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Abstract. Based on the notion of A−maximal relaxed accretiveness, first a general frame-

work for a super-relaxed proximal point algorithm is introduced, and then the convergence

analysis for the algorithm to the context of approximating solutions to a class of nonlinear

inclusion problems is examined along with some auxiliary results on the generalized resol-

vent operator corresponding to A−maximal relaxed accretiveness. The A−maximal relaxed

accretiveness seems to be applicable generalizing results on the theory of hemivariational

inequalities that is a direct generalization to variational inequalities. As a matter of fact,

hemivariational inequalities arise from mechanics, engineering sciences, economics relating to

nonconvex energy functionals or equivalently relating to nonmonotone possibly multivalued

laws, for instance between stresses and strains or reactions and displacements in deformable

bodies between heat flux and temperature in thermal problems or between differential and

flow intensities in economic network problems.

1. Introduction

Let X be a real Banach space with the norm ‖ · ‖ on X and X∗, the dual
of X, and the duality pairing 〈· , ·〉 between the elements of X and X∗. We
consider the nonlinear inclusion problem: determine a solution to

0 ∈M(x), (1.1)

where M : X → 2X is a set-valued mapping on X.
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Inspired by the investigations of Xu [18], Agarwal and Verma [2], and Rock-
afellar [6] on the proximal point algorithm, and of Agarwal and Verma [1]
on the super-relaxed proximal point algorithm applied in showing that the
sequence for the solutions converges linearly to a solution of (1.1), we intro-
duce a hybrid version of the proximal point algorithm based on the notion
of A−maximal relaxed accretiveness [4] for solving general inclusion prob-
lems. If we look back the scenario when Rockafellar [6] was dealing with the
nonexpansiveness of the classical resolvent to the context of achieving linear
convergence of the proximal point algorithm, then Rockafellar ([6], Theorem
2) resolved the problem by considering the Lipschitz continuity of the map-
ping M−1 instead with a Lipschitz continuity constant less than one, while
linear convergence was not general in nature. Although in the present case,
we do have a generalized resolvent that is Lipschitz continuous, but the Lip-
schitz continuity constant is the quotient of the Lipschitz continuity constant
and strong accretiveness constant of a single-valued mapping and this makes
the endeavor of achieving a linear convergence just as hard as in the case of
the classical resolvent. As a matter of fact, we have skipped the Lipschitz
continuity and introduced some new notion instead within the framework of
the A−maximal (m)−relaxed monotonicity, and the selective use of the strong
accretiveness of single-valued map A only to showing the generalized resolvent
is single-valued, while the strong accretiveness is used in achieving the linear
convergence within the proof environment. In a way, the proof technique seems
to be unique other than the usual resolvent methods exist in the literature.
Indeed, the notion of the A−maximal (m)−relaxed monotone mapping gener-
alizes the general class of maximal monotone set-valued mappings, including
the H−maximal monotone mappings. Recently, Lan, Cho and Verma [4]
generalized the notion of A−maximal relaxed monotonicity introduced and
studied by the Verma [9–11] and H−maximal accretiveness introduced by
Fang and Huang [3], while approximating the solutions of inclusion problems
of the form (1.1). As a result, it unifies a more general class of problems of
variational character, including minimization or maximization of functions,
variational problems, and minimax problems into the form (1.1). Verma [9–
11] examined the notion of A−maximal relaxed monotonicity to the context of
approximating the solution of an inclusion problem based on the generalized
resolvent operator technique. We note that the generalized resolvent operator
techniques can also be applied to other problems from a wide spectrum of
different fields, such as equilibria problems in economics, global optimization
and control theory, operations research, management and decision sciences,
and mathematical programming. Furthermore, as it seems most of the inves-
tigations on hemivariational inequalities [14] are limited to the classical max-
imal monotonicity, can be generalized based on the A−maximal (m)−relaxed
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monotonicity as well as A−maximal (m)−relaxed accretivity to the context of
the mathematical theory of hemivariational inequalities and applications. For
more literature on the resolvent operator techniques and related materials, we
refer the reader [1–22].

2. Preliminaries and A−Maximal Relaxed Accretiveness

In this section we state some auxiliary results based on basic properties
of A−maximal relaxed accretiveness [4] and its variant forms. Let X be a
real Banach space, and let ‖ · ‖ denote the norm on X and X∗, the dual
of X. Let 〈., .〉 denote the duality pairing between the elements of X and
X∗. Let M : X → 2X be a multivalued mapping on X. We shall denote
both the map M and its graph by M, that is, the set {(x, y) : y ∈ M(x)}.
This is equivalent to stating that a mapping is any subset M of X ×X, and
M(x) = {y : (x, y) ∈ M}. If M is single-valued, we shall still use M(x) to
represent the unique y such that (x, y) ∈M rather than the singleton set {y}.
This interpretation shall much depend on the context. The domain of a map
M is defined (as its projection onto the first argument) by

D(M) = {x ∈ X : ∃ y ∈ X : (x, y) ∈M} = {x ∈ X : M(x) 6= ∅}.
D(M)=X, shall denote the full domain of M, and the range of M is defined by

R(M) = {y ∈ X : ∃x ∈ X : (x, y) ∈M}.
The inverse M−1 of M is {(y, x) : (x, y) ∈ M}. For a real number ρ and a
mapping M, let ρM = {x, ρy) : (x, y) ∈ M}. If L and M are any mappings,
we define

L+M = {(x, y + z) : (x, y) ∈ L, (x, z) ∈M}.
Now we define the generalized duality mapping Jq : X → 2X

∗
by

Jq(x) = {f∗ ∈ X∗ : 〈x, f∗〉 = ‖x‖ · ‖f∗‖, ‖f∗‖ = ‖x‖q−1} ∀x ∈ X.
As special cases, for q = 2, Jq reduces to the normalized duality mapping.
Also, we noticed that Jq(x) = ‖x‖q−2J2(x) for x 6= 0, and Jq is single-valued
if X∗ is strictly convex. The modulus of smoothness is characterized as

ρX(t) = sup

{
1

2
(‖x+ y‖+ ‖x− y‖)− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t

}
.

Based on the modulus of smoothness, a Banach space is uniformly smooth if

lim
t→0

ρX(t)

t
= 0,

and X is q−uniformly smooth if there is a positive constant c such that

ρX(t) ≤ ctq whenever q > 1.

Next we mention the lemma [17] on q−uniformly smooth Banach spaces.
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Lemma 2.1. Let X be a real uniformly smooth Banach space. Then X is
q−uniformly smooth if and only if there exists a positive constant cq such that

‖x+ y‖q ≤ ‖x‖q + q〈y, Jq(x)〉+ cq‖y‖q.

Definition 2.2. Let M : X → 2X be a multivalued mapping on X. The map
M is said to be:

(i) (r)− strongly accretive if there exists a positive constant r such that

〈u∗ − v∗, Jq(u− v)〉 ≥ r‖u− v‖q ∀ (u, u∗), (v, v∗) ∈M.

(ii) (m)−relaxed accretive if there exists a positive constant m such that

〈u∗ − v∗, Jq(u− v)〉 ≥ (−m)‖u− v‖q ∀ (u, u∗), (v, v∗) ∈M.

(iii) (c)−cocoercive if there exists a positive constant c such that

〈u∗ − v∗, Jq(u− v)〉 ≥ c‖u∗ − v∗‖q ∀ (u, u∗), (v, v∗) ∈M.

Definition 2.3. ([4]) Let A : X → X be a single-valued mapping. The map
M : X → 2X is said to be A−maximal (m)−relaxed accretive if

(i) M is (m)− relaxed accretive.
(ii) R(A+ ρM) = X whenever ρ > 0.

Proposition 2.4. Let A : X → X be an (r)−strongly accretive mapping, and
let M : X → 2X be an A−maximal (m)−relaxed accretive mapping. Then the
operator (A + ρM)−1 is single-valued for r − ρm > 0.

Proof. For some z ∈ X, assume x, y ∈ (A+ ρM)−1(z). Then we have

−A(x) + z ∈ ρM(x) and −A(y) + z ∈ ρM(y).

Since M is A−maximal (m)−relaxed accretive and A is (r)−strongly accretive,
it follows that

−ρm‖x− y‖q ≤ −〈A(x)−A(y), Jq(x− y)〉 ≤ −r‖x− y‖q

=⇒ (r − ρm)‖x− y‖q ≤ 0

=⇒ x = y whenever r − ρm > 0.

�

Definition 2.5. Let A : X → X be an (r)−strongly accretive mapping and
let M : X → 2X be an A−maximal (m)−relaxed accretive mapping. Then
the generalized resolvent operator JMρ,A : X → X is defined by

JMρ,A(u) = (A + ρM)−1(u),

where r − ρm > 0.
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Definition 2.6. ([3]) Let H : X → X be a single-valued mapping. The map
M : X → 2X is said to be H−maximal accretive if

(i) M is accretive.
(ii) R(H + ρM) = X whenever ρ > 0.

Proposition 2.7. Let H : X → X be an (r)−strongly accretive mapping, and
let M : X → 2X be an H− maximal accretive mapping. Then the operator
(H + ρM)−1 is single-valued for r > 0.

Proof. For some z ∈ X, assume x, y ∈ (H + ρM)−1(z). Then we have

−H(x) + z ∈ ρM(x) and −H(y) + z ∈ ρM(y).

Since M is H−maximal accretive and H is (r)−strongly accretive, it follows
that

0 ≤ −〈H(x)−H(y), Jq(x− y)〉 ≤ −r‖x− y‖q

=⇒ r‖x− y‖q ≤ 0

=⇒ x = y whenever r > 0.

�

Definition 2.8. Let H : X → X be an (r)−strongly accretive mapping and
let M : X → 2X be an H−maximal accretive mapping. Then the generalized
resolvent operator JMρ,H : X → X is defined by

JMρ,H (u) = (H + ρM)−1(u),

where r > 0.

3. Super Relaxed Proximal Point Algorithm

This section deals with a hybrid version of the proximal point algorithm,
which generalizes the proximal point algorithm studied in [2], and its applica-
tion to approximation solvability of the inclusion problem (1.1) based on the
A-maximal relaxed accretiveness. Although, the generalized resolvent corre-
sponding to M within the framework A−maximal (m)−relaxed accretiveness
is Lipschitz continuous, it seems quite unlikely to achieve a linear convergence
with that setting. That is why, we consider the (γ)−cocoerciveness of AoJMρk,A
and skip completely the Lipschitz continuity of A with a limited use of the
strong accretiveness of A, especially during the final phases of the proof. Note
that (m)− relaxed accretiveness of M and (r)−strong accretiveness of A are
significantly crucial to showing that the generalized resolvent is single-valued.
However, we observe that the present framework for linear convergence breaks
down when A = I (identity mapping), so in a way the introduction of the map
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A is vitally important to avoid the repeat of similar frameworks as that of the
classical resolvents.

Theorem 3.1. Let X be a real Banach space, let A : X → X be (r)−strongly
accretive, and let M : X → 2X be A−maximal (m)−relaxed accretive. Then
the following statements are mutually equivalent:

(i) An element u ∈ X is a solution to (1.1).
(ii) For an u ∈ X, we have

u = JMρk,A(A(u)) ∀ k ≥ 0,

where

JMρk,A(u) = (A + ρkM)−1(u),

r − ρkm > 0, m is a positive constant, and {ρk} is a sequence of all positive
real numbers.

Proof. Although the proof is straightforward, we include it for the sake of the
completeness. To show, (i) ⇒ (ii), we start with (ρk > 0)

0 ∈ ρkM(u)

⇒ A(u) ∈ (A+ ρkM)(u)

⇒ JMρk,A(A(u)) = u.

Next, to show, (ii)⇒ (i), we have

JMρk,A(A(u)) = u

⇒ A(u) ∈ (A+ ρkM)(u)

⇒ 0 ∈M(u).

�

Theorem 3.2. ([3]) Let X be a real Banach space, let H : X → X be
(r)−strongly accretive, and let M : X → 2X be H−maximal accretive. Then
the following statements are mutually equivalent:

(i) An element u ∈ X is a solution to (1.1).
(ii) For an u ∈ X, we have

u = JMρk,H (H (u)),

where

JMρk,H (u) = (H + ρkM)−1(u) whenever r > 0.

Next, we apply the hybrid proximal point algorithm to approximate the
solution of (1.1), which results showing in linear convergence.
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Theorem 3.3. Let X be a real q−uniformly smooth Banach space, let A :
X → X be (r)−strongly accretive, and let M : X → 2X be A−maximal
(m)−relaxed accretive. Furthermore, we suppose that AoJMρk,A is (γ)−cocoercive

for a positive constant γ. For an arbitrarily chosen initial point x0, suppose
that the sequence {xk} is generated by an iterative procedure

A(xk+1) = (1− αk)A(xk) + αky
k ∀ k ≥ 0, (3.1)

and yk satisfies

‖yk −A(JMρk,A(A(xk)))‖ ≤ δk‖yk −A(xk)‖,

where δk → 0, JMρk,A = (A+ ρkM)−1, r − ρkm > 0, and

{αk}, {δk} , {ρk} ⊆ [0,∞)

are scalar sequences such that

α = lim sup
k→∞

αk, ρk ↑ ρ ≤ ∞, αk ≥ 1, and

∞∑
k=1

δk <∞.

Then the sequence {xk} converges linearly to a solution of (1.1) with conver-
gence rate

q

√
(1− αk)q +

(
cqα

q
k + qαk(1− αk)γ

) 1

γ
q

q−1

< 1, (3.2)

for
(
cqα

q
k + qαk(1− αk)γ

)
1

γ
q

q−1
> 0, where cq > 0 and γ > 1.

Proof. Suppose that x∗ is a zero of M. Then from Theorem 3.1, it follows that
any solution to (1.1) is a fixed point of JMρk,AoA. For all k ≥ 0, we express

A(zk+1) = (1− αk)A(xk) + αkA(JMρk,A(A(xk))).

Next, since AoJMρk,A is (γ)−cocoercive, we have

〈A(JMρ,A(A(xk)))−A(JMρ,A(A(x∗))), Jq(A(xk)−A(x∗))〉
≥ γ‖A(JMρ,A(A(xk)))−A(JMρ,A(A(x∗)))‖q.

It follows that

‖A(JMρ,A(A(xk)))−A(JMρ,A(A(x∗)))‖ ≤ 1

γ
1

q−1

‖A(xk)−A(x∗)‖. (3.3)
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Now we find the estimate on applying (3.3) that

‖A(zk+1)−A(x∗)‖q

= ‖(1− αk)A(xk) + αkA(JMρk,A(A(xk)))

− [(1− αk)A(x∗) + αkA(JMρk,A(A(x∗)))]‖q

= ‖(1− αk)(A(xk)−A(x∗))

+ αk

(
A(JMρk,A(A(xk)))−A(JMρk,A(A(x∗)))

)
‖q

= (1− αk)q‖A(xk)−A(x∗)‖q

+ qαk(1− αk)

· 〈A(JMρk,A(A(xk)))−A(JMρk,A(A(x∗))), Jq(A(xk)−A(x∗))〉

+ cqα
q
k‖A(JMρk,A(A(xk)))−A(JMρk,A(A(x∗)))‖q

≤ (1− αk)q‖A(xk)−A(x∗)‖q

+ qαk(1− αk)γ‖A(JMρk,A(A(xk)))−A(JMρk,A(A(x∗)))‖q

+ cqα
q
k‖A(JMρk,A(A(xk)))−A(JMρk,A(A(x∗)))‖q

= (1− αk)q‖A(xk)−A(x∗)‖q

+ [cqα
q
k + qαk(1− αk)γ]‖A(JMρk,A(A(xk)))−A(JMρk,A(A(x∗)))‖q

≤ (1− αk)q‖A(xk)−A(x∗)‖q

+ [cqα
q
k + qαk(1− αk)γ]

1

γ
q

q−1

‖A(xk −A(x∗)‖q

=

[
(1− αk)q +

(
cqα

q
k + qαk(1− αk)γ

) 1

γ
q

q−1

]
‖A(xk −A(x∗)‖q,

where

[
cqα

q
k + qαk(1− αk)γ

]
1

γ
q

q−1
> 0.

It follows that

‖A(zk+1)−A(x∗)‖ ≤ θk‖A(xk)−A(x∗)‖,

where

θk = q

√
(1− αk)q +

(
cqα

q
k + qαk(1− αk)γ

) 1

γ
q

q−1

< 1

for αk ≥ 1. Since A(xk+1) = (1− αk)A(xk) + αky
k, we have

A(xk+1)−A(xk) = αk(y
k −A(xk)).
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It further follows that

‖A(xk+1)−A(zk+1)‖

= ‖(1− αk)A(xk) + αky
k − [(1− αk)A(xk)

+ αkA(JMρk,A(A(xk)))]‖

= ‖αk(yk −A(JMρ,A(A(xk))))‖

≤ αkδk‖yk −A(xk)‖.

Next, we find the estimate

‖A(xk+1)−A(x∗)‖
= ‖A(zk+1)−A(x∗) +A(xk+1)−A(zk+1)‖
≤ ‖A(zk+1)−A(x∗)‖+ ‖A(xk+1)−A(zk+1)‖
≤ ‖A(zk+1)−A(x∗)‖+ αkδk‖yk −A(xk)‖
= ‖A(zk+1)−A(x∗)‖+ δk‖A(xk+1)−A(xk)‖
≤ ‖A(zk+1)−A(x∗)‖+ δk‖A(xk+1)−A(x∗)‖

+δk‖A(xk)−A(x∗)‖
≤ θk‖A(xk)−A(x∗)‖+ δk‖A(xk+1)−A(x∗)‖

+δk‖A(xk)−A(x∗)‖. (3.4)

This implies that

‖A(xk+1)−A(x∗)‖ ≤ θk + δk
1− δk

‖A(xk)−A(x∗)‖, (3.5)

where

lim sup
θk + δk
1− δk

= lim sup θk

= q

√
(1− αk)q +

(
cqα

q
k + qαk(1− αk)γ

) 1

γ
q

q−1

< 1,

for

[
cqα

q
k + qαk(1− αk)γ

]
1

γ
q

q−1
> 0.

Based on (3.5), we infer that the sequence {A(xk)} converges to A(x∗), while
A is (r)−strongly accretive (and hence ‖A(xk)−A(x∗)‖ ≥ r‖xk−x∗‖). Hence,
the sequence {xk} converges linearly to x∗. �

Corollary 3.4. Let X be a real q−uniformly smooth Banach space, let H :
X → X be (r)−strongly accretive, and let M : X → 2X be H−maximal accre-
tive. Furthermore, we suppose that HoJMρk,H is (γ)−cocoercive for a positive
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constant γ. For an arbitrarily chosen initial point x0, suppose that the sequence
{xk} is generated by an iterative procedure

H(xk+1) = (1− αk)H(xk) + αky
k ∀ k ≥ 0, (3.6)

and yk satisfies

‖yk −H(JMρk,H(H(xk)))‖ ≤ δk‖yk −H(xk)‖,

where δk → 0, JMρk,A = (H + ρkM)−1, and

{αk}, {δk} , {ρk} ⊆ [0,∞)

are scalar sequences such that

α = lim sup
k→∞

αk, ρk ↑ ρ ≤ ∞, αk ≥ 1, and
∞∑
k=1

δk <∞,

q

√
(1− αk)q +

(
cqα

q
k + qαk(1− αk)γ

) 1

γ
q

q−1

< 1, (3.7)

for

(
cqα

q
k + qαk(1− αk)γ

)
1

γ
q

q−1
≥ 0, cq > 0 and γ > 1.

Proof. The proof is similar to that of Theorem 3.3, but we include for the sake
of the completeness. Suppose that x∗ is a zero of M. Then from Theorem 3.2,
it follows that any solution to (1.1) is a fixed point of JMρk,HoH. For all k ≥ 0,
we express

H(zk+1) = (1− αk)H(xk) + αkH(JMρk,H(H(xk))).

Next, since HoJMρk,H is (γ)−cocoercive, we have

〈H(JMρ,H (H(xk)))−H(JMρ,H (H(x∗))), Jq(H(xk)−H(x∗))〉
≥ γ‖H(JMρ,H (H(xk)))−H(JMρ,H (H(x∗)))‖q.

It follows that

‖H(JMρ,H (H(xk)))−H(JMρ,H (H(x∗)))‖

≤ 1

γ
1

q−1

‖H(xk)−H(x∗)‖. (3.8)
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Now we find the estimate, on applying the above inequality and (3.8) that

‖H(zk+1)−H(x∗)‖q

= ‖(1− αk)H(xk) + αkH(JMρk,H(H(xk)))

−[(1− αk)H(x∗) + αkH(JMρk,H(H(x∗)))]‖q

= ‖(1− αk)(H(xk)−H(x∗))

+αk

(
H(JMρk,H(H(xk)))−H(JMρk,H(H(x∗)))

)
‖q

= (1− αk)q‖H(xk)−H(x∗)‖q

+qαk(1− αk)
·〈H(JMρk,H(H(xk)))−H(JMρk,H(H(x∗))), Jq(H(xk)−A(x∗))〉
+cqα

q
k‖H(JMρk,H(H(xk)))−H(JMρk,H(H(x∗)))‖q

≤ (1− αk)q‖H(xk)−H(x∗)‖q

+qαk(1− αk)γ‖H(JMρk,H(H(xk)))−H(JMρk,H(H(x∗)))‖q

+cqα
q
k‖H(JMρk,H(H(xk)))−H(JMρk,H(H(x∗)))‖q

= (1− αk)q‖H(xk)−H(x∗)‖q

+[cqα
q
k + qαk(1− αk)γ]‖H(JMρk,H(H(xk)))−H(JMρk,H(H(x∗)))‖q

≤ (1− αk)q‖H(xk)−H(x∗)‖q

+

[
cqα

q
k + qαk(1− αk)γ

]
1

γ
q

q−1

‖H(xk −H(x∗)‖q

=

[
(1− αk)q +

(
cqα

q
k + qαk(1− αk)γ

) 1

γ
q

q−1

]
‖H(xk −H(x∗)‖q,

where [cqα
q
k + qαk(1− αk)γ] 1

γ
q

q−1
> 0.

It follows that

‖H(zk+1)−A(x∗)‖ ≤ θk‖H(xk)−H(x∗)‖,

where

θk = q

√
(1− αk)q +

(
cqα

q
k + qαk(1− αk)γ

) 1

γ
q

q−1

< 1

for αk ≥ 1.
Since H(xk+1) = (1− αk)H(xk) + αky

k, we have

H(xk+1)−H(xk) = αk(y
k −H(xk)).
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It follows that

‖H(xk+1)−H(zk+1)‖
= ‖(1− αk)H(xk) + αky

k − [(1− αk)H(xk)

+αkH(JMρk,H(H(xk)))]‖
= ‖αk(yk −H(JMρ,H(H(xk))))‖
≤ αkδk‖yk −H(xk)‖.

Next, we find the estimate

‖H(xk+1)−H(x∗)‖
= ‖H(zk+1)−H(x∗) +H(xk+1)−H(zk+1)‖
≤ ‖H(zk+1)−H(x∗)‖+ ‖H(xk+1)−H(zk+1)‖
≤ ‖H(zk+1)−H(x∗)‖+ αkδk‖yk −H(xk)‖
= ‖H(zk+1)−H(x∗)‖

+δk‖H(xk+1)−H(xk)‖
≤ ‖H(zk+1)−H(x∗)‖

+δk‖H(xk+1)−H(x∗)‖+ δk‖H(xk)−H(x∗)‖
≤ θk‖H(xk)−H(x∗)‖+ δk‖H(xk+1)−H(x∗)‖

+δk‖H(xk)−H(x∗)‖. (3.9)

This implies that

‖H(xk+1)−H(x∗)‖ ≤ θk + δk
1− δk

‖H(xk)−H(x∗)‖, (3.10)

where

lim sup
θk + δk
1− δk

= lim sup θk

= q

√
(1− αk)q +

(
cqα

q
k + qαk(1− αk)γ

) 1

γ
q

q−1

< 1,

for

[
cqα

q
k + qαk(1− αk)γ

]
1

γ
q

q−1
> 0.

Based on (3.10), we infer that the sequence {H(xk)} converges to H(x∗), while
H is (r)−strongly accretive (and hence ‖H(xk)−H(x∗)‖ ≥ r‖xk−x∗‖). Hence,
the sequence {xk} converges linearly to x∗. �

Remark 3.5. We observe that there is not much difference in the proof ap-
proach of Corollary 3.4 than that of Theorem 3.3, but if we compare Propo-
sitions 2.4 and 2.7, there is a marked difference between the corresponding
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constants r − ρm and r leading to generalized resolvents based on single-
valuedness property that is crucial to achieving a linear convergence.

4. Concluding Remarks

We consider the evolution equation

u′(t) +Mu(t)− ωu(t) 3 b(t), u(0) = u0 (4.1)

for almost t ∈ (0, T ), where T is fixed with 0 < T < ∞, and M : H → 2H is
maximal monotone on a real Hilbert space H. Based on [13] and ([22], Theorem
55A), inclusion problem (4.1) is described as follows:

Theorem 4.1. If u0 ∈ D(M), b ∈ W 1
2 (0, T ;H), and ω ∈ R, are given fixed

quantities, inclusion problem (4.1) has exactly one solution u ∈ W 1
2 (0, T ;H)

provided M : H → 2H is maximal monotone mapping on a real separable
Hilbert space H.
Moreover, the solution u is Lipschitz continuous and u′(t) exists for almost all
t ∈ (0, T ) in the sense that the classical derivative is the limit of the difference
quotient, i.e., u′ ∈ L∞(0, T ;H).

We state the next theorem on the solvability of the evolution inclusion

u′(t) +Mu(t) 3 f(t), u(0) = u0, 0 ≤ t ≤ T, (4.2)

where u(t) belongs to a real Banach space X and M : D(M) ⊆ X → 2X is
m−accretive.

Based on ([22], Theorem 57A), inclusion problem (4.2) is described as fol-
lows:

Theorem 4.2. If M : D(M) ⊆ X → 2X is m−accretive, f ∈ L1(0, T ;X), is

given and fixed for fixed T such that 0 < T <∞ and u0 ∈ D(M) is fixed. Then
(4.2) has exactly one integral solution, each continuous solution u : [0, T ]→ X
of (4.2) that has a generalized derivative u′ ∈ L1(0, T ;X) is also an integral
solution to (4.2). Furthermore, if

fn → f ∈ L1(0, T ;X) and xn0 → u0 ∈ X as n→∞,

then {xn} converges uniformly on [0, T ] to the integral solution u of (4.2).
Moreover, if v is an arbitrary integral solution to (4.2), then

‖v(t)− u(t)‖ ≤ ‖v(s)− u(s)‖

holds for all s, t, 0 ≤ s ≤ t ≤ T.
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We observe that Theorem 4.1 and Theorem 4.2, respectively, can be general-
ized to the case of A−maximal (m)−relaxed monotone mappings in a Hilbert
space setting and to the case of A−maximal (m)−relaxed accretive mappings
in a real Banach space setting. Moreover, Theorem 4.2 shows that the concept
of an integral solution provides a suitable solution concept of (4.2). It seems
proposed generalizations of Theorems 4.1 and 4.2 seem to be consistent with
the recent work [13] on first-order evolution equations based on H−maximal
monotonicity assumptions.
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