecreasing and σ > τ. In Section 2, we present new
oscillation results for equation (1.1), and in Section 3, we provide two examples
to illustrate the main results.
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2. Oscillation results

In this section we present some sufficient conditions which ensure that all
solutions of equation (1.1) are oscillatory.

Theorem 2.1. Assume that there is a constant M such that ψ(x) ≥ M > 0.
Suppose that there exist two positive real sequences {ρn} and {mn} such that
{ρn} is nondecreasing and

mn

(LM)1/αa
1/α
n An

+ ∆mn ≤ 0, 1− pn
mn−τ
mn

> 0, (2.1)

∞∑
n=n0

[
pnQN −

1

LK(α+ 1)α+1

(∆ρn)α+1an−σ

pα+1
n

]
=∞, (2.2)

∞∑
n=n0

[
KqnA

α
n+1

(
1−pn−σ+1

mn−σ−τ+1

mn−σ+1

)α
−
(

α

α+ 1

)α+1 Aα
2−1
n

LAα
2

n+1a
1/α
n

]
=∞. (2.3)

Then every solution of equation (1.1) is oscillatory.

Proof. Let {xn} be a nonoscillatory solution of equation (1.1). The proofs for
eventually positive and for eventually negative solutions are similar. If {yn}
is a negative solution, then xn = −yn may not be a solution of equation (1.1),
but xn satisfies key estimates such as (2.1) with ψ(−xn) existead of ψ(xn).
Then we can use that ψ(xn) and ψ(−xn) have same bounds, M ≤ ψ(.) ≤ 1/L.

We assume that there exists an integer n1 ∈ N such may xn > 0, xσ(n) > 0,
and xτ(n) > 0 for all n ≥ n1. Then zn > 0. From equation (1.1) it follows that
for all n ≥ n1,

∆ (anψ(xn)(∆zn)α) ≤ −Kqnxαn−σ+1 ≤ 0. (2.4)

Hence, there is an integer n2 ≥ n1 such that either ∆zn > 0 or ∆zn < 0 for
all n ≥ n2. We consider these two cases separately.

Case 1. Let ∆zn > 0 for all n ≥ n2. As in the proof of [9], we obtain a
contradiction to (2.2).

Case 2. Let ∆zn < 0 for all n ≥ n2. For n ≥ n2, we define

wn =
anψ(xn)(∆zn)α

zαn
. (2.5)

Then wn < 0 for all n ≥ n2. Since ∆ (anψ(xn)(∆(zn)α)) ≤ 0, anψ(xn)(∆zn)α

is nonincreasing. Thus, for all s ≥ n ≥ n2

(asψ(xs))
1/α ∆zs ≤ (anψ(xn))1/α ∆zn.
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Dividing the last inequality by (asψ(xs))
1/α and summing the resulting in-

equality from n to l, for all l ≥ n ≥ n2, we have

zl ≤ zn + (anψ(xn))1/α ∆zn

l∑
s=n

1

(asψ(xs))
1/α

.

Since ∆zn < 0 and ψ ≤ 1/L, we conclude that, for all l ≥ n ≥ n2,

zl ≤ zn + (Lanψ(xn))1/α ∆zn

l∑
s=n

1

a
1/α
s

.

Letting l→∞, and using zn > 0, we see that for all n ≥ n2,

0 ≤ zn + (Lanψ(xn))1/α ∆znAn,

that is, for all n ≥ n2,

(anψ(xn))1/αAn
∆zn
zn
≥ − 1

L1/α
. (2.6)

Hence, by (2.5), we conclude that, for all n ≥ n2,

− 1

L
≤ wnAαn ≤ 0. (2.7)

From (2.6) and M ≤ ψ, we obtain

∆zn
zn
≥ − 1

L1/α (anψ(xn))1/αAn
≥ − 1

(LM)1/αa
1/α
n An

.

Thus, we have

∆

(
zn
mn

)
=

mn∆zn − zn∆mn

mnmn+1

≥ − zn
mnmn+1

[
mn

(LM)1/αa
1/α
n An

+ ∆mn

]
≥ 0.

Hence, the sequence {zn/mn} is nondecreasing, and so

xn ≥ zn − pn
mn−τ
mn

zn =

(
1− pn

mn−τ
mn

)
zn.

From (2.5), we have

∆wn =
∆ (anψ(xn)(∆zn)α)

zαn
− an+1ψ(xn+1)(∆zn+1)

α∆zαn
zαn+1z

α
n

≤ −Kqn
(

1− pn−σ+1
mn−σ−τ+1

mn−σ+1

)
zαn−σ+1

zαn
− wn

∆zαn
zαn+1

. (2.8)
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By Mean value theorem, we have

∆zαn = αtα−1∆zn,

where zn+1 < t < zn. Thus,

∆zαn ≤ αzα−1n+1∆zn.

From (2.8), and the last inequality we obtain

∆wn ≤ −Kqn
(

1− pn−σ+1
mn−σ−τ+1

mn−σ+1

)
− αwn

∆zn
zn

, (2.9)

where we have used zn > 0 and nonincreasing. From (2.9) and (2.5) we have

∆wn +Kqn

(
1− pn−σ+1

mn−σ−τ+1

mn−σ+1

)
+
αL1/α

a
1/α
n

(−wn)
α+1
α

∆zn
zn
≤ 0. (2.10)

Multiplying (2.10) by An+1
α and summing the resulting inequality from n3 to

n− 1, we deduce that

Aαnwn −Aαn3
wn3 +

n−1∑
s=n3

αws
Aα−1s

a
1/α
s

+K
n−1∑
s=n3

Aαs+1qs

(
1− pn−σ+1

mn−σ−τ+1

mn−σ+1

)α

+αL1/α
n−1∑
s=n3

Aαs+1

a
1/α
s

(−ws)
α+1
α ≤ 0. (2.11)

Let

p =
α+ 1

α
, q = α+ 1,

a = L1/α+1 (α+ 1)α/α+1 A
α2/α+1
n+1 ,

b = L−1/α+1 α

(α+ 1)α/α+1

Aα−1n

A
α2/α+1
n+

.

Using Young’s inequality

|ab| ≤ 1

p
|a|p +

1

q
|b|q , where a, b ∈ R, p > 1, q > 1,

1

p
+

1

q
= 1,

we have

−α Aα−1n wn ≤ α L1/α Aαn+1 (−wn)α+1/α +

(
α

α+ 1

)α+1 Aα
2−1
n

LAα
2

n+1
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and hence

−αAα−1n wn

a
1/α
n

≤
αL1/αAαn+1(−wn)α+1/α

a
1/α
n

+

(
α

α+ 1

)α+1 Aα
2−1
n

LAα
2

n+1a
1/α
n

.

Therefore, it follows from (2.7) and (2.11) that

n−1∑
s=n3

[
KqsA

α
s+1

(
1− pn−σ+1

mn−σ−τ+1

mn−σ+1

)α
−
(

α

α+ 1

)α+1 Aα
2−1
s

LAα
2

s+1a
1/α
s

]

≤ Aαn3
wαn3
−Aαnwn ≤

1

L
+Aαn3

wαn3
,

which contradicts (2.3). The proof is now completed. �

Remark 2.2. The sequence {mn} in Theorem 2.1 can be obtained by setting
mn = An in the case LM ≥ 1.

If the restriction ψ(x) ≥ M > 0 is not satisfied then Theorem 2.1 cannot
be applicable. For example when

ψ(u) =
1

u2 + 1

the following result proves to be useful.

Theorem 2.3. Assume that condition (1.1) holds. Let ψ(x) be nonincreasing
for all x > 0, and nondecreasing for all x < 0. Suppose there exist two positive
real sequences {ρn} and {mn} such that, for any fixed constant l > 0,

mn

(Lψ(l))1/α a
1/α
n An

+ ∆mn ≤ 0, 1− pn
mn−τ
mn

> 0 (2.12)

and such that conditions (2.2) and (2.3) are satisfied. Then every solution of
equation (1.1) is oscillatory.

Proof. As in the proof of Theorem 2.1, we only need to prove the case where
∆zn < 0. In this case, there exists a constant l > 0 such that 0 < xn ≤ zn ≤ l.
Using the monotonicity of ψ, we deduce that ψ(x) ≥ ψ(l). Along the same
lines as in Theorem 2.1, we conclude that

∆zn
zn
≥ 1

L1/α (anψ(xn))1/α An
≥ − 1

(Lψ(l))1/α a
1/α
n An

.

Hence, we have

∆

(
zn
mn

)
=

mn∆zn − zn∆mn

mnmn+1

≥ − zn
mnmn+1

[
mn

(Lψ(l))1/αa
1/α
n An

+ ∆mn

]
≥ 0.
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Thus, the sequence {zn/mn} is nondecreasig. The remaining part is similar
to that of Theorem 2.1 and hence is omitted. �

3. Examples

In this section we present two examples to illustrate the theoretical results
obtained in the previous section.

Example 3.1. Consider the second order neutral delay difference equation

∆

(
n(n+ 1)

x2n + 2

x2n + 1
∆

(
xn +

1

4
xn−2

))
+

15

2
(n− 1)2xn−4 = 0, n ≥ 4. (3.1)

Here, an = n(n + 1), ψ(x) = x2+2
x2+1

, pn = 1/4, f(x) = x and qn = 15
2 (n + 1)2.

Then 1 ≤ ψ(x) ≤ 2, and we can fix M = 1, K = 1 and L = 1/2. Let
mn = 1

n(n+2) and ρn = 1. Since all conditions of Theorem 2.1 are satisfied and

therefore every solution of equation (3.1) is oscillatory. In fact {xn} = {(−1)n}
is one such oscillatory solution of equation (3.1).

Example 3.2. Consider the second order neutral difference equation of the
form

∆

(
n(n+ 1)

x2n + 1
∆

(
xn +

1

n
xn−1

))
+ nxn−1 = 0, n ≥ 2. (3.2)

Here, an = n(n + 1), ψ(x) = 1
x2+1

, pn = 1/n, f(x) = x, σ(n) = τ(n) = n − 1

and qn = n. Then ψ(x) ≤ 1, and we can fix K = 1 and L = 1. Let mn = n−1−l
2

and ρn = 1. It is easy to verify that all conditions of Theorem 2.3 are satisfied
and therefore every solution of equation (3.2) is oscillatory.

We conclude this paper with the following remark.

Remark 3.3. In this paper, using Riccati transformation and Young’s in-
equality, we have established new oscillation criteria for the neutral difference
equation (1.1) assuming condition (2.1) is satisfied. Note that in the study of
oscillation of solution of equation (1.1), the case ∆zn < 0 brings additional dif-
ficulties. One of the important difficulties one encounters lies in the fact that
if {xn} is an eventually positive solution of equation (1.1), then the inequality

xn ≥ (1− pn)zn

does not hold when ∆zn < 0 is satisfied. However in this paper, we obtain
similar inequality by using condition (2.1) or (2.12). Thus, we have presented
new criteria for the oscillation of all solutions of equation (1.1). It would be
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interesting to study the oscillatory properties of equation (1.1) without using
the condition (2.1) or (2.12), and it remains an open problem at the moment.
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