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Abstract. In this paper, we prove triple common fixed point theorems in partially ordered
b-metric spaces depended on another function. The presented results generalize the theorem
of Aydi, Karapinar and Mustafa [9], Berinde and Borcut [16], Borcut and Berinde [19] and
Borcut [20]. Our results extend and improve several known results from the context of
ordered metric spaces to the setting of ordered b-metric spaces. As an application, we prove

the existence of a unique solution to a class of nonlinear integral equations.

1. INTRODUCTION

Fixed points theorems in partially ordered metric spaces were firstly ob-
tained in 2004 by Ran and Reurings [35], and then by Nieto and Lopez
[32]. In this direction several authors obtained further results under weak
contractive conditions (see [1], [8], [11], [22], [25], [26]). Berinde initiated
in [12] the concept of almost contractions and obtained several interesting
fixed point theorems. This has been a subject of intense study since then, see
[13, 14, 15, 34, 39]. Some authors used related notions as ‘condition (B)’ (Babu
et al. [10]) and ‘almost generalized contractive condition’ for two maps (Cirié
et al. [21]), and for four maps (Aghajani et al. [4]). See also a note by Pacu-
rar [34]. On the other hand, the concept of b-metric space was introduced by
Czerwik in [24]. After that, several interesting results of the existence of fixed
point for single-valued and multivalued operators in b-metric spaces have been
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obtained (see [3, 5, 6, 9, 16, 17, 18, 19, 31, 37, 38]). Pacurar [33] proved some
results on sequences of almost contractions and fixed points in b-metric spaces.
Recently, Hussain and Shah [27] obtained results on KKM mappings in cone
b-metric spaces. Using the concepts of partially ordered metric spaces, almost
generalized contractive condition, and b-metric spaces, we define a new con-
cept of almost generalized (¢, ¢, L)— contractive condition. We determine in
this paper some triple common fixed point theorems for nonlinear contractions
in the framework of partially ordered generalized b-metric spaces and obtain
uniqueness theorems for contractive type mappings in this setting. Consistent
with [23] and [38], following denitions and results will be needed in the sequel.

Definition 1.1. ([23]) Let X be a nonempty set and s > 1 be given a real
number. A function d : X x X — RT is said to be a b-metric space if for all
x,y,z € X, the following conditions are satisfied:

(i) d(z,y) =0iff z =y,
(ii) d(z,y) = d(y, v),
(i) d(z,y) < s[d(z, z) +d(z,9)].

The pair (X, d) is called a b-metric space with the parameter s.
It should be noted that, the class of b—metric spaces is effectively larger than
that of metric spaces, since a b—metric is a metric, when s = 1.

The following example shows that in general a b—metric need not necessarily
be a metric. (see [38]).

Example 1.2. ([2]) Let (X,d) be a metric space and p(z,y) = (d(z,y))?,
where p > 1 is a real number. Then p is a b—metric with s = 2°~. However,
if (X,d) is a metric space, then (X, p) is not necessarily a metric space. For
example, if X =R is the set of real numbers and d(z,y) = |z — y| is the usual
Euclidean metric, then p(z,y) = (z — y)® is a b—metric on R with s = 2, but
is not a metric on R.

Also, the following example of a b-metric space is given in [28].

Example 1.3. ([28]) Let X be the set of Lebesgue measurable functions on
[0,1] such that [ |f(z)|*dz < oc. Define D : X x X — [0,00) by D(f,g) =
fol |f(x) — g(z)|?dz. As (fol |f(x) — g(m)\de)% is a metric on X, then, from
the previous example, D is a b—metric on X, with s = 2.

Khamsi [29] also showed that each cone metric space over a normal cone
has a b-metric structure.

Borcut and Berinde [19] introduced the concept of a tripled coincidence
point of mappings g: X — X and T : X x X x X — X.
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Definition 1.4. ([19]) Let X be a nonempty set. Let 7: X x X x X — X
and g : X — X be two mappings. An element (z,y,2) € X x X x X — X
is called a tripled coincidence point of T and g if
gx:T(UC,% Z), gy:T(y7x7y)a QZZT(ZaZ/afL")-
Note that if g is the identity mapping, then Definition 1.4 reduces to Defi-
nition in [16].

Definition 1.5. ([19]) Let T: X x X x X — X and g : X — X. An
element (x,y, z) is called a tripled common fixed point of 7" and g if

r=gr="T(rv,y,2), y=gy=T(y,z,y), z=gz=T(zy,x).

Definition 1.6. ([19]) Let X be a nonempty set. Let 7: X x X x X — X
and g : X — X be mappings. Then T and g are said to be commutative, if
9(T(z,y,2)) = T(g9z, 9y, 92),

whenever z,y,z € X.
Akin to the concept of g-mixed monotone property [31] for a bivariate map-
ping, T : X x X — X and g : X — X, Borcut and Berinde [19] in-

troduced the concept g-mixed monotone property for a trivariate mapping
T: XxXxX— Xandg: X — X in the following way.

Definition 1.7. ([19]) Let (X, <) be a partially ordered set and 7" : X x X x
X — X and g: X — X. Wesay that T" has the g-mixed monotone property
if T'(z,y, z) is monotone nondecreasing in = and z, and if it is monotone non-
increasing in y, that is, for any x,y,z € X,

X1,T2 S X7 g(l'l) S 9(1'2) = T(l‘l,y, Z) S T(x%y? Z)7
yi,92 € X, g(y1) <g(y2) = T(z,y1,2) > T(z,y2,2)
and

21, %2 S X7 g(Zl) S g(ZQ) - T(x7y721) S T(%?J»ZQ)'

Definition 1.8. ([22]) A mapping T is said to be g—nondecreasing if
gr<gy = Tz <Ty.

2. MAIN RESULTS

Throughout the paper, let ¥ be the family of all functions v : [0,00) —
[0, 00) satistying the following conditions:
(a) v is continuous,
(b) % is nondecreasing,
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(c) ¥(0) =0 < (t) for every t > 0.

We denote by @ the set of all functions ¢ : [0,00) — [0, 00) satisfying the
following conditions:

(i) ¢ is right continuous,
(ii) ¢ is nondecreasing,
(iii) o(t) <t for every ¢ > 0.

For given mappings 7: X x X x X — X and ¢g: X — X, define
M(xvyuz7u7v7w)

1
d(T(z,y,z), gu),

= max {d(gw, gu),d(gy, gv),d(gz, gw), %

1 1 1
T (). ) (T ), ). (T 1) 92)

and

N(z,y, z,u,v,w) = min{d(gz, T(z,y, 2)), d(gz, T (u,v,w)),d(gu, T (z,y,2)) }

The first result in this paper is the following a tripled coincidence point
theorem.

Theorem 2.1. Let (X,d, <) be a partially ordered b-metric space. Let T :
XXX xX — Xand g: X — X be two mappings. Suppose that the
following conditions are hold.

(a1) T(X x X x X) C g(X),

(a2) g is continuous and g commutes with T,

(az) g(X) is a complete subspace of X,

(ag) T has the mized g-monotone property.

Assume that there exist v € ¥, p € ® and L > 0 such that
(s’ d(T (2, y,2), T(u,v,w)))
S cp(/lj}(M(x? y? Z? u? ,U7 w))) + L77Z}(N($7 y’ Z? u’ U? w))’

for all x,y, z,u,v,w € X with gr < gu, gy > gv and gz < gw. Also suppose
either

(2.1)

(a) T is continuous
or

(b) X has the following properties:
(i) if a non-decreasing sequence {x,} converges to x, then x, < x for
all n,
(i) if a non-increasing sequence {y,} converges toy, then y, >y for
all n.
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If there exists xg, Yo, 20 € X such that gxo < T(x0,Y0,20), 9Y0 = T (Y0, 0, Y0)
and gzp < T(z20,Y0,%0), then T and g have a tripled coincidence point.

Proof. By the given assumptions, there exists xg, 1o, 20 € X such that gzg <
T'(x0,Y0,20), 9y0 = T(yo,To,y0) and gzo < T'(z0,%0,70). Since T'(X x X x
X) C g(X), we can define z1,y1, 21 € X such that
g1 =T(z0,Y0,20), 9y1 = T(Y0,70,%0), 921 = T(20,Y0,T0)-
Then gzo < g1, gyo > gy1 and gzo < gz1. Again, define gry = T'(x1, 1, 21),
9y2 = T(y1,21,y1) and gzo = T'(21,y1,x1). Since T has the mixed g-monotone
property, we have gro < gr1 < gx2, gyo = gy1 = gy and gzp < gz1 < gzo.
Continuing this process we can construct the sequences {z,}, {y,} and {z,}
in X such that for all n =0,1,2,---,
9Tni1 = T(Zns Yns 2n)s 9Yn+1 =T (Yn> Tns Yn)s 92n+1 = T(2n, Yn, Tn), (2.2)
for which
9gr0 < gr1 < gra < - < grp < gTppr S
9Yo = gY1 =2 gy2 = -+ 2 gYn = GYn+1 = -, (2.3)
920 < gz1 S gz2 < - S g2n S GEng1 S
If there exists kg € N such that gz, 11 = 9Ty, GYko+1 = Yk, a0d 92,41 =
92k, then
9Ty = T(xko, Yko» Zko)’ 9Yky = T(ykm Tl s yk0)7 9Rky = T(Zkoaykoa xko)'
This means that (2., Yk, 2k,) is a tripled coincidence point of T', g and the
proof is finished. Thus, (9Zn+1, 9Yn+1, 92n+1) # (9ZTn, GYn, gzn) for all n € N.
Since grp—1 < gTn, gYn—1 > gyn and gzp—1 < gz, from (2.1) and (2.2) with
<1’, Y, Z) = (xn—lv Yn—1, Zn—l) and (U, v, ’UJ) = (xna Yn, Zn)7 we have
Y(d(92n, 9Tnt1)) < V(s> d(920, 9Tnt1))
= ¢(53d(T($n717 Yn—1, anl)a T(xm Yn, Zn)))
S SO(Q;Z)(M(xnf:b ynflv anlv xn» yny Zn)))
+ L@Z)(N(xnfla Yn—1,2n—1,LTn, Yn, Zn))v

(2.4)

where

M(xn—lv Yn—1,2n—1,Tn, Yn, Zn)

= max {d(gxn—h 970), d(9Yn—1, 9Yn), A(92n—1, 92n),

1 1
?Sd(T(xnfla Yn—1, anl)) gxn)v ?sd(T(znfla Yn—1, xnfl)a gzn)>
1

2Sd(T(xna Yn, Zn)v gl‘n*l)

1
) %d(T(va Yn, SCn), gznl)}
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1
*d(gfcn,gmn),

— max {d(gfcnl, 9%0), A(GYn—1, 9Yn), A(92n—1,92n), 55

1 1 1
%d(gzn) gzn)a %d(gxn-l-la gxn—l)’ %d(gzn-t,-l, gzn—l)}

< max {d(g:rn—l, 9%0), A(gYn—1, 9Yn), A(g2n—1,9%n),

1 1 1
%d(gﬂﬁmb 9Tn_1), ?sd(gynJrl: 9Yn—1), %d(gan’ gznl)}

and
N(.Tn_l, Yn—1,2n—1,Tn, Yn, Zn)
::nﬂn{d(gxn—lag$n>vd(9$n—17g$n+d),d(g$n,g$n)} ::0-
Since
d(gTn—1,9Tny1) _ A(gTn_1,9%n) + d(9Zn, gTni1)
2s 2
max{d(gxn_h gl?n), d(gxna g'rn-i-l)}a
d(9Yyn—1,9Yn+1) _ d(9Yn—1,9Yn) + d(gYn, gYn+1)
2s 2
max{d(gyn—1,9Yn); A(gYn> GYn+1)}
d(gzn—la gzn-‘rl) d(gzn—la gzn) + d(gzm gzn—i—l)
2s 2
max{d(gzn,l, gzn)a d(gzna gszrl)}a

IN

IN

IN

IN

IN

IN

we have
M(ﬂfn,l, Yn—1y2n—1rTn, Yn, Zn)

< max{d(9Tn—1,9%n), A(9Yn—1, 9Yn), d(g2n-1, g2n),
d(9Tn, 9Tn+1), d(gYn, gYn+1), d(g2n, 92n+1)},
N(Zp—1,Yn—1, Zn—1,TnsYn, 2n) = 0.
By (2.4) and (2.5), we have
P(d(92n, 9Tnt1))
< p(¥(max{d(gzn-1, 9%n), d(gyn—1, 9yn), d(92n—1, 92n), (2.6)
(920, 9Tnt1): A(9Yn: 9Yn+1), d(92n, 92nt1)}))-

(2.5)

Similarly, we can show that
Y(d(9Yns 9Yn+1))
< p(Y(max{d(gzn-1,97n), d(9Yn—1, 9Yn), d(g2n-1, 92n), (2.7)
d(9Tn, 9Tn+1), A(GYns gYn+1), A(g2n, 92n+1)1})),
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and
Y(d(92n, 92n+1))
< p(Y(max{d(gzn-1,97n), d(9Yn—1, 9Yn), d(g2n-1, 92n), (2.8)
d(9Tn, 9Tn+1), A(GYn;s gYn+1), A(g2n, 92n+1)}))-
Combining (2.6), (2.7), (2.8) and the fact that

max{y(a), ¥ (b),¥(c)} = P(max{a, b, c})
for a,b,c € [0, +00), we have
Y(max{d(gen, gTn+1), A(gYns 9Yn+1), A(92n, 92n+1)})
= max{(d(gzn, gTn+1)), V(d(9Yn> 9Yn+1)), Y(d(g2n, g2n+1))}
< p(Y(max{d(gzn-1, 9Tn), d(gYn—1, 9Yn), d(g2n-1, 92n),
d(9Zn, 9Tn+1), A(gYns 9Yn+1), A(g2n, 92n+1)}))-

Now denote

Op := max{d(g2n, gTn41), d(gYn: gYn+1), d(92n, 92n+1)}
and we prove
S < Ono1. (2.9)
For this purpose consider the following four cases.
Case 1. If
max{d(gzn—1,9n), d(9Yn—1, 9Yn), d(g2n-1, 92n), d(9Tn, gTn+1),
d(gYn, 9Yn+1), d(9zn, 9Zn+1)} = dn1,
then
¥(0n) < @(Y(6n-1)) < ¥(6n-1), (2.10)
so (2.9) obviously holds.
Case 2. If
max{d(gzn—1,9%n), d(9Yn—1, 9Yn), d(g2n—1, 92n), d(9Tn, gTn+1),
d(gYn, 9Yn+1), d(9zn, 92n+1)} = d(gTn, gTn41) > 0,
then by (2.6),

Y(d(grn, gTn+1)) < ©((d(gTn, 9Tn11))) < PY(d(9Tn, gTn+1)),
which is a contradiction.
Case 3. If
max{d(gzn—1,9%n), d(gYn—1, 9Yn), A(g2n-1, 92n), d(gZn, gTn+1),
d(9Yn> 9Yn+1)> (92, 92n+1)} = d(gYn, gYn+1) > 0,



344 R. Arab

then by (2.7),

Y(d(gyn, gyn+1)) < ©(D(d(9Yn, gYn+1))) < Y(d(gYn, 9Yn+1)),
which is a contradiction.

Case 4. If
max{d(gTn—1,9n), A(gYn—1, 9Yn), d(92n-1, g2n), A(9Tn, gTn+1),
A(gYns gYn+1), A(92n; 92n+1)} = d(gzn, gzn+1) > 0,
then by (2.8),

Y(d(gzn, 92n+1)) < P(P(d(g2n, 92n+1))) < P(d(g2n, 92n+1)),

which is a contradiction.

Thus, in all cases, (2.9) holds for each n € N. It follows that the sequence
{6n} is a monotone decreasing sequence of non-negative real numbers and
consequently there exists § > 0 such that

lim &, = . (2.11)

n——oo

We show that 6 = 0. Suppose, on the contrary, that § > 0. Taking the limit
as n — oo in (2.10) and using the properties of the functions ¢ and ¢, we get
P(8) < @(1h(0)) < 9(d),

which is a contradiction. Therefore, § = 0, that is,

lim 6, = lim max{d(gn, 9Tn+1), A(gYn, GYn+1), d(9%n, 92ns1)} = 0,

n—oo
which implies that
lim d(gJ:nagl'nJrl):Oa lim d(gymgynJrl):O’ lim d(gznagszrl):O' (2'12)
We shall show that {gz,}, {gyn} and {gz,} are Cauchy sequences. Suppose,
on the contrary, that {gz,}, {gyn} or {gz,} is not a Cauchy sequence, i.e.,
lim d(gzy,g9zm) #0,or lim  d(gyn, gym) # 0, or lim d(gzy,,gzm) # 0.
n,Mm—00 n,Mm—00

n,Mm—00
This means that there exists ¢ > 0 for which we can find subsequences of

integers m(k) and n(k) with n(k) > m(k) > k such that
max{d(g$n(k)a gmm(kz))v d(gyn(kz) ) gym(k))a d(gzn(k)7 gzm(k))} > €. (213)
Further, corresponding to m(k) we can choose n(k) in such a way that it is
the smallest integer with m(k) < n(k) and satisfying (2.13). Then
max{d(gn(k)—15 9Tm(k))> AGYn(k)—1> 9Ym(k))> AG9Zn(k)—1, 92m)) } < €. (2.14)

Using the triangle inequality in b—metric space and (2.13) and (2.14) we obtain
that

€ < d(9Tn(k) 9Tm(k)) < 8 A(GZnk)s 9Tnk)—1) + 5 A(GTn(k)—1, IZm(k))
< 5 d(9Tn(k)s 9Tn(k)—1) + SE.
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Taking the upper limit as k¥ — oo and using (2.12) we obtain

€ < limsup d(gZp(x), Tm(k)) < SE- (2.15)
k— 00
Similarly, we have
€ < limsup d(gyn(k), 9Ymr)) < s€ (2.16)
k— o0
and
e < limsup d(gzn(x), 92m(k)) < s€. (2.17)
k—> o0
Also

€ < d(9Zn(k) 9Tm(k)) < 8 AGTn(k)s 9Tm(k)+1) + 5 AGTm(k)+15 9Tm(k))
< 5% d(9Tn(ky: GTmk)) + 5° AGTm@)> 9Tm()+1) + 5 AGTm() 415 9Tm())
< 5% d(gTn(ky GTmk)) + (5° + 8) d(GTm(k)> 9Trm()+1)-
So from (2.12) and (2.15), we have

€ .
= < limsup d(9% k), 9Tm(k)+1) < s%e. (2.18)
§ k—o0

Similarly, we have

€ .
= < Hmsup d(gYn(r)> W) +1) < € (2.19)
S k—o0

and
€ .
= < limsup d(92n(k)> 92m(k)+1) < s%e. (2.20)
&) k—vo00

Also

€ < d(gTmk)s 9Tn(k)) < 8 AGTm(k)s ITn(k)+1) + 8 A(9Tn(k)+15 9Tn(k))
< 8% d(9T () 9Tn() + 5 A(9T0(ky 9Tn(t)41) + 5 AGTn) 415 ITn(k))
< 5% d(gZm(k)s 9Tn(k)) + (57 + 5) (9T (k) GTn(k)11)-
So from (2.12) and (2.15), we have

Z < limsup A(GTm(k)> YTn()41) < S°€. (2.21)
S k— o0

In a similar way, we obtain

3 .
= < limsup d(gYm(r), PYn(k)+1) < S°€ (2:22)
S k—o0

and
= < limsup d(g2m(k)s 92n(k)+1) < s%e. (2.23)
S k— o0
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Also

(G (k)15 9Tm(k)) < 8 A(9Tn(k)+1, 9Zmk)4+1) T 8 AGTm() 41> ITm(k))»
so from (2.12) and (2.21), we have

€ .
2 < lim sup d(gxn(k)—i—la gxm(k)+1)‘ (2.24)

k—o0

Similarly, we obtain

€ .
— < limsup d(9Yn(k)+15 9Ym(k)+1) (2.25)
S k—>o00

and
€ .
— = lim sup d(gzn(k)+1agzm(k)+1)- (2.26)
S k— o0

M(xn(k) s Yn(k)s #n(k)s Tm(k)> Ym(k)> Zm(k))

= max {d(gxn(k:)) gxm(k))a d(gyn(k)a gym(k))’ d(an(k) ) gzm(k))a
1
?Sd(T(xn(k) s Yn(k)s Zn(k))s 9Tm(k))s
1
%d(T(zn(k) s Yn(k)> Tn(k))s 92m(k)) s
1

%d(T(xm(ky Ym(k)s Zm(k))> ITn(k))»

1

= max {d(gl‘n(k), ITm(k))> AGYn(k)> 9Ymk))> AGZn(k)» I2m(k) )
%d(gxn(k)—i-lv ITm(k))s id(9f<7n(k)+1, 9Zm(k))s
s 2s
%d(gxm(k), ITn(k))s %d(gzm(k)ﬂa 9Zn(k)) }
Linking (2.15),(2.16),(2.17),(2.20),(2.21) together with (2.23) we get
lim sup M (Zp, (k) Yn(k)s Zn(k) Tm(k)> Ym(k)s Ym(k)) < SE- (2.27)

k—o0

Similarly, we have

lzm sup M(yn(k)7 Ln(k)s Yn(k)> Ym(k)> Tm(k)> ym(k)) < s (228)
—00
and

lim sup M(Zn(k)a Yn(k)s Tn(k)sr Zm(k)s Ym(k)s :Bm(k)) < se. (229)

k—o0
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Also

N(Zn (k) Yn(k)» Zn(k)s Tm(k) > Ym(k)> Zm(k))

= min{d(gmn(k)a gxn(k)+1)7 d(gxn(k)7 gwm(k)ﬂ)a d(gxm(k)7 gxn(k)Jrl)}'
Letting k — oo and using (2.12), we get

Hm sup N (Zp (k) s Yn (k) Zn(k) Tm(k)> Ym(k) Zmk)) = 0 (2.30)

k—o0

Similarly, we have

likm SUDP N (Yn(k)s Tn(k)» Yn(k)> Ym (k) Tm(k) Ym(k)) = 0 (2.31)
—00
and
Hm sup N (2 (ks Yn(k)s Tnlk)s Zm(k)s Ym(k)s Tm(k)) = 0- (2.32)
k— o0

Since n(k) > m(k), we have

9Tm(k) < 9Tn(k)> 9Ymk) = 9Yn(k)s 9Zmk) < 9Zn(k)-

Now, using inequality (2.1) we obtain

(2 A9 (k) 41> 9T (k) +1))
= (8° d(T(@n(kys Yn(ky Zn(k))s T @mk)s Ym(k)s Zm())))
< QWM (T (k) Yn(k)» Zn(k)» Tm(k)s Ym(k)s Zmk))))

+ LY(N (T (k) Yn(k) > Zn(k)> Tm(k) Ym(k) Zmk))-

Passing to the upper limit as k — oo, and using (2.24), (2.27) and (2.30), we
get

Y(se) < (s3 limsup d(gz,, (k)+1> 9Tm(k)+1))

k—o0

= limsup ¢ (s® A9 (k)+1> ITm(k)+1))

k—o0

= lim sup 111(83 d(T(xn(k) y Yn(k)> Zn(k))7 T(xm(k)7 Ym(k), zm(k))))

k—o0

< 1imsup QDM (T (k) Yn(k)» Zn(k)s Tm(k)s Ym(k)s Zm(k))))

+hmsupL¢( (Zna(k) Yn(k) s Zn(k)> Tm(k)» Ymi(k) 2

k—o0

)
(k)
(¢(hm sup M(xn(k)v Yn(k)s Zn(k)s Tm(k)s Ym(k)s )))
k—o0
)

+ L¢(llm sSup N(xn(k)7 Yn(k)s Pn(k)s Tm(k)s Ym(k)s Zm(k)

k—o0

< p(P(es)) < y(se),
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which is a contradiction. Similarly, we have

P(se) < (s° imsup d(gYn (k) +1> GYm(k)+1))
k—o0

= lim sup ¥(s°d(gYn(k)+1> PYm(k)+1))

k—> o0

= limsup ¥(s® d(T (Yn(k)s Tn(ry: Yn(k))s T Uiy s iy Ym(i))))

k—> o0

< limsup @(V (M (Yn(k) Tr(k) Yn(k)> Ym(k)> Tm(k) Ym(k))))

k—>o0

+hmsupr( ( Yn(k)s Ln(k)> Yn(k)s Ym(k)s Tm(k)s Ym(k)

k—o0

)

)

(Y Umsup M (Yn(k), Tn(k) Yn(k) Ym(k)> Tm(k) Ym(k))))
k—o0

)

+ Ly (lim sup N (Y (k) Tr(k) Yn(k)> Ym(k)> Tm(k) Ym(k

k—o0
< p(¥(es)) < (se)
and

P(se) < (s limsup d(g2n k)11, 9Zm(k)+1))

k—o0

= lim sup ¥ (5°d(92n (k)11 9Zm(k)+1))

k—o0
= licm sup 1/1(33 d(T(zn(k), Yn(k)> xn(k)), T(Zm(k)7 Ym(k), $m(k))))
—00
< li;gm sup @(VY (M (Zn(k) Yn(k)s Tn(k) Zm(k)> Ym(k)s Tm(k))))
—00
+ lim sup LY (N (2n(k)s Yn(k) Tn(k)s Zmk)s Y )
k— o0
(¢(11msupM(zn(k),yn(k) n(k)> #m(k)s Ym(k)» T )))
k—o0
+ L (lim sup N(zn(k), Yn(k)s Tn(k)s Zm(k)s Ym )

k—so00
< @(9(es)) < P(se),

which are contradiction. Hence {gz,}, {gyn} and {gz,} are Cauchy sequences
in gX. Since gX is complete, there exist a = gz,b = gy,c = gz € gX such
that

lim gxpy1 =a, lim gyn+1 =050, lim gzp41 =c.
n—oo n—oo n—oo

Now, we show that (a,b,c) is a coincidence point of 7" and ¢g. Suppose that
the assumption (a) holds. From the commutativity of 7" and g, we have

g(gﬂfn+1) = g(T(JCn, Yn, Zn)) = T(gxmgyna an),
9(9Yyn+1) = 9(T(Yn, Tns Yn)) = T(9Yn, 9Tn; GYn), (2.33)
g(gzn+1) = g(T(Zm Yn, xn)) = T(gzna 9Yn, gmn)'
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Letting n — oo in (2.33) and from the continuity of 7" and g, we get
ga = lim g(gxn41) = im T(gzn, gyn, g2n)
n—oo n—oo

=T(lim gz,, lim gy,, lim gz,) = T(a,b,c),
n—o0 n—00 n—o0

gb = lim g(gynt1) = lim T(9yn, 9Tn, 9Yn)
=T(lim gy,, im gz,, lim gy,) =T'(b,a,b),
n—oo n—oo n—oo
gc= lim g(gznt+1) = lim T(92n, GYn, 9Tn)

=T(lim gz,, lim gy,, lim gx,) =T(c,b,a).
n—oo n—oo n—oo

So (a,b,c) is a tripled coincidence point of 7" and g. Suppose now that (b)
holds. From (2.3) and hypothesis (b), we have

9Tn < 9T, gyn > gy, gzn < gz for all n.

Our claim is

max{y(d(T(z,y, ), 92)), Y (d(T(2,y,x), g2)), ¥ (d(gy, T (y,>,y))} = 0.

To prove our claim, suppose that

max{y(d(T(z,y, ), 92)), Y (d(T(2,y, ), g2)), ¥ (d(gy, T (y,>,y))} # 0.

So, we have

M(f[fn, Yn, 2n, T, Y, Z))

1
d(T(l‘m Yn, Zn), g:l?),

= max {d(gxn, 9x), d(gyn, 9y), d(9zn, 92), %

1 1 1
?Sd(T(ZT“ yTH xn)vgz)u Zd(T(xa ya Z)a gﬂfn), ?Sd(T(za ya I)a gzn)}

1
d(g$n+17 gx)a

= max {d(gxm 9x),d(gyn, 9Y), d(92n, 92), %

1 1
—d(9zn+1,92), —d(T(x,y, 2), gxn)

1
—d(T "
- - (T Gya) ) |

1 1
d(9Tny1,9%), m—d(92n+1,9%2),

< max {d(gwn, 9x), d(gyn, 9y), d(92n, 92), % 55

d(T(z,y,2),9x),d(gz, gxyn), d(T(2,y,x), 9z),d(gz, gzn) }

So,
lim sup M($n7 Yny2n, T, Y, Z))

n—oo

< max{d(T'(z,y, 2), gx),d(T(2,y,v),92)}
< max{d(T'(z,y,2), gx),d(T(2,y, ), 92),d(gy, T(y, z,y) }.
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In a similar way, we obtain

lim sup M (yn, Tny Yns Ys T, Y))

n—aoo

< max{d(T(z,y, 2), gx), d(T (2, y, v),92),d(gy, T (y, =, y)}

and

lim sup M (2, Yns Tns 2, Y, T))

n—m—oo

< max{d(T(z,y,2),9x),d(T(z,y,2), 92), d(gy, T(y,z,y)}-
Also

N(zp, Yn, 2n, T, Y, 2)
= min{d(gl'nv T(l’n, Yn, Zn))a d(gxn’ T($, Y, Z)), d(ng T(ﬂ?n, Yn, Zn))}
= min{d(gl‘nv gl‘n-‘rl)y d(g$n7 T(l’, Y, Z))) d(ng, gajn—f—l)}-

So,

limsupN(:Un,yn, Zns Ly Y, Z)) =0.

n—aoo

Similarly, we have

limsupN(yn,xn, y’na y7x7y)) = 07 limsupN(zn,yn,:Un, Z7y7$)) = 0

n—so0 n—>o0

By property of ¥, ¢, (2.1), the inequality above and using the triangle inequal-
ity in b-metric space, we have

Y(max{d(T(z,y, 2), gx), d(T(2,y, ), 92),d(gy, T (y, x,y)})
= max{¢(d(T'(z,y, 2), gx)), Y(d(T'(2,y, x), 92)), ¥ (d(gy, T(y, z, y)) }
< max{limsup 7/)( ( (l‘naynazn)aT($7yaz)))7

n—oo

T(y,2,y))),
lim sup ¢ (d(T (2n, Yn, xn), T(2,y,2))) }
n—oo

)
< max{lim sup ¢ (s*d(T (€, Yn, 2n), T, y, 2))),

n—»=o0

lim sup ¥ (d(T (Yn, Tn, Yn),
(d(

n—-o0 )
)

liris&p V(2 AT Yy Try ), Ty, 7, 9))),
lim sup Qf)(SSd(T(Znaynaxn> (Z,y,l’)))}
(

n—aoQ

< max{limsup[p (¢ (M (2, Yn, 2, %9, 2))) + LY(N (T, Yn, 20, 7,9, 2))];

n—->:00
hmsup[gp ¢(M(yn,$n, Yn,Y, T, Y ) + Lw(N(ynal'n?yn?xvya Z))],
) + Lw<N(Znayn7m’n7 z,y,x))]}

n—ao0

( )
lim sup[tp(w(M(Zna Yn,Tn, 2, Y, T ))

n—ao0
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Then,
max{y(d(T'(z,y, 2), gz)), Y(d(T(z,y,2), 92)), ¥ (d(gy, T (y, . y)) }
< pmax{Y(d(T'(z,y, 2), gz)), Y(d(T'(z,y,2), 92)), ¥ (d(9y, T (y, x,y)) })
< max{(d(T'(z,y, 2), gz)), Y(d(T(z,y,2), 92)), ¥(d(gy, T (y, z,y))) },
which is contradiction. Therefore

max{Y(d(T'(z,y, 2), 92)), ¥(d(T (2, y, 2), 92)), ¥ (d(gy, T(y, 2, y))} = 0
and hence d(T'(z,y, ), gz) = 0, d(T(z,y, ), 92) = 0 and d(gy, T (y, z,y)) = 0.
Thus T'(z,y,2) = gz, T(y,z,y) = gy and T(z,y,z) = gz. That is (z,y, 2) is a
tripled coincidence point of T" and g. O

Corollary 2.2. Let (X,d, <) be a partially ordered b-metric space. Let T :
XXX XX — Xand g : X — X be two mappings. Suppose that the
followings are hold:

(a1) T(X x X x X) C g(X),

(a2) g is continuous and g commutes with T,

(a3) g(X) is a complete subspace of X,

(ag) T has the mized g-monotone property.

Assume that there exist ¢ € ® and L > 0 such that
s3d(T(z,y, 2), T(u, v, w)) (2.34)
< p(M(z,y,z,u,v,w)) + L N(z,y,z,u,v,w), '
for all x,y, z,u,v,w € X with gr < gu, gy > gv and gz < gw. Also suppose
either
(a) T is continuous
or

(b) X has the following properties:
(i) if a non-decreasing sequence {x,} converges to x, then x, < x for
all n,
(i) if a non-increasing sequence {y,} converges toy, then y, >y for
all n.
If there exists xg, Yo, 20 € X such that gxo < T(x0,Y0,20), 9Y0 = T (Y0, 0, Y0)
and gzp < T(z20,Y0,0), then T and g have a tripled coincidence point.

Proof. 1t suffices to take 1(t) =t in Theorem 2.1. O

Corollary 2.3. Let (X,d, <) be a partially ordered b-metric space. Let T :
XxXxX — X and g : X — X be two mappings. Suppose that the
followings are hold:

(a1) T(X x X x X) C g(X),
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(a2) g is continuous and g commutes with T,
(a3) g(X) is a complete subspace of X,
(ag) T has the mized g-monotone property.

Assume that there exist X € [0,1) and L > 0 such that
Sd(T(z,y, 2), T(u,v,w)) < AM(x,y, z,u,v,w) + LN(z,y, z,u, v, w),
for all x,y, z,u,v,w € X with gr < gu, gy > gv and gz < gw. Also suppose
either
(a) T is continuous
or
(b) X has the following properties:
(i) if a non-decreasing sequence {x,} converges to x, then x, < x for
all n,
(i) if a non-increasing sequence {y,} converges toy, then y, >y for
all n.

If there exists xo,yo, 20 € X such that gzg < T(x0,Y0,20), 9Y0 = T (Yo, x0, Yo)
and gzo < T(20,Y0,x0), then T and g have a tripled coincidence point.

Proof. Tt suffices to take ¢(t) = A t for all ¢ > 0 in Corollary 2.2. O

Corollary 2.4. Let (X,d, <) is a partially ordered b-metric space. Let T :
XXX xX — Xand g: X — X be two mappings. Suppose that the
followings are hold:

(a1) T(X x X x X) C g(X),

(a2) g is continuous and g commutes with T,

(az) g(X) is a complete subspace of X,

(ag) T has the mized g-monotone property.

Assume that there ezist ¢ € ® and L > 0 such that
s3d(T(x,y, 2), T(u,v,w))
< p(maz{d(gz, gu), d(gy, gv), d(gz, gw)}) + LN (x,y, z,u, v, w),
for all x,y, z,u,v,w € X with gr < gu, gy > gv and gz < gw. Also suppose
either
(a) T is continuous
or

(b) X has the following properties:
(i) if a non-decreasing sequence {x,} converges to x, then x, < x for
all n,
(i) if a non-increasing sequence {y,} converges toy, then y, >y for
all n.
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If there exists xg, Yo, 20 € X such that gxo < T(x0,Y0,20), 9Y0 = T (Y0, 0, Y0)
and gzp < T(z20,Y0,%0), then T and g have a tripled coincidence point.

Proof. Tt suffices to remark that

maz{d(gz, gu), d(gy, gv),d(gz, gw)} < M(z,y, z,u,v,w).
Then, we apply Theorem 2.1 because that ¢ is non-decreasing. O

Corollary 2.5. Let (X,d, <) be a partially ordered b-metric space. Let T :
XXX xX — Xand g: X — X be two mappings. Suppose that the
followings are hold:

(a1) T(X x X x X) C g(X),

(a2) g is continuous and g commutes with T,

(az) g(X) is a complete subspace of X,

(as) T has the mized g-monotone property.
Assume that there exist ¢ € ® and L > 0 such that

Sd(T(z,y, 2), T(u, v, w))
< g0<d(gﬂc,gu) + d(gy, gv) + d(gz, gw)

3

for all x,y, z,u,v,w € X with gr < gu, gy > gv and gz < gw. Also suppose
either

) + LN(CL’,y, z,u,v,w),

(a) T is continuous
or
(b) X has the following property:
(i) if a non-decreasing sequence {x,} converges to x, then x, < x for
all n,
(i) if a non-increasing sequence {y,} converges toy, then y, >y for
all n.
If there exists xo,yo,20 € X such that gro < T'(z0,Y0,20), 9y0 > T(y0, Zo, Yo)
and gzo < T(z20,Y0,%0), then T and g have a tripled coincidence point.

Proof. 1t suffices to remark that

d(g, gu) + d(gy, gv) + d(gz, gw)
3
Then, we apply Corollary 2.4 because that ¢ is non-decreasing. O

< max{d(gx, gu), d(gy, gv), d(gz, gw)}.

Corollary 2.6. Let (X,d, <) be a partially ordered b-metric space. Let T :
XXX XxX—Xandg: X — X be two mappings. Suppose the following:

(1) T(X x X x X) C g(X),
(a2) g is continuous and g commutes with T,
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(a3) g(X) is a complete subspace of X,
(ag) T has the mized g-monotone property.

sume that there exist A € [0,1) and L > 0 such that
s*d(T(x,y, 2), T(u,v,w))

A
<3 d(gx, gu) + d(gy, gv) + d(gz, gw) | + LN (z,y, z,u, v, w),

for all x,y, z,u,v,w € X with gr < gu, gy > gv and gz < gw. Also suppose

et

or

her

(a) T is continuous

(b) X has the following properties:
(i) if a non-decreasing sequence {x,} converges to x, then x, < x for
all n,
(ii) if a non-increasing sequence {y,} converges to y, then y, >y for
all n.

If there exists xg, Yo, 20 € X such that gxo < T(x0,Y0,20), 9Y0 = T (Y0, 0, Y0)
and gzp < T(20,Y0,%0), then T and g have a tripled coincidence point.

Proof. 1t suffices to take that ¢(t) = At in Corollary 2.5. O
Remark 2.7.

(1) Theorem 2.1 and 2.2 of [37] is the analogous of Corollary 2.2.

(2) Corollary 2.3 generalizes Theorem 7 and 8 of Berinde and Borcut [16].

(3) Theorem 7 of [16] is a special case of Corollary 2.6.

(4) Theorem 4 of [19] is a special case of Corollary 2.6.

(5) Corollary 2.6 is the analogous of Theorem 2.1 and Theorem 2.2 of Lak-
shmikantham and Cirié [31] for coupled fixed point results by taking
s=1and L =0.

(6) Theorem 5 of [20] is a special case of Corollary 2.4.

(7) If we take g = I, L = 0 and s = 1 in Corollary 2.4 then we get the
main result (Theorem 7) in [16] regarding the existence of tripled fixed
points.

(8) Corollary 2.4 generalizes Theorem 2.1 and 2.2 of [9].

Remark 2.8. Other corollaries could be derived from Theorem 2.1 and Corol-
laries 2.2, 2.3, 2.4, 2.5 and 2.6 by taking g = I.

Now, we shall state and prove the corresponding result regarding the exis-

tence and uniqueness of tripled common fixed point. We endow the product
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space X x X x X with the following partial order:
For all (z,y,2) and (u,v,w) in X

(x,y,2) < (u,v,w) <= z<u, y>v, z<w.
We say that (z,y, z) and (u,v,w) are comparable if

(#,9,2) < (u,v,w) or (u,v,w) < (z,y, 2).

Theorem 2.9. In addition to the hypothesis of Theorem 2.1, suppose that for
all (z,y,2) and (x*,y*, z*) in X x X x X, there exists a (u,v,w) € X x X x X
such that (T(u,v,w), T(v,u,v), T(w,v,u)) is comparable to (gz, gy, gz) and to
(9z*, gy*,92z*). Then T and g have a unique tripled common fized point.

Proof. 1t follows from Theorem 2.1 that the set of tripled coincidence points
is nonempty. Suppose (x,y, z) and (z*,y*, z*) are coincidence points of 7" and
g, that is, gz = T(z,y, 2), gy = T(y, 2, y), g2 = T(z,y,2), gz* = T(z*,y", %),
gy* = T(y*,x*,y*) and gz* = T(z*,y*, 2*). We shall now show that gz =
gz, gy = gy* and gz = gz*. By assumption, there exists (u,v,w) € X x X x X
that is comparable to (gz, gy, gz) and (gz*, gy*, gz*).

Put ug = u,v9 = v, wp = w and choose (u1,v1,w;) € X x X x X such that

gur = T'(ug, vo, wo), gvi =T (vo,u0,v0), gwi =T (wo,vo,uo).
For n > 1, continuing this process we can construct sequences {guy}, {gv,}
and {gw,} such that
Gunt1 = T(Un, Vn, wn), GUnt1 = T(Vn, Un, V), gWnt1 = T (Wn, Vn, Un)
for all n. Further, set o =z, yo =y, 20 = 2, v = =%, y5 = y*, 25 = #z* and on

the same way define sequences {gz, }, {gyn}, {920} {925}, {9y} and {g=3}.
Then, it is easy to see that

gy — T(x,y,2), gyn — T(y,2,y), 92n — T(z,9,2),

gr, — T(@"y" %), gyn — Ty 2" y"), gz — T(Z*,y*,w*)a(z%)
for all n > 1. Since
(T'(z,y,2), Ty, 2,y),T(2,y,2)) = (92, 9y, 92) = (921, 9y1, 971)
is comparable to
(T(u,v,w), T (v,u,v), T (w,v,u)) = (gui, gvi, gw1),
then (gz, gy, gz) < (gu1, gv1, gwi). Recursively, we get that
9gr < gup, gy > gyn, 9z < gw, for all n. (2.36)

Thus from (2.1), we have

U(d(gz, gun+1)) < ¥(s°d(g2, guni1)) = Y(sd(T (2, y, 2), T (un, vn, wn)))
S @(¢(M(ﬂ?,y, 2, un,vn,wn))) + L ¢(N(I,y, Zvunvvn’wn))v
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where

M(x7y7 2, un,vn,wn)

1
d(T(x,y,2), gun),

= max {d(gﬂf, gun)7 d(gy7 gvn)7 d(gz7 gwn)7 ?S

1

1 1
?Sd(T(Z’ Y, :E), gwn)a ?Sd(T(Un, Un, wn)y g:l?), ?Sd(T(wnv Un, un)a gz) }a

and
N(z,y, z, Up, U, wy)
= min{d(gz, T(x,y, 2)), d(gx, T (tn, Vn, wy)), d(gun, T(z,y, 2))}.
It is easy to show that
M(z,y, z, un, vn, wn) < max{d(gz, gun), d(gy, gvn), d(gz, gwn)}
and
N(z,y,z,up, vp, wy) = 0.
Hence
P(d(gz, gunt1)) < @(¥(max{d(gz, gun), d(gy, gvn), d(gz, gwn)})). (2.37)
Similarly one can prove that
U(d(gy, gunt1)) < @Y (max{d(gz, gun), d(gy, gon), d(gz, gwn)})),
¥(d(g2, gwnt1)) < p(Y(max{d(gz, gun), d(gy, gun), d(gz, guwn)})).
Combining (2.37),(2.38) and the fact that
max{t(a), ¥ (b),¥(c)} = ¢(max{a, b, c})

for a,b,c € [0, +00), we have

(2.38)

Y(max{d(gz, gun+1), d(9y, gvn+1), d(92, gwn+1)})
= max{¢(d(gz, gun+1)), Y(d(9y, gvn+1)), ¥ (d(gz, gwn+1))}
< p(¥(max{d(gz, gun), d(gy, gvn), d(9z, gwn)}))
< Y(max{d(gz, gun), d(gy, gvn), d(g2, gwn)}).
Using the non-decreasing property of 1, we get
max{d(gz, gun+1), d(9y, gvnt1), d(92, gwnt1)}
< max{d(gz, gun), d(gy, gvn), d(gz, gwn)},

implies that max{d(gx, guy), d(gy, gvn), d(gz, gw,)} is a non-increasing sequence.
Hence, there exists r > 0 such that

(2.39)

lim max{d(gz, gun),d(gy, gvn), d(gz, gwn)} =

n—aoo
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Passing the upper limit in (2.39) as n — oo, we obtain

P(r) < @(h(r)) <o(r),
which implies that » = 0. We deduce that

lim max{d(gx, gun),d(gy, gvn),d(gz, gw,)} = 0,

n—aoo

which concludes

lim d(gz,gu,) = lim d(gy,gvn) = lim d(gz, gw,) =0.  (2.40)

n—-~oQ

Similarly, one can prove that

11_I>1r1Oo d(gz™, guy) = nh_r)noo d(gy*, gun) = nh_}rnoo d(gz*, gwy) =0. (2.41)

n

From (2.39) and (2.40), we have gz = gz*,gy = gy* and gz = gz*. Since
gr = T(x,y,2),9y = T(y,x,y) and gz = T(z,y,x), by commutativity of T
and g, we have

9(T'(z,y,2)) = T(9z,9y,92),
9(gy) = 9(T(y,x,y)) = T(gy, 92, 9y), (2.42)
9(T'(z,y,x)) = T(92, 9y, g)-
Denote gz = a, gy = b and gz = ¢, then from (2.42),
g9(a) =T(a,b,c), g(b) =T(ba,b), g(c)=T(cb,a). (2.43)

Thus, (a,b,c) is a tripled coincidence point, it follows that ga = gx*, gb = gy*
and gc = gz*, that is,

gla) =a, g(b)=0b, glc)=c (2.44)
From (2.43) and (2.44) ,
a=g(a) =T(a,b,c), b=g(b)=T(b,a,b), c=g(c)=T(c,b,a). (2.45)

Therefore, (a,b,c) is a tripled common fixed point of 7" and ¢g. To prove
the uniqueness of the point (a,b,c), assume that (a*,b*, c*) is another tripled
common fixed point of 7" and g. Then we have

a* =ga* =T(a*,b",c"), b*=gb" =T(b",a*,b"), ¢ =gc" =T(c*b" a").

Since (a*, b*, c*) is a tripled coincidence point of T" and g, we have ga* = gz =
a,gb* =gy=>bband gc* =gz =c. Thus a* =ga* =ga=a,b" =gb* =gb=1">
and ¢* = gc¢* = gc = ¢, which is the desired result. O
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3. APPLICATION TO INTEGRAL EQUATIONS

Here, in this section, we wish to study the existence of solutions to a nonlin-
ear integral equations, as an application to the our tripled fixed point theorem.
Consider the integral equations in the following system:

1
z(t) = h(t) + /\/0 k(t, s)[f1(s,2(s)) + f2(s,y(s)) + f3(s, 2(s))]ds,
1
y(t) = h(t) + /\/0 k(t, s)[f1(s,y(s)) + fals, x(s)) + fa(s,y(s)]ds,  (3.1)

1
z(t) = h(t) + /\/0 k(t, 5)[f1(s, 2(s)) + fa(s,y(s)) + f3(s, (s))]ds,

te€I=][0,1], A > 0. Let I" denote the class of those functions = : [0, +00)
[0, 4+00) which v € ® and (y(¢))? < ~(tP), for all p > 1. For example, 71 (t) =
kt, where 0 < k < 1 and y2(t) = t% are in I'.
We will analyze Eq. (3.1) under the following assumptions:
(a1) h: I — R is a continuous function.
(a2) fi: I xR — R (i =1,2,3) are continuous and there exists constant
0< L <1and~y el such that for all z,y € Rand z >y
(i) 0 < [fi(t, @) = fi(t, )] < Ly(z — y);
(ii) 0 < [falt,y) — folt,2)| < Ly(z —y);
(iti) 0 < |fs(t,z) — fs(t,y)| < Ly(z — y).
(ag) k: 1 xI— Ris continuous in t € I for every s € I and measurable
in s € I for all t € I such that

1
3/ k(t,s)ds < K,
0

and k(t,s) > 0.
(aq) There exist a, B,y € C(I) such that

1

a(t) < h(t) + )\/O k(t, s)[f1(s, a(s)) + fa(s, B(s)) + f3(s,7(s))]ds,
1

B(t) = h(t) + /\/0 k(t,5)[f1(s, B(s)) + fa(s, a(s)) + f3(s, B(s))]ds,

1
V() < h(t) + A/0 k(t, s)[f1(s,7(s)) + fa(s, B(s)) + f3(s, a(s))]ds.

(a5) LPNPKP S 23,1,%3
Considered the space X = C(I) of continuous functions defined on I = [0, 1]
with the standard metric given by

p(z,y) =sup|z(t) —y(t)], for z,y € C(I).
tel
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This space can also be equipped with a partial order given by
x,y € C(I), x <y<=z(t) <y(t), foranytel.

Now for p > 1, we define

p
A, y) = (p(. )" = (i‘é? () — y(t>|)

= sup |z(t) —y(@)[", for x,y € C(I).
tel

It is easy to see that (X,d) is a complete b—metric space with s = 2P~ [2].
For any x,y € X and each t € I, max{x(t),y(t)} and min{z(¢), y(¢)} belong to
X and are upper and lower bounds of z,y, respectively. Therefore, for every
z,y € X, one can take max{x,y}, min{x,y} € X which are comparable to

T, Y.

Now, we formulate the main result of this section.

Theorem 3.1. Under assumptions (a1) — (as), Eq. (3.1) has a solution in
C(I)xC(I)xC(I).

Proof. We consider the operator T: X x X x X — X and g : X — X defined
by
1
T, )(0) = h(t)+ A [ () (5,205) + ol y(s) + s )]s,
gx) =z, tel,

for all z,y,z € X. By virtue of our assumptions, T is well defined (this means
that if z,y,z € X then T'(z,y,z) € X). For 1 < x5 and ¢t € I we have

T(:‘Cla Y, Z)(t) - T(l?? Y, Z)(t)

1
= h(t) + )\/0 E(t,s)[f1(s,z1(s)) + fa(s,y(s)) + fa(s, z(s))]ds
1
() - A / K(t, )2 (5, 22(5)) + fols,y(s)) + Fals, 2(s))]ds

) 0
) / K(t, )1 (5, 21(5)) — fi(s, 2(s))]ds,
0

so by (i), we have
fi(s,@1(s)) = fi(s,@2(s)) <0,
that is,
T(x1,y,2) < T(x2,y,2).
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Now, for y; < y2, t € I and by (ii), we have
T(.Z‘, Y1, Z)(t) - T('Tv Y2,Y, Z)(t)

1
= h(t) + A/0 k(t, 8)[f1(s,2(s)) + fa(s,41(s)) + f3(s, 2(s))]ds
1
— h(t) - A/O k(t, 5)[f1(s,2(s)) + fa(s, y2(s)) + f3(s, 2(s))]ds

1
.\ / k(t, ) [ fa(s,51(5)) — fals,ya(s)))ds > 0,
0

that is,
T(z,y1,2) > T(z,y2,2).
Similarly we show that, for z; < z9, t € I and by (iii),
T(IL', Y, 21) < T(.Z', Y, 22)‘

Therefore, T has the mixed g-monotone property. Also, for x < u, y > v and
z < w, we have
T (z,y,2)(t) — T(u,v,w)(t)|
1
— |h() + )\/0 k(t, $)[f1(5, 2(5)) + Fo(s, y(s)) + fa(s, 2(s))]ds
1
— h(t) - )\/0 k(t, s)[f1(s,u(s)) + fa(s,v(s)) + f3(s, w(s))]ds|
1
= [ ko) fasin() ~ fils.uls)lds
0
1
A [ b ol y(s) = falso(s)ds
1
A [ 2(9) = fls, ()l ds
1 1
< A/o k(t,s)Ly(u(s) — x(s))ds + )\/0 k(t,s)Ly(y(s) — v(s))ds

1
+ )\/ k(t,s)Ly(w(s) — z(s))ds.
0
Since the function « is non-decreasing and x < u, y > v and z < w, we have

Y(u(s) —z(s)) < ’y(stlely [2(s) —u(s)]) = v(p(x,u)),
Y(y(s) —v(s)) < 'y(itel? ly(s) —v(s)]) = v(p(y,v)),

Y(w(s) — 2(s)) < ’Y(Stlelg) 2(s) —w(s)]) = v(p(z,w)).
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Hence
T (z,y,2)(t) = T(u,v,w)(t)|

1 1
<0 [t n(ptaa)ds + A [ KG9 I (ol 0)ds
1
-1—)\/0 k(t,s)Ly(p(z,w))ds
1
< AL ol )+ 7o)+ (ol )] [ k)

< BALmax{y(p(a, ), 7(p(y: ), 1oz w))} x
< AK Lmax{y(p(z, ), 7(p(y,0)). 2(o(z, )}

Then, we can obtain
d(T (2, y, ), T(u, v,w))

= sup|T(z,y, 2)(t u, v, w)()[P
tel

Py, v)), 7 (p(z, w)) 1P
z,u)?, v (p(y, )" v (p(z,w))"}
z,u), y(d(y, v)),7(d(z, w)}

1
< NP KPLPp < max {d(gl‘, gu),d(gy, gv),d(gz, gw), gd(T(:v, Y, 2), gu),

) = T(
< AANK Lmax{y(p(z,u))
< AP KPLP max{y(p(
< AP KPLP max{~y(d(

%d(T(z, Y, ), gw), %d(T(u, v, W), gT), %d(T(w, v,u),gz) })

1 1
< 553 ( max {d(gw, gu), d(gy, gv), d(9z, gw), 5-d(T(2,y, 2), gu),

%Sd(T(u, v, W), gT), %Sd(T(w, v,u),gz) }) )

This proves that the operator T satisfies the contractive condition (2.34) ap-
pearing in Corollary 2.2. Also, let «, 8, be the functions appearing in as-
sumption (a4); then, by (a4), we get

aST(a767fy)7 BET(/B7CV75)7 ’YST(’%B7Q)
So, the Eq. (3.1) has a solution and the proof is completed. O

1
—d(T
23d( (2,9, ), gw),
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