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Abstract. In this paper, we prove triple common fixed point theorems in partially ordered

b-metric spaces depended on another function. The presented results generalize the theorem

of Aydi, Karapinar and Mustafa [9], Berinde and Borcut [16], Borcut and Berinde [19] and

Borcut [20]. Our results extend and improve several known results from the context of

ordered metric spaces to the setting of ordered b-metric spaces. As an application, we prove

the existence of a unique solution to a class of nonlinear integral equations.

1. Introduction

Fixed points theorems in partially ordered metric spaces were firstly ob-
tained in 2004 by Ran and Reurings [35], and then by Nieto and Lopez
[32]. In this direction several authors obtained further results under weak
contractive conditions (see [1], [8], [11], [22], [25], [26]). Berinde initiated
in [12] the concept of almost contractions and obtained several interesting
fixed point theorems. This has been a subject of intense study since then, see
[13, 14, 15, 34, 39]. Some authors used related notions as ‘condition (B)’ (Babu

et al. [10]) and ‘almost generalized contractive condition’ for two maps (Ćirić
et al. [21]), and for four maps (Aghajani et al. [4]). See also a note by Pacu-
rar [34]. On the other hand, the concept of b-metric space was introduced by
Czerwik in [24]. After that, several interesting results of the existence of fixed
point for single-valued and multivalued operators in b-metric spaces have been
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obtained (see [3, 5, 6, 9, 16, 17, 18, 19, 31, 37, 38]). Pacurar [33] proved some
results on sequences of almost contractions and fixed points in b-metric spaces.
Recently, Hussain and Shah [27] obtained results on KKM mappings in cone
b-metric spaces. Using the concepts of partially ordered metric spaces, almost
generalized contractive condition, and b-metric spaces, we define a new con-
cept of almost generalized (ψ,ϕ, L)− contractive condition. We determine in
this paper some triple common fixed point theorems for nonlinear contractions
in the framework of partially ordered generalized b-metric spaces and obtain
uniqueness theorems for contractive type mappings in this setting. Consistent
with [23] and [38], following denitions and results will be needed in the sequel.

Definition 1.1. ([23]) Let X be a nonempty set and s ≥ 1 be given a real
number. A function d : X ×X −→ R+ is said to be a b-metric space if for all
x, y, z ∈ X, the following conditions are satisfied:

(i) d(x, y) = 0 iff x = y,
(ii) d(x, y) = d(y, x),

(iii) d(x, y) ≤ s[d(x, z) + d(z, y)].

The pair (X, d) is called a b-metric space with the parameter s.
It should be noted that, the class of b−metric spaces is effectively larger than
that of metric spaces, since a b−metric is a metric, when s = 1.

The following example shows that in general a b−metric need not necessarily
be a metric. (see [38]).

Example 1.2. ([2]) Let (X, d) be a metric space and ρ(x, y) = (d(x, y))p,
where p > 1 is a real number. Then ρ is a b−metric with s = 2p−1. However,
if (X, d) is a metric space, then (X, ρ) is not necessarily a metric space. For
example, if X = R is the set of real numbers and d(x, y) = |x− y| is the usual
Euclidean metric, then ρ(x, y) = (x− y)s is a b−metric on R with s = 2, but
is not a metric on R.

Also, the following example of a b-metric space is given in [28].

Example 1.3. ([28]) Let X be the set of Lebesgue measurable functions on

[0, 1] such that
∫ 1
0 |f(x)|2dx < ∞. Define D : X ×X −→ [0,∞) by D(f, g) =∫ 1

0 |f(x) − g(x)|2dx. As (
∫ 1
0 |f(x) − g(x)|2dx)

1
2 is a metric on X, then, from

the previous example, D is a b−metric on X, with s = 2.

Khamsi [29] also showed that each cone metric space over a normal cone
has a b-metric structure.

Borcut and Berinde [19] introduced the concept of a tripled coincidence
point of mappings g : X −→ X and T : X ×X ×X −→ X.
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Definition 1.4. ([19]) Let X be a nonempty set. Let T : X ×X ×X −→ X
and g : X −→ X be two mappings. An element (x, y, z) ∈ X ×X ×X −→ X
is called a tripled coincidence point of T and g if

gx = T (x, y, z), gy = T (y, x, y), gz = T (z, y, x).

Note that if g is the identity mapping, then Definition 1.4 reduces to Defi-
nition in [16].

Definition 1.5. ([19]) Let T : X × X × X −→ X and g : X −→ X. An
element (x, y, z) is called a tripled common fixed point of T and g if

x = gx = T (x, y, z), y = gy = T (y, x, y), z = gz = T (z, y, x).

Definition 1.6. ([19]) Let X be a nonempty set. Let T : X ×X ×X −→ X
and g : X −→ X be mappings. Then T and g are said to be commutative, if

g(T (x, y, z)) = T (gx, gy, gz),

whenever x, y, z ∈ X.

Akin to the concept of g-mixed monotone property [31] for a bivariate map-
ping, T : X × X −→ X and g : X −→ X, Borcut and Berinde [19] in-
troduced the concept g-mixed monotone property for a trivariate mapping
T : X ×X ×X −→ X and g : X −→ X in the following way.

Definition 1.7. ([19]) Let (X,≤) be a partially ordered set and T : X ×X ×
X −→ X and g : X −→ X. We say that T has the g-mixed monotone property
if T (x, y, z) is monotone nondecreasing in x and z, and if it is monotone non-
increasing in y, that is, for any x, y, z ∈ X,

x1, x2 ∈ X, g(x1) ≤ g(x2) =⇒ T (x1, y, z) ≤ T (x2, y, z),

y1, y2 ∈ X, g(y1) ≤ g(y2) =⇒ T (x, y1, z) ≥ T (x, y2, z)

and

z1, z2 ∈ X, g(z1) ≤ g(z2) =⇒ T (x, y, z1) ≤ T (x, y, z2).

Definition 1.8. ([22]) A mapping T is said to be g−nondecreasing if

gx ≤ gy =⇒ Tx ≤ Ty.

2. Main results

Throughout the paper, let Ψ be the family of all functions ψ : [0,∞) −→
[0,∞) satisfying the following conditions:

(a) ψ is continuous,
(b) ψ is nondecreasing,
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(c) ψ(0) = 0 < ψ(t) for every t > 0.

We denote by Φ the set of all functions ϕ : [0,∞) −→ [0,∞) satisfying the
following conditions:

(i) ϕ is right continuous,
(ii) ϕ is nondecreasing,

(iii) ϕ(t) < t for every t > 0.

For given mappings T : X ×X ×X −→ X and g : X −→ X, define

M(x, y, z, u, v, w)

= max

{
d(gx, gu), d(gy, gv), d(gz, gw),

1

2s
d(T (x, y, z), gu),

1

2s
d(T (z, y, x), gw),

1

2s
d(T (u, v, w), gx),

1

2s
d(T (w, v, u), gz)

}
and

N(x, y, z, u, v, w) = min{d(gx, T (x, y, z)), d(gx, T (u, v, w)), d(gu, T (x, y, z))}.

The first result in this paper is the following a tripled coincidence point
theorem.

Theorem 2.1. Let (X, d,≤) be a partially ordered b-metric space. Let T :
X × X × X −→ X and g : X −→ X be two mappings. Suppose that the
following conditions are hold.

(a1) T (X ×X ×X) ⊆ g(X),
(a2) g is continuous and g commutes with T,
(a3) g(X) is a complete subspace of X,
(a4) T has the mixed g-monotone property.

Assume that there exist ψ ∈ Ψ, ϕ ∈ Φ and L ≥ 0 such that

ψ(s3d(T (x, y, z), T (u, v, w)))

≤ ϕ(ψ(M(x, y, z, u, v, w))) + Lψ(N(x, y, z, u, v, w)),
(2.1)

for all x, y, z, u, v, w ∈ X with gx ≤ gu, gy ≥ gv and gz ≤ gw. Also suppose
either

(a) T is continuous

or

(b) X has the following properties:
(i) if a non-decreasing sequence {xn} converges to x, then xn ≤ x for

all n,
(ii) if a non-increasing sequence {yn} converges to y, then yn ≥ y for

all n.
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If there exists x0, y0, z0 ∈ X such that gx0 ≤ T (x0, y0, z0), gy0 ≥ T (y0, x0, y0)
and gz0 ≤ T (z0, y0, x0), then T and g have a tripled coincidence point.

Proof. By the given assumptions, there exists x0, y0, z0 ∈ X such that gx0 ≤
T (x0, y0, z0), gy0 ≥ T (y0, x0, y0) and gz0 ≤ T (z0, y0, x0). Since T (X × X ×
X) ⊆ g(X), we can define x1, y1, z1 ∈ X such that

gx1 = T (x0, y0, z0), gy1 = T (y0, x0, y0), gz1 = T (z0, y0, x0).

Then gx0 ≤ gx1, gy0 ≥ gy1 and gz0 ≤ gz1. Again, define gx2 = T (x1, y1, z1),
gy2 = T (y1, x1, y1) and gz2 = T (z1, y1, x1). Since T has the mixed g-monotone
property, we have gx0 ≤ gx1 ≤ gx2, gy0 ≥ gy1 ≥ gy2 and gz0 ≤ gz1 ≤ gz2.
Continuing this process we can construct the sequences {xn}, {yn} and {zn}
in X such that for all n = 0, 1, 2, · · · ,
gxn+1 = T (xn, yn, zn), gyn+1 = T (yn, xn, yn), gzn+1 = T (zn, yn, xn), (2.2)

for which

gx0 ≤ gx1 ≤ gx2 ≤ · · · ≤ gxn ≤ gxn+1 ≤ · · · ,
gy0 ≥ gy1 ≥ gy2 ≥ · · · ≥ gyn ≥ gyn+1 ≥ · · · ,
gz0 ≤ gz1 ≤ gz2 ≤ · · · ≤ gzn ≤ gzn+1 ≤ · · · .

(2.3)

If there exists k0 ∈ N such that gxk0+1 = gxk0 , gyk0+1 = gyk0 and gzk0+1 =
gzk0 , then

gxk0 = T (xk0 , yk0 , zk0), gyk0 = T (yk0 , xk0 , yk0), gzk0 = T (zk0 , yk0 , xk0).

This means that (xk0 , yk0 , zk0) is a tripled coincidence point of T , g and the
proof is finished. Thus, (gxn+1, gyn+1, gzn+1) 6= (gxn, gyn, gzn) for all n ∈ N.
Since gxn−1 ≤ gxn, gyn−1 ≥ gyn and gzn−1 ≤ gzn from (2.1) and (2.2) with
(x, y, z) = (xn−1, yn−1, zn−1) and (u, v, w) = (xn, yn, zn), we have

ψ(d(gxn, gxn+1)) ≤ ψ(s3d(gxn, gxn+1))

= ψ(s3d(T (xn−1, yn−1, zn−1), T (xn, yn, zn)))

≤ ϕ(ψ(M(xn−1, yn−1, zn−1, xn, yn, zn)))

+ Lψ(N(xn−1, yn−1, zn−1, xn, yn, zn)),

(2.4)

where

M(xn−1, yn−1, zn−1, xn, yn, zn)

= max

{
d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn),

1

2s
d(T (xn−1, yn−1, zn−1), gxn),

1

2s
d(T (zn−1, yn−1, xn−1), gzn),

1

2s
d(T (xn, yn, zn), gxn−1),

1

2s
d(T (zn, yn, xn), gzn−1)

}
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= max

{
d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn),

1

2s
d(gxn, gxn),

1

2s
d(gzn, gzn),

1

2s
d(gxn+1, gxn−1),

1

2s
d(gzn+1, gzn−1)

}
≤ max

{
d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn),

1

2s
d(gxn+1, gxn−1),

1

2s
d(gyn+1, gyn−1),

1

2s
d(gzn+1, gzn−1)

}
and

N(xn−1, yn−1, zn−1, xn, yn, zn)

= min{d(gxn−1, gxn), d(gxn−1, gxn+1), d(gxn, gxn)} = 0.

Since
d(gxn−1, gxn+1)

2s
≤ d(gxn−1, gxn) + d(gxn, gxn+1)

2
≤ max{d(gxn−1, gxn), d(gxn, gxn+1)},

d(gyn−1, gyn+1)

2s
≤ d(gyn−1, gyn) + d(gyn, gyn+1)

2
≤ max{d(gyn−1, gyn), d(gyn, gyn+1)},

d(gzn−1, gzn+1)

2s
≤ d(gzn−1, gzn) + d(gzn, gzn+1)

2
≤ max{d(gzn−1, gzn), d(gzn, gzn+1)},

we have
M(xn−1, yn−1, zn−1, xn, yn, zn)

≤ max{d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn),

d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)},
N(xn−1, yn−1, zn−1, xn, yn, zn) = 0.

(2.5)

By (2.4) and (2.5), we have

ψ(d(gxn, gxn+1))

≤ ϕ(ψ(max{d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn),

d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)})).
(2.6)

Similarly, we can show that

ψ(d(gyn, gyn+1))

≤ ϕ(ψ(max{d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn),

d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)})),
(2.7)
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and

ψ(d(gzn, gzn+1))

≤ ϕ(ψ(max{d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn),

d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)})).
(2.8)

Combining (2.6), (2.7), (2.8) and the fact that

max{ψ(a), ψ(b), ψ(c)} = ψ(max{a, b, c})

for a, b, c ∈ [0,+∞), we have

ψ(max{d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)})
= max{ψ(d(gxn, gxn+1)), ψ(d(gyn, gyn+1)), ψ(d(gzn, gzn+1))}
≤ ϕ(ψ(max{d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn),

d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)})).

Now denote

δn := max{d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)}

and we prove

δn ≤ δn−1. (2.9)

For this purpose consider the following four cases.

Case 1. If

max{d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn), d(gxn, gxn+1),

d(gyn, gyn+1), d(gzn, gzn+1)} = δn−1,

then

ψ(δn) ≤ ϕ(ψ(δn−1)) < ψ(δn−1), (2.10)

so (2.9) obviously holds.

Case 2. If

max{d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn), d(gxn, gxn+1),

d(gyn, gyn+1), d(gzn, gzn+1)} = d(gxn, gxn+1) > 0,

then by (2.6),

ψ(d(gxn, gxn+1)) ≤ ϕ(ψ(d(gxn, gxn+1))) < ψ(d(gxn, gxn+1)),

which is a contradiction.

Case 3. If

max{d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn), d(gxn, gxn+1),

d(gyn, gyn+1), d(gzn, gzn+1)} = d(gyn, gyn+1) > 0,
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then by (2.7),

ψ(d(gyn, gyn+1)) ≤ ϕ(ψ(d(gyn, gyn+1))) < ψ(d(gyn, gyn+1)),

which is a contradiction.

Case 4. If

max{d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn), d(gxn, gxn+1),

d(gyn, gyn+1), d(gzn, gzn+1)} = d(gzn, gzn+1) > 0,

then by (2.8),

ψ(d(gzn, gzn+1)) ≤ ϕ(ψ(d(gzn, gzn+1))) < ψ(d(gzn, gzn+1)),

which is a contradiction.
Thus, in all cases, (2.9) holds for each n ∈ N. It follows that the sequence

{δn} is a monotone decreasing sequence of non-negative real numbers and
consequently there exists δ ≥ 0 such that

lim
n−→∞

δn = δ. (2.11)

We show that δ = 0. Suppose, on the contrary, that δ > 0. Taking the limit
as n→∞ in (2.10) and using the properties of the functions ψ and ϕ, we get

ψ(δ) ≤ ϕ(ψ(δ)) < ψ(δ),

which is a contradiction. Therefore, δ = 0, that is,

lim
n→∞

δn = lim
n→∞

max{d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)} = 0,

which implies that

lim
n→∞

d(gxn, gxn+1)=0, lim
n→∞

d(gyn, gyn+1)=0, lim
n→∞

d(gzn, gzn+1)=0. (2.12)

We shall show that {gxn}, {gyn} and {gzn} are Cauchy sequences. Suppose,
on the contrary, that {gxn}, {gyn} or {gzn} is not a Cauchy sequence, i.e.,

lim
n,m→∞

d(gxn, gxm) 6= 0, or lim
n,m→∞

d(gyn, gym) 6= 0, or lim
n,m→∞

d(gzn, gzm) 6= 0.

This means that there exists ε > 0 for which we can find subsequences of
integers m(k) and n(k) with n(k) > m(k) ≥ k such that

max{d(gxn(k), gxm(k)), d(gyn(k), gym(k)), d(gzn(k), gzm(k))} ≥ ε. (2.13)

Further, corresponding to m(k) we can choose n(k) in such a way that it is
the smallest integer with m(k) < n(k) and satisfying (2.13). Then

max{d(gxn(k)−1, gxm(k)), d(gyn(k)−1, gym(k)), d(gzn(k)−1, gzm(k))} < ε. (2.14)

Using the triangle inequality in b−metric space and (2.13) and (2.14) we obtain
that

ε ≤ d(gxn(k), gxm(k)) ≤ s d(gxn(k), gxn(k)−1) + s d(gxn(k)−1, gxm(k))

< s d(gxn(k), gxn(k)−1) + sε.



Tripled common fixed point theorems 345

Taking the upper limit as k −→∞ and using (2.12) we obtain

ε ≤ lim sup
k−→∞

d(gxn(k), gxm(k)) ≤ sε. (2.15)

Similarly, we have

ε ≤ lim sup
k−→∞

d(gyn(k), gym(k)) ≤ sε (2.16)

and

ε ≤ lim sup
k−→∞

d(gzn(k), gzm(k)) ≤ sε. (2.17)

Also

ε ≤ d(gxn(k), gxm(k)) ≤ s d(gxn(k), gxm(k)+1) + s d(gxm(k)+1, gxm(k))

≤ s2 d(gxn(k), gxm(k)) + s2 d(gxm(k), gxm(k)+1) + s d(gxm(k)+1, gxm(k))

≤ s2 d(gxn(k), gxm(k)) + (s2 + s) d(gxm(k), gxm(k)+1).

So from (2.12) and (2.15), we have

ε

s
≤ lim sup

k−→∞
d(gxn(k), gxm(k)+1) ≤ s2ε. (2.18)

Similarly, we have

ε

s
≤ lim sup

k−→∞
d(gyn(k), gym(k)+1) ≤ s2ε (2.19)

and
ε

s
≤ lim sup

k−→∞
d(gzn(k), gzm(k)+1) ≤ s2ε. (2.20)

Also

ε ≤ d(gxm(k), gxn(k)) ≤ s d(gxm(k), gxn(k)+1) + s d(gxn(k)+1, gxn(k))

≤ s2 d(gxm(k), gxn(k)) + s2 d(gxn(k), gxn(k)+1) + s d(gxn(k)+1, gxn(k))

≤ s2 d(gxm(k), gxn(k)) + (s2 + s) d(gxn(k), gxn(k)+1).

So from (2.12) and (2.15), we have

ε

s
≤ lim sup

k−→∞
d(gxm(k), gxn(k)+1) ≤ s2ε. (2.21)

In a similar way, we obtain

ε

s
≤ lim sup

k−→∞
d(gym(k), gyn(k)+1) ≤ s2ε (2.22)

and
ε

s
≤ lim sup

k−→∞
d(gzm(k), gzn(k)+1) ≤ s2ε. (2.23)
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Also

d(gxn(k)+1, gxm(k)) ≤ s d(gxn(k)+1, gxm(k)+1) + s d(gxm(k)+1, gxm(k)),

so from (2.12) and (2.21), we have

ε

s2
≤ lim sup

k−→∞
d(gxn(k)+1, gxm(k)+1). (2.24)

Similarly, we obtain
ε

s2
≤ lim sup

k−→∞
d(gyn(k)+1, gym(k)+1) (2.25)

and
ε

s2
≤ lim sup

k−→∞
d(gzn(k)+1, gzm(k)+1). (2.26)

M(xn(k), yn(k), zn(k), xm(k), ym(k), zm(k))

= max

{
d(gxn(k), gxm(k)), d(gyn(k), gym(k)), d(gzn(k), gzm(k)),

1

2s
d(T (xn(k), yn(k), zn(k)), gxm(k)),

1

2s
d(T (zn(k), yn(k), xn(k)), gzm(k)),

1

2s
d(T (xm(k), ym(k), zm(k)), gxn(k)),

1

2s
d(T (zm(k), ym(k), xm(k)), gzn(k))

}
= max

{
d(gxn(k), gxm(k)), d(gyn(k), gym(k)), d(gzn(k), gzm(k)),

1

2s
d(gxn(k)+1, gxm(k)),

1

2s
d(gzn(k)+1, gzm(k)),

1

2s
d(gxm(k), gxn(k)),

1

2s
d(gzm(k)+1, gzn(k))

}
.

Linking (2.15),(2.16),(2.17),(2.20),(2.21) together with (2.23) we get

lim sup
k−→∞

M(xn(k), yn(k), zn(k), xm(k), ym(k), ym(k)) ≤ sε. (2.27)

Similarly, we have

lim sup
k−→∞

M(yn(k), xn(k), yn(k), ym(k), xm(k), ym(k)) ≤ sε (2.28)

and

lim sup
k−→∞

M(zn(k), yn(k), xn(k), zm(k), ym(k), xm(k)) ≤ sε. (2.29)
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Also

N(xn(k), yn(k), zn(k), xm(k), ym(k), zm(k))

= min{d(gxn(k), gxn(k)+1), d(gxn(k), gxm(k)+1), d(gxm(k), gxn(k)+1)}.

Letting k →∞ and using (2.12), we get

lim sup
k−→∞

N(xn(k), yn(k), zn(k), xm(k), ym(k), zm(k)) = 0. (2.30)

Similarly, we have

lim sup
k−→∞

N(yn(k), xn(k), yn(k), ym(k), xm(k), ym(k)) = 0 (2.31)

and

lim sup
k−→∞

N(zn(k), yn(k), xn(k), zm(k), ym(k), xm(k)) = 0. (2.32)

Since n(k) > m(k), we have

gxm(k) ≤ gxn(k), gym(k) ≥ gyn(k), gzm(k) ≤ gzn(k).

Now, using inequality (2.1) we obtain

ψ(s3d(gxn(k)+1, gxm(k)+1))

= ψ(s3 d(T (xn(k), yn(k), zn(k)), T (xm(k), ym(k), zm(k))))

≤ ϕ(ψ(M(xn(k), yn(k), zn(k), xm(k), ym(k), zm(k))))

+ Lψ(N(xn(k), yn(k), zn(k), xm(k), ym(k), zm(k)).

Passing to the upper limit as k −→∞, and using (2.24), (2.27) and (2.30), we
get

ψ(sε) ≤ ψ(s3 lim sup
k−→∞

d(gxn(k)+1, gxm(k)+1))

= lim sup
k−→∞

ψ(s3d(gxn(k)+1, gxm(k)+1))

= lim sup
k−→∞

ψ(s3 d(T (xn(k), yn(k), zn(k)), T (xm(k), ym(k), zm(k))))

≤ lim sup
k−→∞

ϕ(ψ(M(xn(k), yn(k), zn(k), xm(k), ym(k), zm(k))))

+ lim sup
k−→∞

Lψ(N(xn(k), yn(k), zn(k), xm(k), ym(k), zm(k))

= ϕ(ψ(lim sup
k−→∞

M(xn(k), yn(k), zn(k), xm(k), ym(k), zm(k))))

+ Lψ(lim sup
k−→∞

N(xn(k), yn(k), zn(k), xm(k), ym(k), zm(k))

≤ ϕ(ψ(εs)) < ψ(sε),
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which is a contradiction. Similarly, we have

ψ(sε) ≤ ψ(s3 lim sup
k−→∞

d(gyn(k)+1, gym(k)+1))

= lim sup
k−→∞

ψ(s3d(gyn(k)+1, gym(k)+1))

= lim sup
k−→∞

ψ(s3 d(T (yn(k), xn(k), yn(k)), T (ym(k), xm(k), ym(k))))

≤ lim sup
k−→∞

ϕ(ψ(M(yn(k), xn(k), yn(k), ym(k), xm(k), ym(k))))

+ lim sup
k−→∞

Lψ(N(yn(k), xn(k), yn(k), ym(k), xm(k), ym(k))

= ϕ(ψ(lim sup
k−→∞

M(yn(k), xn(k), yn(k), ym(k), xm(k), ym(k))))

+ Lψ(lim sup
k−→∞

N(yn(k), xn(k), yn(k), ym(k), xm(k), ym(k))

≤ ϕ(ψ(εs)) < ψ(sε)

and

ψ(sε) ≤ ψ(s3 lim sup
k−→∞

d(gzn(k)+1, gzm(k)+1))

= lim sup
k−→∞

ψ(s3d(gzn(k)+1, gzm(k)+1))

= lim sup
k−→∞

ψ(s3 d(T (zn(k), yn(k), xn(k)), T (zm(k), ym(k), xm(k))))

≤ lim sup
k−→∞

ϕ(ψ(M(zn(k), yn(k), xn(k), zm(k), ym(k), xm(k))))

+ lim sup
k−→∞

Lψ(N(zn(k), yn(k), xn(k), zm(k), ym(k), xm(k))

= ϕ(ψ(lim sup
k−→∞

M(zn(k), yn(k), xn(k), zm(k), ym(k), xm(k))))

+ Lψ(lim sup
k−→∞

N(zn(k), yn(k), xn(k), zm(k), ym(k), xm(k))

≤ ϕ(ψ(εs)) < ψ(sε),

which are contradiction. Hence {gxn}, {gyn} and {gzn} are Cauchy sequences
in gX. Since gX is complete, there exist a = gx, b = gy, c = gz ∈ gX such
that

lim
n→∞

gxn+1 = a, lim
n→∞

gyn+1 = b, lim
n→∞

gzn+1 = c.

Now, we show that (a, b, c) is a coincidence point of T and g. Suppose that
the assumption (a) holds. From the commutativity of T and g, we have

g(gxn+1) = g(T (xn, yn, zn)) = T (gxn, gyn, gzn),

g(gyn+1) = g(T (yn, xn, yn)) = T (gyn, gxn, gyn),

g(gzn+1) = g(T (zn, yn, xn)) = T (gzn, gyn, gxn).

(2.33)
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Letting n −→∞ in (2.33) and from the continuity of T and g, we get

ga = lim
n→∞

g(gxn+1) = lim
n→∞

T (gxn, gyn, gzn)

= T ( lim
n→∞

gxn, lim
n→∞

gyn, lim
n→∞

gzn) = T (a, b, c),

gb = lim
n→∞

g(gyn+1) = lim
n→∞

T (gyn, gxn, gyn)

= T ( lim
n→∞

gyn, lim
n→∞

gxn, lim
n→∞

gyn) = T (b, a, b),

gc = lim
n→∞

g(gzn+1) = lim
n→∞

T (gzn, gyn, gxn)

= T ( lim
n→∞

gzn, lim
n→∞

gyn, lim
n→∞

gxn) = T (c, b, a).

So (a, b, c) is a tripled coincidence point of T and g. Suppose now that (b)
holds. From (2.3) and hypothesis (b), we have

gxn ≤ gx, gyn ≥ gy, gzn ≤ gz for all n.

Our claim is

max{ψ(d(T (x, y, z), gx)), ψ(d(T (z, y, x), gz)), ψ(d(gy, T (y, x, y))} = 0.

To prove our claim, suppose that

max{ψ(d(T (x, y, z), gx)), ψ(d(T (z, y, x), gz)), ψ(d(gy, T (y, x, y))} 6= 0.

So, we have

M(xn, yn, zn, x, y, z))

= max

{
d(gxn, gx), d(gyn, gy), d(gzn, gz),

1

2s
d(T (xn, yn, zn), gx),

1

2s
d(T (zn, yn, xn), gz),

1

2s
d(T (x, y, z), gxn),

1

2s
d(T (z, y, x), gzn)

}
= max

{
d(gxn, gx), d(gyn, gy), d(gzn, gz),

1

2s
d(gxn+1, gx),

1

2s
d(gzn+1, gz),

1

2s
d(T (x, y, z), gxn),

1

2s
d(T (z, y, x), gzn)

}
≤ max

{
d(gxn, gx), d(gyn, gy), d(gzn, gz),

1

2s
d(gxn+1, gx),

1

2s
d(gzn+1, gz),

d(T (x, y, z), gx), d(gx, gxn), d(T (z, y, x), gz), d(gz, gzn)

}
.

So,

lim sup
n−→∞

M(xn, yn, zn, x, y, z))

≤ max{d(T (x, y, z), gx), d(T (z, y, x), gz)}
≤ max{d(T (x, y, z), gx), d(T (z, y, x), gz), d(gy, T (y, x, y)}.
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In a similar way, we obtain

lim sup
n−→∞

M(yn, xn, yn, y, x, y))

≤ max{d(T (x, y, z), gx), d(T (z, y, x), gz), d(gy, T (y, x, y)}

and

lim sup
n−→∞

M(zn, yn, xn, z, y, x))

≤ max{d(T (x, y, z), gx), d(T (z, y, x), gz), d(gy, T (y, x, y)}.

Also

N(xn, yn, zn, x, y, z)

= min{d(gxn, T (xn, yn, zn)), d(gxn, T (x, y, z)), d(gx, T (xn, yn, zn))}
= min{d(gxn, gxn+1), d(gxn, T (x, y, z)), d(gx, gxn+1)}.

So,

lim sup
n−→∞

N(xn, yn, zn, x, y, z)) = 0.

Similarly, we have

lim sup
n−→∞

N(yn, xn, yn, y, x, y)) = 0, lim sup
n−→∞

N(zn, yn, xn, z, y, x)) = 0.

By property of ψ, ϕ, (2.1), the inequality above and using the triangle inequal-
ity in b-metric space, we have

ψ(max{d(T (x, y, z), gx), d(T (z, y, x), gz), d(gy, T (y, x, y)})
= max{ψ(d(T (x, y, z), gx)), ψ(d(T (z, y, x), gz)), ψ(d(gy, T (y, x, y))}
≤ max{lim sup

n−→∞
ψ(d(T (xn, yn, zn), T (x, y, z))),

lim sup
n−→∞

ψ(d(T (yn, xn, yn), T (y, x, y))),

lim sup
n−→∞

ψ(d(T (zn, yn, xn), T (z, y, x)))}

≤ max{lim sup
n−→∞

ψ(s3d(T (xn, yn, zn), T (x, y, z))),

lim sup
n−→∞

ψ(s3d(T (yn, xn, yn), T (y, x, y))),

lim sup
n−→∞

ψ(s3d(T (zn, yn, xn), T (z, y, x)))}

≤ max{lim sup
n−→∞

[ϕ(ψ(M(xn, yn, zn, x, y, z))) + Lψ(N(xn, yn, zn, x, y, z))],

lim sup
n−→∞

[ϕ(ψ(M(yn, xn, yn, y, x, y))) + Lψ(N(yn, xn, yn, x, y, z))],

lim sup
n−→∞

[ϕ(ψ(M(zn, yn, xn, z, y, x))) + Lψ(N(zn, yn, xn, z, y, x))]}.
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Then,

max{ψ(d(T (x, y, z), gx)), ψ(d(T (z, y, x), gz)), ψ(d(gy, T (y, x, y))}
≤ ϕ(max{ψ(d(T (x, y, z), gx)), ψ(d(T (z, y, x), gz)), ψ(d(gy, T (y, x, y))})
< max{ψ(d(T (x, y, z), gx)), ψ(d(T (z, y, x), gz)), ψ(d(gy, T (y, x, y)))},

which is contradiction. Therefore

max{ψ(d(T (x, y, z), gx)), ψ(d(T (z, y, x), gz)), ψ(d(gy, T (y, x, y))} = 0

and hence d(T (x, y, z), gx) = 0, d(T (z, y, x), gz) = 0 and d(gy, T (y, x, y)) = 0.
Thus T (x, y, z) = gx, T (y, x, y) = gy and T (z, y, x) = gz. That is (x, y, z) is a
tripled coincidence point of T and g. �

Corollary 2.2. Let (X, d,≤) be a partially ordered b-metric space. Let T :
X × X × X −→ X and g : X −→ X be two mappings. Suppose that the
followings are hold:

(a1) T (X ×X ×X) ⊆ g(X),
(a2) g is continuous and g commutes with T,
(a3) g(X) is a complete subspace of X,
(a4) T has the mixed g-monotone property.

Assume that there exist ϕ ∈ Φ and L ≥ 0 such that

s3d(T (x, y, z), T (u, v, w))

≤ ϕ(M(x, y, z, u, v, w)) + L N(x, y, z, u, v, w),
(2.34)

for all x, y, z, u, v, w ∈ X with gx ≤ gu, gy ≥ gv and gz ≤ gw. Also suppose
either

(a) T is continuous

or

(b) X has the following properties:
(i) if a non-decreasing sequence {xn} converges to x, then xn ≤ x for

all n,
(ii) if a non-increasing sequence {yn} converges to y, then yn ≥ y for

all n.

If there exists x0, y0, z0 ∈ X such that gx0 ≤ T (x0, y0, z0), gy0 ≥ T (y0, x0, y0)
and gz0 ≤ T (z0, y0, x0), then T and g have a tripled coincidence point.

Proof. It suffices to take ψ(t) = t in Theorem 2.1. �

Corollary 2.3. Let (X, d,≤) be a partially ordered b-metric space. Let T :
X × X × X −→ X and g : X −→ X be two mappings. Suppose that the
followings are hold:

(a1) T (X ×X ×X) ⊆ g(X),
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(a2) g is continuous and g commutes with T,
(a3) g(X) is a complete subspace of X,
(a4) T has the mixed g-monotone property.

Assume that there exist λ ∈ [0, 1) and L ≥ 0 such that

s3d(T (x, y, z), T (u, v, w)) ≤ λM(x, y, z, u, v, w) + LN(x, y, z, u, v, w),

for all x, y, z, u, v, w ∈ X with gx ≤ gu, gy ≥ gv and gz ≤ gw. Also suppose
either

(a) T is continuous

or

(b) X has the following properties:
(i) if a non-decreasing sequence {xn} converges to x, then xn ≤ x for

all n,
(ii) if a non-increasing sequence {yn} converges to y, then yn ≥ y for

all n.

If there exists x0, y0, z0 ∈ X such that gx0 ≤ T (x0, y0, z0), gy0 ≥ T (y0, x0, y0)
and gz0 ≤ T (z0, y0, x0), then T and g have a tripled coincidence point.

Proof. It suffices to take ϕ(t) = λ t for all t ≥ 0 in Corollary 2.2. �

Corollary 2.4. Let (X, d,≤) is a partially ordered b-metric space. Let T :
X × X × X −→ X and g : X −→ X be two mappings. Suppose that the
followings are hold:

(a1) T (X ×X ×X) ⊆ g(X),
(a2) g is continuous and g commutes with T,
(a3) g(X) is a complete subspace of X,
(a4) T has the mixed g-monotone property.

Assume that there exist ϕ ∈ Φ and L ≥ 0 such that

s3d(T (x, y, z), T (u, v, w))

≤ ϕ(max{d(gx, gu), d(gy, gv), d(gz, gw)}) + LN(x, y, z, u, v, w),

for all x, y, z, u, v, w ∈ X with gx ≤ gu, gy ≥ gv and gz ≤ gw. Also suppose
either

(a) T is continuous

or

(b) X has the following properties:
(i) if a non-decreasing sequence {xn} converges to x, then xn ≤ x for

all n,
(ii) if a non-increasing sequence {yn} converges to y, then yn ≥ y for

all n.
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If there exists x0, y0, z0 ∈ X such that gx0 ≤ T (x0, y0, z0), gy0 ≥ T (y0, x0, y0)
and gz0 ≤ T (z0, y0, x0), then T and g have a tripled coincidence point.

Proof. It suffices to remark that

max{d(gx, gu), d(gy, gv), d(gz, gw)} ≤M(x, y, z, u, v, w).

Then, we apply Theorem 2.1 because that ϕ is non-decreasing. �

Corollary 2.5. Let (X, d,≤) be a partially ordered b-metric space. Let T :
X × X × X −→ X and g : X −→ X be two mappings. Suppose that the
followings are hold:

(a1) T (X ×X ×X) ⊆ g(X),
(a2) g is continuous and g commutes with T,
(a3) g(X) is a complete subspace of X,
(a4) T has the mixed g-monotone property.

Assume that there exist ϕ ∈ Φ and L ≥ 0 such that

s3d(T (x, y, z), T (u, v, w))

≤ ϕ
(
d(gx, gu) + d(gy, gv) + d(gz, gw)

3

)
+ LN(x, y, z, u, v, w),

for all x, y, z, u, v, w ∈ X with gx ≤ gu, gy ≥ gv and gz ≤ gw. Also suppose
either

(a) T is continuous

or

(b) X has the following property:
(i) if a non-decreasing sequence {xn} converges to x, then xn ≤ x for

all n,
(ii) if a non-increasing sequence {yn} converges to y, then yn ≥ y for

all n.

If there exists x0, y0, z0 ∈ X such that gx0 ≤ T (x0, y0, z0), gy0 ≥ T (y0, x0, y0)
and gz0 ≤ T (z0, y0, x0), then T and g have a tripled coincidence point.

Proof. It suffices to remark that

d(gx, gu) + d(gy, gv) + d(gz, gw)

3
≤ max{d(gx, gu), d(gy, gv), d(gz, gw)}.

Then, we apply Corollary 2.4 because that ϕ is non-decreasing. �

Corollary 2.6. Let (X, d,≤) be a partially ordered b-metric space. Let T :
X ×X ×X −→ X and g : X −→ X be two mappings. Suppose the following:

(a1) T (X ×X ×X) ⊆ g(X),
(a2) g is continuous and g commutes with T,
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(a3) g(X) is a complete subspace of X,
(a4) T has the mixed g-monotone property.

Assume that there exist λ ∈ [0, 1) and L ≥ 0 such that

s3d(T (x, y, z), T (u, v, w))

≤ λ

3

[
d(gx, gu) + d(gy, gv) + d(gz, gw)

]
+ LN(x, y, z, u, v, w),

for all x, y, z, u, v, w ∈ X with gx ≤ gu, gy ≥ gv and gz ≤ gw. Also suppose
either

(a) T is continuous

or

(b) X has the following properties:
(i) if a non-decreasing sequence {xn} converges to x, then xn ≤ x for

all n,
(ii) if a non-increasing sequence {yn} converges to y, then yn ≥ y for

all n.

If there exists x0, y0, z0 ∈ X such that gx0 ≤ T (x0, y0, z0), gy0 ≥ T (y0, x0, y0)
and gz0 ≤ T (z0, y0, x0), then T and g have a tripled coincidence point.

Proof. It suffices to take that ϕ(t) = λt in Corollary 2.5. �

Remark 2.7.

(1) Theorem 2.1 and 2.2 of [37] is the analogous of Corollary 2.2.
(2) Corollary 2.3 generalizes Theorem 7 and 8 of Berinde and Borcut [16].
(3) Theorem 7 of [16] is a special case of Corollary 2.6.
(4) Theorem 4 of [19] is a special case of Corollary 2.6.
(5) Corollary 2.6 is the analogous of Theorem 2.1 and Theorem 2.2 of Lak-

shmikantham and Ćirić [31] for coupled fixed point results by taking
s = 1 and L = 0.

(6) Theorem 5 of [20] is a special case of Corollary 2.4.
(7) If we take g = I, L = 0 and s = 1 in Corollary 2.4 then we get the

main result (Theorem 7) in [16] regarding the existence of tripled fixed
points.

(8) Corollary 2.4 generalizes Theorem 2.1 and 2.2 of [9].

Remark 2.8. Other corollaries could be derived from Theorem 2.1 and Corol-
laries 2.2, 2.3, 2.4, 2.5 and 2.6 by taking g = I.

Now, we shall state and prove the corresponding result regarding the exis-
tence and uniqueness of tripled common fixed point. We endow the product
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space X ×X ×X with the following partial order:
For all (x, y, z) and (u, v, w) in X

(x, y, z) ≤ (u, v, w) ⇐⇒ x ≤ u, y ≥ v, z ≤ w.
We say that (x, y, z) and (u, v, w) are comparable if

(x, y, z) ≤ (u, v, w) or (u, v, w) ≤ (x, y, z).

Theorem 2.9. In addition to the hypothesis of Theorem 2.1, suppose that for
all (x, y, z) and (x∗, y∗, z∗) in X×X×X, there exists a (u, v, w) ∈ X×X×X
such that (T (u, v, w), T (v, u, v), T (w, v, u)) is comparable to (gx, gy, gz) and to
(gx∗, gy∗, gz∗). Then T and g have a unique tripled common fixed point.

Proof. It follows from Theorem 2.1 that the set of tripled coincidence points
is nonempty. Suppose (x, y, z) and (x∗, y∗, z∗) are coincidence points of T and
g, that is, gx = T (x, y, z), gy = T (y, x, y), gz = T (z, y, x), gx∗ = T (x∗, y∗, z∗),
gy∗ = T (y∗, x∗, y∗) and gz∗ = T (z∗, y∗, x∗). We shall now show that gx =
gx∗, gy = gy∗ and gz = gz∗. By assumption, there exists (u, v, w) ∈ X×X×X
that is comparable to (gx, gy, gz) and (gx∗, gy∗, gz∗).
Put u0 = u, v0 = v, w0 = w and choose (u1, v1, w1) ∈ X ×X ×X such that

gu1 = T (u0, v0, w0), gv1 = T (v0, u0, v0), gw1 = T (w0, v0, u0).

For n ≥ 1, continuing this process we can construct sequences {gun}, {gvn}
and {gwn} such that

gun+1 = T (un, vn, wn), gvn+1 = T (vn, un, vn), gwn+1 = T (wn, vn, un)

for all n. Further, set x0 = x, y0 = y, z0 = z, x∗0 = x∗, y∗0 = y∗, z∗0 = z∗ and on
the same way define sequences {gxn}, {gyn}, {gzn}, {gx∗n}, {gy∗n} and {gz∗n}.
Then, it is easy to see that

gxn −→ T (x, y, z), gyn −→ T (y, x, y), gzn −→ T (z, y, x),

gx∗n −→ T (x∗, y∗, z∗), gy∗n −→ T (y∗, x∗, y∗), gz∗n −→ T (z∗, y∗, x∗),
(2.35)

for all n ≥ 1. Since

(T (x, y, z), T (y, x, y), T (z, y, x)) = (gx, gy, gz) = (gx1, gy1, gz1)

is comparable to

(T (u, v, w), T (v, u, v), T (w, v, u)) = (gu1, gv1, gw1),

then (gx, gy, gz) ≤ (gu1, gv1, gw1). Recursively, we get that

gx ≤ gun, gy ≥ gyn, gz ≤ gwn for all n. (2.36)

Thus from (2.1), we have

ψ(d(gx, gun+1)) ≤ ψ(s3d(gx, gun+1)) = ψ(s3d(T (x, y, z), T (un, vn, wn)))

≤ ϕ(ψ(M(x, y, z, un, vn, wn))) + L ψ(N(x, y, z, un, vn, wn)),
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where

M(x, y, z, un, vn, wn)

= max

{
d(gx, gun), d(gy, gvn), d(gz, gwn),

1

2s
d(T (x, y, z), gun),

1

2s
d(T (z, y, x), gwn),

1

2s
d(T (un, vn, wn), gx),

1

2s
d(T (wn, vn, un), gz)

}
,

and

N(x, y, z, un, vn, wn)

= min{d(gx, T (x, y, z)), d(gx, T (un, vn, wn)), d(gun, T (x, y, z))}.

It is easy to show that

M(x, y, z, un, vn, wn) ≤ max{d(gx, gun), d(gy, gvn), d(gz, gwn)}

and

N(x, y, z, un, vn, wn) = 0.

Hence

ψ(d(gx, gun+1)) ≤ ϕ(ψ(max{d(gx, gun), d(gy, gvn), d(gz, gwn)})). (2.37)

Similarly one can prove that

ψ(d(gy, gvn+1)) ≤ ϕ(ψ(max{d(gx, gun), d(gy, gvn), d(gz, gwn)})),
ψ(d(gz, gwn+1)) ≤ ϕ(ψ(max{d(gx, gun), d(gy, gvn), d(gz, gwn)})).

(2.38)

Combining (2.37),(2.38) and the fact that

max{ψ(a), ψ(b), ψ(c)} = ψ(max{a, b, c})

for a, b, c ∈ [0,+∞), we have

ψ(max{d(gx, gun+1), d(gy, gvn+1), d(gz, gwn+1)})
= max{ψ(d(gx, gun+1)), ψ(d(gy, gvn+1)), ψ(d(gz, gwn+1))}
≤ ϕ(ψ(max{d(gx, gun), d(gy, gvn), d(gz, gwn)}))
< ψ(max{d(gx, gun), d(gy, gvn), d(gz, gwn)}).

(2.39)

Using the non-decreasing property of ψ, we get

max{d(gx, gun+1), d(gy, gvn+1), d(gz, gwn+1)}
≤ max{d(gx, gun), d(gy, gvn), d(gz, gwn)},

implies that max{d(gx, gun), d(gy, gvn), d(gz, gwn)} is a non-increasing sequence.
Hence, there exists r ≥ 0 such that

lim
n−→∞

max{d(gx, gun), d(gy, gvn), d(gz, gwn)} = r.
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Passing the upper limit in (2.39) as n −→∞, we obtain

ψ(r) ≤ ϕ(ψ(r)) < ψ(r),

which implies that r = 0. We deduce that

lim
n−→∞

max{d(gx, gun), d(gy, gvn), d(gz, gwn)} = 0,

which concludes

lim
n−→∞

d(gx, gun) = lim
n−→∞

d(gy, gvn) = lim
n−→∞

d(gz, gwn) = 0. (2.40)

Similarly, one can prove that

lim
n−→∞

d(gx∗, gun) = lim
n−→∞

d(gy∗, gvn) = lim
n−→∞

d(gz∗, gwn) = 0. (2.41)

From (2.39) and (2.40), we have gx = gx∗, gy = gy∗ and gz = gz∗. Since
gx = T (x, y, z), gy = T (y, x, y) and gz = T (z, y, x), by commutativity of T
and g, we have

g(gx) = g(T (x, y, z)) = T (gx, gy, gz),

g(gy) = g(T (y, x, y)) = T (gy, gx, gy),

g(gz) = g(T (z, y, x)) = T (gz, gy, gx).

(2.42)

Denote gx = a, gy = b and gz = c, then from (2.42),

g(a) = T (a, b, c), g(b) = T (b, a, b), g(c) = T (c, b, a). (2.43)

Thus, (a, b, c) is a tripled coincidence point, it follows that ga = gx∗, gb = gy∗

and gc = gz∗, that is,

g(a) = a, g(b) = b, g(c) = c. (2.44)

From (2.43) and (2.44) ,

a = g(a) = T (a, b, c), b = g(b) = T (b, a, b), c = g(c) = T (c, b, a). (2.45)

Therefore, (a, b, c) is a tripled common fixed point of T and g. To prove
the uniqueness of the point (a, b, c), assume that (a∗, b∗, c∗) is another tripled
common fixed point of T and g. Then we have

a∗ = ga∗ = T (a∗, b∗, c∗), b∗ = gb∗ = T (b∗, a∗, b∗), c∗ = gc∗ = T (c∗, b∗, a∗).

Since (a∗, b∗, c∗) is a tripled coincidence point of T and g, we have ga∗ = gx =
a, gb∗ = gy = b and gc∗ = gz = c. Thus a∗ = ga∗ = ga = a, b∗ = gb∗ = gb = b
and c∗ = gc∗ = gc = c, which is the desired result. �
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3. Application to integral equations

Here, in this section, we wish to study the existence of solutions to a nonlin-
ear integral equations, as an application to the our tripled fixed point theorem.
Consider the integral equations in the following system:

x(t) = h(t) + λ

∫ 1

0
k(t, s)[f1(s, x(s)) + f2(s, y(s)) + f3(s, z(s))]ds,

y(t) = h(t) + λ

∫ 1

0
k(t, s)[f1(s, y(s)) + f2(s, x(s)) + f3(s, y(s))]ds,

z(t) = h(t) + λ

∫ 1

0
k(t, s)[f1(s, z(s)) + f2(s, y(s)) + f3(s, x(s))]ds,

(3.1)

t ∈ I = [0, 1], λ ≥ 0. Let Γ denote the class of those functions γ : [0,+∞) −→
[0,+∞) which γ ∈ Φ and (γ(t))p ≤ γ(tp), for all p ≥ 1. For example, γ1(t) =
kt, where 0 ≤ k < 1 and γ2(t) = t

t+1 are in Γ.

We will analyze Eq. (3.1) under the following assumptions:
(a1) h : I −→ R is a continuous function.
(a2) fi : I × R −→ R (i = 1, 2, 3) are continuous and there exists constant

0 ≤ L < 1 and γ ∈ Γ such that for all x, y ∈ R and x ≥ y
(i) 0 ≤ |f1(t, x)− f1(t, y)| ≤ Lγ(x− y);
(ii) 0 ≤ |f2(t, y)− f2(t, x)| ≤ Lγ(x− y);

(iii) 0 ≤ |f3(t, x)− f3(t, y)| ≤ Lγ(x− y).
(a3) k : I × I −→ R is continuous in t ∈ I for every s ∈ I and measurable

in s ∈ I for all t ∈ I such that

3

∫ 1

0
k(t, s)ds ≤ K,

and k(t, s) ≥ 0.
(a4) There exist α, β, γ ∈ C(I) such that

α(t) ≤ h(t) + λ

∫ 1

0
k(t, s)[f1(s, α(s)) + f2(s, β(s)) + f3(s, γ(s))]ds,

β(t) ≥ h(t) + λ

∫ 1

0
k(t, s)[f1(s, β(s)) + f2(s, α(s)) + f3(s, β(s))]ds,

γ(t) ≤ h(t) + λ

∫ 1

0
k(t, s)[f1(s, γ(s)) + f2(s, β(s)) + f3(s, α(s))]ds.

(a5) L
pλpKp ≤ 1

23p−3 .

Considered the space X = C(I) of continuous functions defined on I = [0, 1]
with the standard metric given by

ρ(x, y) = sup
t∈I
|x(t)− y(t)|, for x, y ∈ C(I).
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This space can also be equipped with a partial order given by

x, y ∈ C(I), x ≤ y ⇐⇒ x(t) ≤ y(t), for any t ∈ I.

Now for p ≥ 1, we define

d(x, y) = (ρ(x, y))p =

(
sup
t∈I
|x(t)− y(t)|

)p

= sup
t∈I
|x(t)− y(t)|p, for x, y ∈ C(I).

It is easy to see that (X, d) is a complete b−metric space with s = 2p−1 [2].
For any x, y ∈ X and each t ∈ I, max{x(t), y(t)} and min{x(t), y(t)} belong to
X and are upper and lower bounds of x, y, respectively. Therefore, for every
x, y ∈ X, one can take max{x, y},min{x, y} ∈ X which are comparable to
x, y.

Now, we formulate the main result of this section.

Theorem 3.1. Under assumptions (a1) − (a5), Eq. (3.1) has a solution in
C(I)× C(I)× C(I).

Proof. We consider the operator T : X×X×X −→ X and g : X → X defined
by

T (x, y, z)(t) = h(t) + λ

∫ 1

0
k(t, s)[f1(s, x(s)) + f2(s, y(s)) + f3(s, z(s))]ds,

g(x) = x, t ∈ I,

for all x, y, z ∈ X. By virtue of our assumptions, T is well defined (this means
that if x, y, z ∈ X then T (x, y, z) ∈ X). For x1 ≤ x2 and t ∈ I we have

T (x1, y, z)(t)− T (x2, y, z)(t)

= h(t) + λ

∫ 1

0
k(t, s)[f1(s, x1(s)) + f2(s, y(s)) + f3(s, z(s))]ds

− h(t)− λ
∫ 1

0
k(t, s)[f1(s, x2(s)) + f2(s, y(s)) + f3(s, z(s))]ds

= λ

∫ 1

0
k(t, s)[f1(s, x1(s))− f1(s, x2(s))]ds,

so by (i), we have

f1(s, x1(s))− f1(s, x2(s)) ≤ 0,

that is,

T (x1, y, z) ≤ T (x2, y, z).
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Now, for y1 ≤ y2, t ∈ I and by (ii), we have

T (x, y1, z)(t)− T (x, y2, y, z)(t)

= h(t) + λ

∫ 1

0
k(t, s)[f1(s, x(s)) + f2(s, y1(s)) + f3(s, z(s))]ds

− h(t)− λ
∫ 1

0
k(t, s)[f1(s, x(s)) + f2(s, y2(s)) + f3(s, z(s))]ds

= λ

∫ 1

0
k(t, s)[f2(s, y1(s))− f2(s, y2(s))]ds ≥ 0,

that is,
T (x, y1, z) ≥ T (x, y2, z).

Similarly we show that, for z1 ≤ z2, t ∈ I and by (iii),

T (x, y, z1) ≤ T (x, y, z2).

Therefore, T has the mixed g-monotone property. Also, for x ≤ u, y ≥ v and
z ≤ w, we have

|T (x, y, z)(t)− T (u, v, w)(t)|

= |h(t) + λ

∫ 1

0
k(t, s)[f1(s, x(s)) + f2(s, y(s)) + f3(s, z(s))]ds

− h(t)− λ
∫ 1

0
k(t, s)[f1(s, u(s)) + f2(s, v(s)) + f3(s, w(s))]ds|

= λ

∫ 1

0
k(t, s)|f1(s, x(s))− f1(s, u(s))|ds

+ λ

∫ 1

0
k(t, s)|f2(s, y(s))− f2(s, v(s))|ds

+ λ

∫ 1

0
k(t, s)|f3(s, z(s))− f3(s, w(s))|ds

≤ λ
∫ 1

0
k(t, s)Lγ(u(s)− x(s))ds+ λ

∫ 1

0
k(t, s)Lγ(y(s)− v(s))ds

+ λ

∫ 1

0
k(t, s)Lγ(w(s)− z(s))ds.

Since the function γ is non-decreasing and x ≤ u, y ≥ v and z ≤ w, we have

γ(u(s)− x(s)) ≤ γ(sup
t∈I
|x(s)− u(s)|) = γ(ρ(x, u)),

γ(y(s)− v(s)) ≤ γ(sup
t∈I
|y(s)− v(s)|) = γ(ρ(y, v)),

γ(w(s)− z(s)) ≤ γ(sup
t∈I
|z(s)− w(s)|) = γ(ρ(z, w)).
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Hence
|T (x, y, z)(t)− T (u, v, w)(t)|

≤ λ
∫ 1

0
k(t, s)Lγ(ρ(x, u))ds+ λ

∫ 1

0
k(t, s)Lγ(ρ(y, v))ds

+ λ

∫ 1

0
k(t, s)Lγ(ρ(z, w))ds

≤ λL[γ(ρ(x, u)) + γ(ρ(y, v)) + γ(ρ(z, w))]

∫ 1

0
k(t, s)ds

≤ 3λLmax{γ(ρ(x, u)), γ(ρ(y, v)), γ(ρ(z, w))} × K

3
≤ λKLmax{γ(ρ(x, u)), γ(ρ(y, v)), γ(ρ(z, w))}.

Then, we can obtain

d(T (x, y, z), T (u, v, w))

= sup
t∈I
|T (x, y, z)(t)− T (u, v, w)(t)|p

≤ {λKLmax{γ(ρ(x, u)), γ(ρ(y, v)), γ(ρ(z, w))}}p

≤ λpKpLp max{γ(ρ(x, u))p, γ(ρ(y, v))p, γ(ρ(z, w))p}
≤ λpKpLp max{γ(d(x, u), γ(d(y, v)), γ(d(z, w)}

≤ λpKpLpϕ

(
max

{
d(gx, gu), d(gy, gv), d(gz, gw),

1

2s
d(T (x, y, z), gu),

1

2s
d(T (z, y, x), gw),

1

2s
d(T (u, v, w), gx),

1

2s
d(T (w, v, u), gz)

})
≤ 1

23p−3
ϕ

(
max

{
d(gx, gu), d(gy, gv), d(gz, gw),

1

2s
d(T (x, y, z), gu),

1

2s
d(T (z, y, x), gw),

1

2s
d(T (u, v, w), gx),

1

2s
d(T (w, v, u), gz)

})
.

This proves that the operator T satisfies the contractive condition (2.34) ap-
pearing in Corollary 2.2. Also, let α, β, γ be the functions appearing in as-
sumption (a4); then, by (a4), we get

α ≤ T (α, β, γ), β ≥ T (β, α, β), γ ≤ T (γ, β, α).

So, the Eq. (3.1) has a solution and the proof is completed. �
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