Nonlinear Functional Analysis and Applications Vol. 20, No. 3 (2015), pp. 381-392

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm Copyright \odot 2015 Kyungnam University Press

A NEW EXPLICIT ITERATIVE ALGORITHM FOR SOLVING SPLIT VARIATIONAL INCLUSION PROBLEM

Cuijie Zhang^1 and $\mathrm{Zhihui\;} \mathrm{Xu}^2$

¹College of Science, Civil Aviation University of China Tianjin, 300300, P.R. China e-mail: zhang_cui_jie@126.com

²College of Science, Civil Aviation University of China Tianjin, 300300, P.R. China e-mail: zhihui xu007@163.com

Abstract. In this paper, we introduce a new explicit iterative algorithm to approximate a common solution of split variational inclusion problem and fixed point problem for a nonexpansive mapping in Hilbert spaces. Further, we proved that the sequence generated by the iterative method strongly converges to the solution of the split variational inclusion problem.

1. INTRODUCTION

Let H_1 and H_2 be real Hilbert spaces with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$. Let S is a nonexpansive operator. The set of fixed points of S is denoted by $Fix(S)$.

Throughout this paper, we suppose that $B_1: H_1 \to 2^{H_1}$ and $B_2: H_2 \to 2^{H_2}$ are two multi-valued maximal monotone operators, $A: H_1 \rightarrow H_2$ is a bounded linear operator. In 2011, Moudafi [10] introduced the following split monotone *variational inclusion problem* (SMVIP) which is to find $x^* \in H_1$ such that

$$
0 \in f(x^*) + B_1(x^*), \tag{1.1}
$$

and such that

$$
y^* = Ax^* \in H_2 \quad \text{solves} \quad 0 \in g(y^*) + B_2(y^*), \tag{1.2}
$$

 0 Received November 27, 2014. Revised February 24, 2015.

⁰ 2010 Mathematics Subject Classification: 47H09, 47H10, 49J40.

 0 Keywords: Nonexpansive mapping, maximal monotone mapping, split variational inclusion, k-strongly monotone.

where $f: H_1 \to H_1$ and $g: H_2 \to H_2$ are two given single-valued operators. This formalism is also at the core of modeling of many inverse problems arising from phase retrieval, data compression, sensor networks and other real-world problem, see $[2, 3]$. As Moudafi notes in $[10]$, SMVIP $(1.1)-(1.2)$ includes as the following special cases, split minimization problem, split saddle-point problem and split equilibrium problem which have already been studied and used in practice as a model in some field, see e.g. [4, 5].

If $f \equiv 0$ and $g \equiv 0$, then SMVIP(1.1)-(1.2) reduces to the following *split* variational inclusion problem (in short, $SVIP$) which is to find $x^* \in H_1$ such that

$$
0 \in B_1(x^*),\tag{1.3}
$$

and such that

$$
y^* = Ax^* \in H_2 \quad \text{solves} \quad 0 \in B_2(y^*). \tag{1.4}
$$

We denote the solution set of SVIP(1.3), SVIP(1.4) by $SOLVIP(B_1)$ and $SOLVIP(B₂)$, respectively. The solution set of SVIP $(1.3)-(1.4)$ is denoted by $\Gamma = \{x^* \in H_1 : x^* \in SOLVIP(B_1) \text{ and } Ax^* \in SOLVIP(B_2)\}.$

In 2013, Kazmi and Rizvi [9] proposed the following algorithm:

$$
\begin{cases} u_n = J_{\lambda}^{B_1}(x_n + \beta A^*(J_{\lambda}^{B_2} - I)Ax_n), \\ x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n)Su_n. \end{cases}
$$
(1.5)

If $\lambda > 0$, the sequences $\{u_n\}$ and $\{x_n\}$ generated by (1.5) both converge strongly to $\tilde{x} \in Fix(S) \bigcap \Gamma$, where $\tilde{x} = P_{Fix(S) \bigcap \Gamma} f(\tilde{x})$.

On the other hand, Tian [11] considered the following general viscosity type iterative method

$$
x_{n+1} = \alpha_n \gamma f(x_n) + (I - \mu \alpha_n F) T x_n.
$$
\n(1.6)

He proved that $\{x_n\}$ generated by (1.6) converges strongly to a fixed point $\tilde{x} \in Fix(T)$, which solves the variational inequality

$$
\langle (\gamma f - \mu F)\tilde{x}, x - \tilde{x} \rangle \le 0, \quad \forall x \in Fix(T).
$$

In [12], Tian generalized the iterative method (1.6) replacing the contraction operator f with an Lipschitzian continuous operator V to solve the following variational inequality

$$
\langle (\gamma V - \mu F)\tilde{x}, x - \tilde{x} \rangle \le 0, \quad \forall x \in Fix(T).
$$

In this paper, we will combine the iterative method (1.6) with the method (1.5) and consider the following general iterative method

$$
\begin{cases} u_n = J_{\lambda}^{B_1}(x_n + \beta A^*(J_{\lambda}^{B_2} - I)Ax_n), \\ x_{n+1} = \alpha_n \gamma V(x_n) + (I - \mu \alpha_n F)Su_n. \end{cases}
$$
(1.7)

We will prove that if the parameters satisfy appropriate conditions, the sequence $\{x_n\}$ generated by (1.7) converges strongly to the unique solution \tilde{x} of the variational inequality

$$
\langle (\gamma V - \mu F)\tilde{x}, x - \tilde{x} \rangle \le 0, \quad \forall x \in Fix(S) \cap \Gamma. \tag{1.8}
$$

2. Preliminaries

Throughout this paper, we write $x_n \rightharpoonup x$ and $x \rightharpoonup x$ to indicate that the sequence $\{x_n\}$ converges weakly to x and converges strongly to x, respectively. Let H be a real Hilbert space. The following definitions and lemmas are useful for our paper.

Definition 2.1. A mapping $T : H \to H$ is said to be

• nonexpansive if for all $x, y \in H$

$$
||Tx - Ty|| \le ||x - y||,
$$

• firmly nonexpansive if $2T - I$ is nonexpansive, or equivalently for all $x, y \in H$

$$
\langle Tx - Ty, x - y \rangle \ge ||Tx - Ty||^2,
$$

• monotone if for all $x, y \in H$

$$
\langle Tx - Ty, x - y \rangle \ge 0,
$$

• η -strongly monotone if there exists a constant $\eta > 0$ such that

$$
\langle x-y, Tx-Ty \rangle \ge \eta \|x-y\|^2
$$

for all $x, y \in H$,

• a multi-valued mapping $M: H \to 2^H$ is called monotone if

 $\langle u - v, x - y \rangle \geq 0$ whenever $u \in M(x), v \in M(y),$

• a multi-valued mapping $M : H \to 2^H$ is maximal if, in addition, its graph,

$$
gph M := \{(x, y) \in H \times H : y \in M(x)\},\
$$

is not properly contained in the graph of any other monotone operator.

It is well known that every nonexpansive operator $T : H \to H$ satisfies the inequality

$$
\langle (x - Tx) - (y - Ty), Ty - Tx \rangle \le \frac{1}{2} ||(Tx - x) - (Ty - y)||^2, \tag{2.1}
$$

for all $(x, y) \in H \times H$, and therefore, we get, for all $(x, y) \in H \times Fix(T)$,

$$
\langle x - Tx, y - Tx \rangle \le \frac{1}{2} ||Tx - x||^2,
$$
\n(2.2)

see e.g., $([7],$ Theorem 3.1) and $([6],$ Theorem 2.1).

Definition 2.2. A mapping T is said to be an averaged mapping on a real Hilbert space H if there exists some number $\alpha \in (0,1)$ such that

$$
T = (1 - \alpha)I + \alpha S,\tag{2.3}
$$

where $I: H \to H$ is the identity mapping and $S: H \to H$ is nonexpansive. More precisely, when (2.3) holds, we say that T is α -averaged.

Lemma 2.3. ([12]) Let H be a real Hilbert space, let $V : H \to H$ be a α -Lipschitzian operator with $\alpha > 0$, and let $F : H \to H$ be a k-Lipschitzian continuous operator and η -strongly monotone operator with $k > 0, \eta > 0$. Then, for $0 < \gamma < \frac{\mu\eta}{\alpha}$, $\mu F - \gamma V$ is strongly monotone with coefficient $\mu\eta - \gamma\alpha$.

Lemma 2.4. ([8]) Assume that T is nonexpansive self mapping of a closed convex subset C of a Hilbert space H. If T has a fixed point, then $I - T$ is demiclosed, i.e., whenever $\{x_n\}$ is a sequence in C converging weakly to some $x \in C$ and the sequence $\{(I-T)x_n\}$ converges strongly to some y, it follows that $(I - T)x = y$. Here I is the identity mapping on H.

Lemma 2.5. ([13]) Assume $\{a_n\}$ is a sequence of nonnegative real numbers such that

$$
a_{n+1} \le (1 - \gamma_n)a_n + \delta_n, \ \ n \ge 0,
$$

where $\{\gamma_n\}$ is a sequence in $(0,1)$ and $\{\delta_n\}$ is a sequence in R such that

(i) $\sum_{n=1}^{\infty} \gamma_n = \infty$, (ii) $\limsup_{n\to\infty}\frac{\delta_n}{\gamma_n}$ $\frac{\delta_n}{\gamma_n} \leq 0$ or $\sum_{n=1}^{\infty} |\delta_n| < \infty$.

Then $\lim_{n\to\infty} a_n = 0$.

Lemma 2.6. ([2]) In a Hilbert space H, there holds the inequality $||x + y||^2 \le ||x||^2 + 2\langle y, x + y \rangle, \quad x, y \in H.$

Lemma 2.7. ([9]) Let $M : H \to 2^H$ be a multi-valued maximal monotone mapping. Then the resolvent mapping $J_{\lambda}^{M}: H \to H$ is defined by

$$
J^M_\lambda(x) := (I + \lambda M)^{-1}(x), \quad \forall \ x \in H,
$$

for some $\lambda > 0$, the resolvent operator J_λ^M is single-valued and firmly nonexpansive. It is easily deduced that J^M_λ is nonexpansive and $\frac{1}{2}$ -averaged.

Lemma 2.8. ([14]) Assume S is a λ -strictly pseudo-contractive mapping on a Hilbert space H. Define a mapping T by $Tx = \alpha x + (1-\alpha)Sx$ for all $x \in H$ and $\alpha \in [\lambda, 1]$. Then T is a nonexpansive mapping such that $Fix(T) = Fix(S)$.

3. Main results

Now we state and prove our main results in this paper.

Theorem 3.1. Let H_1 and H_2 be two real Hilbert spaces. Suppose that V is α -Lipschitzian continuous on H₁ with coefficient $\alpha > 0$ and F : H₁ \rightarrow H₁ is a k-Lipschitzian continuous and η -strongly monotone operator with $k > 0$ and $\eta > 0$. Let S is a nonexpansive mapping such that $Fix(S) \cap \Gamma \neq \emptyset$. Let $0 < \mu < 2\eta/k^2$, $0 < \gamma < \tau/\alpha$ with $\tau = \mu(\eta - \mu k^2/2)$. Suppose that $\lambda > 0$ and $\beta \in (0, 1/L)$ where L is the spectral radius of the operator A^*A and A^* is the adjoint of A. If $\{\alpha_n\}$ is a sequence in $(0,1)$ satisfying the following conditions:

- (i) $\lim_{n\to\infty} \alpha_n = 0$,
- (ii) $\sum_{n=0}^{\infty} \alpha_n = \infty$,
- (iii) $\sum_{n=1}^{\infty} |\alpha_n \alpha_{n-1}| < \infty$.

Then for a given $x_0 \in H_1$ arbitrarily, the sequences $\{u_n\}$ and $\{x_n\}$ be generated by (1.7) both converge strongly to the unique solution \tilde{x} of the variational inequality (1.8), where $\tilde{x} = P_{Fix(S) \cap \Gamma}(I - \mu F + \gamma V)\tilde{x}$.

Proof. In fact, using Lemma 2.3, we know that $\mu F - \gamma V$ is strongly monotone. So, the variational inequality (1.8) has only one solution. We set \tilde{x} to indicate the unique solution of (1.8) . The variational inequality (1.8) can be written as

$$
\langle (I - \mu F + \gamma V)\tilde{x} - \tilde{x}, x - \tilde{x} \rangle \le 0, \quad \forall x \in Fix(S) \cap \Gamma.
$$

So, it is equivalent to the fixed point equation

$$
P_{Fix(S)\cap\Gamma}(I-\mu F+\gamma V)\tilde{x}=\tilde{x}.
$$

Take a $p \in Fix(S) \cap \Gamma$, then we have $p = J_{\lambda}^{B_1} p$, $Ap = J_{\lambda}^{B_2}(Ap)$ and $Sp = p$. Using the fact that $J_{\lambda}^{B_1}$ is nonexpansive, we have

$$
||u_n - p||^2
$$

= $||J_{\lambda}^{B_1}(x_n + \beta A^*(J_{\lambda}^{B_2} - I)Ax_n) - p||^2$
= $||J_{\lambda}^{B_1}(x_n + \beta A^*(J_{\lambda}^{B_2} - I)Ax_n) - J_{\lambda}^{B_1}p||^2$
 $\le ||x_n + \beta A^*(J_{\lambda}^{B_2} - I)Ax_n - p||^2$
= $||x_n - p||^2 + \beta^2 ||A^*(J_{\lambda}^{B_2} - I)Ax_n||^2 + 2\beta \langle x_n - p, A^*(J_{\lambda}^{B_2} - I)Ax_n \rangle.$ (3.1)

It follows that

$$
||u_n - p||^2 \le ||x_n - p||^2 + \beta^2 \langle (J_{\lambda}^{B_2} - I)Ax_n, AA^*(J_{\lambda}^{B_2} - I)Ax_n \rangle + 2\beta \langle x_n - p, A^*(J_{\lambda}^{B_2} - I)Ax_n \rangle.
$$
 (3.2)

Now, we have

$$
\beta^2 \langle (J_{\lambda}^{B_2} - I)Ax_n, AA^*(J_{\lambda}^{B_2} - I)Ax_n \rangle \le L\beta^2 \| (J_{\lambda}^{B_2} - I)Ax_n \|^2. \tag{3.3}
$$

Denoting $\Lambda = 2\beta \langle x_n - p, A^* (J_{\lambda}^{B_2} - I) A x_n \rangle$ and using (2.2), we have

$$
\Lambda = 2\beta \langle x_n - p, A^* (J_{\lambda}^{B_2} - I) A x_n \rangle
$$

\n
$$
= 2\beta \langle A(x_n - p), (J_{\lambda}^{B_2} - I) A x_n \rangle
$$

\n
$$
= 2\beta \langle A(x_n - p) + (J_{\lambda}^{B_2} - I) A x_n - (J_{\lambda}^{B_2} - I) A x_n, (J_{\lambda}^{B_2} - I) A x_n \rangle
$$

\n
$$
= 2\beta \{ \langle J_{\lambda}^{B_2} A x_n - A p, (J_{\lambda}^{B_2} - I) A x_n \rangle - ||(J_{\lambda}^{B_2} - I) A x_n||^2 \}
$$

\n
$$
\leq 2\beta \{ \frac{1}{2} ||(J_{\lambda}^{B_2} - I) A x_n||^2 - ||(J_{\lambda}^{B_2} - I) A x_n||^2 \}
$$

\n
$$
\leq -\beta ||(J_{\lambda}^{B_2} - I) A x_n||^2.
$$
\n(3.4)

Using (3.2) , (3.3) and (3.4) , we obtain

$$
||u_n - p||^2 \le ||x_n + \beta A^* (J_{\lambda}^{B_2} - I)Ax_n - p||^2
$$

$$
\le ||x_n - p||^2 + \beta (L\beta - 1) ||(J_{\lambda}^{B_2} - I)Ax_n||^2.
$$
 (3.5)

Since $\beta \in (0, \frac{1}{l})$ $(\frac{1}{L})$, we have

$$
||u_n - p|| \le ||x_n - p||. \tag{3.6}
$$

Next, we estimate

$$
||x_{n+1} - p|| = ||\alpha_n \gamma V x_n + (I - \mu \alpha_n F) S u_n - p||
$$

\n
$$
= ||\alpha_n \gamma V x_n - \alpha_n \gamma V p + \alpha_n \gamma V p + (I - \mu \alpha_n F) S u_n
$$

\n
$$
- (I - \mu \alpha_n F) S p - \mu \alpha_n F p||
$$

\n
$$
\leq \alpha_n \gamma \alpha ||x_n - p|| + (1 - \alpha_n \tau) ||u_n - p|| + \alpha_n ||\gamma V p - \mu F p||
$$

\n
$$
\leq (1 - \alpha_n (\tau - \gamma \alpha)) ||x_n - p|| + \alpha_n ||\gamma V p - \mu F p||
$$

\n
$$
\leq \max \left\{ ||x_n - p||, \frac{||\gamma V p - \mu F p||}{\tau - \gamma \alpha} \right\}
$$

\n
$$
\leq \max \left\{ ||x_0 - p||, \frac{||\gamma V p - \mu F p||}{\tau - \gamma \alpha} \right\}.
$$
 (3.7)

Hence $\{x_n\}$ is bounded and consequently, we deduce that $\{u_n\}$, $\{Vx_n\}$ and $\{Su_n\}$ are bounded.

Next, we show that the sequence $\{x_n\}$ is asymptotically regular, i.e., $\|x_{n+1}-x_{n+1}\|$ $x_n \parallel \rightarrow 0$ as $n \rightarrow \infty$. It follows from (1.7) that

$$
||x_{n+1} - x_n||
$$

\n
$$
= ||\alpha_n \gamma V x_n + (I - \mu \alpha_n F) S u_n - \alpha_{n-1} \gamma V x_{n-1}
$$

\n
$$
- (I - \mu \alpha_{n-1} F) S u_{n-1}||
$$

\n
$$
= ||\alpha_n \gamma V x_n - \alpha_n \gamma V x_{n-1} + \alpha_n \gamma V x_{n-1} - \alpha_{n-1} \gamma V x_{n-1}
$$

\n
$$
+ (I - \mu \alpha_n F) S u_n - (I - \mu \alpha_n F) S u_{n-1} + (I - \mu \alpha_n F) S u_{n-1}
$$

\n
$$
- (I - \mu \alpha_{n-1} F) S u_{n-1}||
$$

\n
$$
\leq \alpha_n \gamma \alpha ||x_n - x_{n-1}|| + (1 - \alpha_n \tau) ||u_n - u_{n-1}||
$$

\n
$$
+ \gamma |\alpha_n - \alpha_{n-1}|| ||V x_{n-1}|| + \mu |\alpha_n - \alpha_{n-1}|| ||F S u_{n-1}||
$$

\n
$$
\leq \alpha_n \gamma \alpha ||x_n - x_{n-1}|| + (1 - \alpha_n \tau) ||u_n - u_{n-1}|| + |\alpha_n - \alpha_{n-1}| K,
$$

where $K := \sup\{\gamma \|Vx_{n-1}\| + \mu \|FSu_{n-1}\| : n \in N\}$. Since, for $\beta \in (0, \frac{1}{L})$ $(\frac{1}{L})$, the mapping $J_{\lambda}^{B_1}(I + \beta A^*(J_{\lambda}^{B_2} - I)A)$ is nonexpansive, we have

$$
||u_n - u_{n-1}||
$$

\n
$$
= ||J_{\lambda}^{B_1}(x_n + \beta A^*(J_{\lambda}^{B_2} - I)Ax_n) - J_{\lambda}^{B_1}(x_{n-1} + \beta A^*(J_{\lambda}^{B_2} - I)Ax_{n-1})||
$$

\n
$$
\leq ||J_{\lambda}^{B_1}(I + \beta A^*(J_{\lambda}^{B_2} - I)A)x_n - J_{\lambda}^{B_1}(I + \beta A^*(J_{\lambda}^{B_2} - I)A)x_{n-1}||
$$
\n
$$
\leq ||x_n - x_{n-1}||.
$$
\n(3.9)

It follows from (3.8) and (3.9) that

$$
||x_{n+1} - x_n|| \le (1 - \alpha_n(\tau - \gamma \alpha))||x_n - x_{n-1}|| + |\alpha_n - \alpha_{n-1}|K.
$$

By Lemma 2.5 with

$$
a_n := ||x_n - x_{n-1}||, \quad \gamma_n := \alpha_n(\tau - \gamma \alpha)
$$

and

$$
\delta_n := |\alpha_n - \alpha_{n-1}| K,
$$

we obtain

$$
\lim_{n \to \infty} ||x_{n+1} - x_n|| = 0. \tag{3.10}
$$

Next, we show that $||x_n - u_n|| \to 0$ as $n \to \infty$. By Lemma 2.6, we obtain

$$
||x_{n+1} - p||^2
$$

= $||\alpha_n \gamma V x_n + (I - \mu \alpha_n F) S u_n - p||^2$
= $||\alpha_n (\gamma V x_n - \mu F p) + (I - \mu \alpha_n F) S u_n - (I - \mu \alpha_n F) S p||^2$ (3.11)
 $\leq (1 - \alpha_n \tau)^2 ||u_n - p||^2 + 2\alpha_n \langle \gamma V x_n - \mu F p, x_{n+1} - p \rangle.$

By (3.5) , we have

$$
||x_{n+1} - p||^2 \le (1 - \alpha_n \tau)^2 (||x_n - p||^2 + \beta (L\beta - 1) ||(J_{\lambda}^{B_2} - I)Ax_n||^2)
$$

+ $2\alpha_n \langle \gamma V x_n - \mu F p, x_{n+1} - p \rangle$
 $\le ||x_n - p||^2 + \beta (L\beta - 1) ||(J_{\lambda}^{B_2} - I)Ax_n||^2$
+ $2\alpha_n ||\gamma V x_n - \mu F p|| ||x_{n+1} - p||.$ (3.12)

Then it follows that

$$
\beta(1 - L\beta) ||(J_{\lambda}^{B_2} - I)Ax_n||^2
$$

\n
$$
\leq ||x_n - p||^2 - ||x_{n+1} - p||^2 + 2\alpha_n ||\gamma Vx_n - \mu Fp|| ||x_{n+1} - p||
$$

\n
$$
\leq ||x_{n+1} - x_n|| (||x_n - p|| + ||x_{n+1} - p||) + 2\alpha_n ||\gamma Vx_n - \mu Fp|| ||x_{n+1} - p||.
$$

Since $1 - L\beta > 0$, $\alpha_n \to 0$ and $||x_{n+1} - x_n|| \to 0$ as $n \to \infty$, we have

$$
\lim_{n \to \infty} \| (J_{\lambda}^{B_2} - I) A x_n \| = 0.
$$
\n(3.13)

Furthermore, using (3.5) and $\beta \in (0, \frac{1}{l})$ $(\frac{1}{L})$, we observe that

$$
||u_n - p||^2 = ||J_{\lambda}^{B_1}(x_n + \beta A^*(J_{\lambda}^{B_2} - I)Ax_n) - p||^2
$$

\n
$$
= ||J_{\lambda}^{B_1}(x_n + \beta A^*(J_{\lambda}^{B_2} - I)Ax_n) - J_{\lambda}^{B_1}p||^2
$$

\n
$$
\leq \langle u_n - p, x_n + \beta A^*(J_{\lambda}^{B_2} - I)Ax_n - p \rangle
$$

\n
$$
= \frac{1}{2} \{ ||u_n - p||^2 + ||x_n + \beta A^*(J_{\lambda}^{B_2} - I)Ax_n - p||^2
$$

\n
$$
- ||(u_n - p) - (x_n + \beta A^*(J_{\lambda}^{B_2} - I)Ax_n - p)||^2 \}
$$

\n
$$
\leq \frac{1}{2} \{ ||u_n - p||^2 + ||x_n - p||^2 + \beta (L\beta - 1) ||(J_{\lambda}^{B_2} - I)Ax_n||^2
$$

\n
$$
- ||u_n - x_n - \beta A^*(J_{\lambda}^{B_2} - I)Ax_n||^2 \}
$$

\n
$$
\leq \frac{1}{2} \{ ||u_n - p||^2 + ||x_n - p||^2 - (||u_n - x_n||^2
$$

\n
$$
+ \beta^2 ||A^*(J_{\lambda}^{B_2} - I)Ax_n||^2 - 2\beta \langle u_n - x_n, A^*(J_{\lambda}^{B_2} - I)Ax_n \rangle) \}
$$

\n
$$
\leq \frac{1}{2} \{ ||u_n - p||^2 + ||x_n - p||^2 - ||u_n - x_n||^2
$$

\n
$$
+ 2\beta ||A(u_n - x_n)|| ||(J_{\lambda}^{B_2} - I)Ax_n|| \}.
$$

Hence, we obtain

$$
||u_n - p||^2 \le ||x_n - p||^2 - ||u_n - x_n||^2
$$

+ 2 β ||A(u_n - x_n)|| ||(J_{\lambda}^{B₂} - I)Ax_n||. (3.14)

It follows from (3.11) and (3.14) that

$$
||x_{n+1} - p||^2 \le (1 - \alpha_n \tau)^2 ||u_n - p||^2 + 2\alpha_n \langle \gamma V x_n - \mu F p, x_{n+1} - p \rangle
$$

\n
$$
\le (1 - \alpha_n \tau)^2 \{ ||x_n - p||^2 - ||u_n - x_n||^2
$$

\n
$$
+ 2\beta ||A(u_n - x_n)|| ||(J_{\lambda}^{B_2} - I)Ax_n|| \}
$$

\n
$$
+ 2\alpha_n \langle \gamma V x_n - \mu F p, x_{n+1} - p \rangle
$$

\n
$$
\le ||x_n - p||^2 - ||u_n - x_n||^2 + 2\beta ||A(u_n - x_n)|| ||(J_{\lambda}^{B_2} - I)Ax_n||
$$

\n
$$
+ 2\alpha_n ||\gamma V x_n - \mu F p|| ||x_{n+1} - p||.
$$

Therefore,

$$
||u_n - x_n||^2 \le ||x_{n+1} - x_n||(||x_n - p|| + ||x_{n+1} - p||)
$$

+ 2 β || $A(u_n - x_n)$ || $||(J_\lambda^{B_2} - I)Ax_n||$
+ 2 α_n || $\gamma Vx_n - \mu Fp|| ||x_{n+1} - p||.$

Since $\alpha_n \to 0$ as $n \to \infty$, from (3.10) and (3.13), we have

$$
\lim_{n \to \infty} \|u_n - x_n\| = 0.
$$
\n(3.15)

Next, we estimate

$$
||x_{n+1} - Su_n|| = ||\alpha_n \gamma V x_n + (I - \mu \alpha_n F) Su_n - Su_n||
$$

= $\alpha_n ||\gamma V x_n - \mu F Su_n||$.

Since $\alpha_n \to 0$ as $n \to \infty$, we get

$$
\lim_{n \to \infty} ||x_{n+1} - Su_n|| = 0. \tag{3.16}
$$

Now, we can write

$$
||Su_n - u_n|| \le ||Su_n - x_{n+1}|| + ||x_{n+1} - x_n|| + ||x_n - u_n||.
$$

By (3.10), (3.15) and (3.16), it follows that

$$
\lim_{n \to \infty} ||Su_n - u_n|| = 0.
$$

Since ${u_n}$ is bounded, so, there exists a subsequence ${u_{n_j}}$ of ${u_n}$ such that

$$
\limsup_{n \to \infty} \langle (\gamma V - \mu F)\tilde{x}, u_n - \tilde{x} \rangle = \lim_{j \to \infty} \langle (\gamma V - \mu F)\tilde{x}, u_{n_j} - \tilde{x} \rangle
$$

and $u_{n_j} \rightharpoonup u^*$. Now, S being nonexpansive, by Lemma 2.4, we obtain that $u^* \in \text{Fix}(S)$. On the other hand, by Lemma 2.7,

$$
u_{n_j} = J_{\lambda}^{B_1}(x_{n_j} + \beta A^*(J_{\lambda}^{B_2} - I)Ax_{n_j})
$$

can be rewritten as

$$
\frac{(x_{n_j} - u_{n_j}) + \beta A^*(J_{\lambda}^{B_2} - I)Ax_{n_j})}{\lambda} \in B_1 u_{n_j}.
$$
\n(3.17)

By passing to limit $j \to \infty$ in (3.17) and by taking into account (3.13), (3.15) and the fact that the graph of a maximal monotone operator is weakly-strongly closed, we obtain $0 \in B_1(u^*)$, i.e., $u^* \in SOLVIP(B_1)$. Furthermore, since ${x_n}$ and ${u_n}$ have the same asymptotical behavior, ${Ax_{n_j}}$ weakly converges to Au^* . Again, using the fact that the resolvent $J_{\lambda}^{B_2}$ is nonexpansive, from (3.13) and Lemma 2.4, we obtain that $0 \in B_2(Au^*), \dots, Au^* \in SOLVIP(B_2)$. Thus $u^* \in Fix(S) \cap \Gamma$. Hence

$$
\limsup_{n \to \infty} \langle (\gamma V - \mu F)\tilde{x}, S u_n - \tilde{x} \rangle = \limsup_{n \to \infty} \langle (\gamma V - \mu F)\tilde{x}, u_n - \tilde{x} \rangle
$$

\n
$$
= \lim_{j \to \infty} \langle (\gamma V - \mu F)\tilde{x}, u_{n_j} - \tilde{x} \rangle
$$

\n
$$
= \langle (\gamma V - \mu F)\tilde{x}, u^* - \tilde{x} \rangle
$$

\n
$$
\leq 0.
$$
\n(3.18)

Finally, we show that $x_n \to \tilde{x}$. Since $\tilde{x} \in Fix(S) \cap \Gamma$, we have

$$
||x_{n+1} - \tilde{x}||^2
$$

= $||\alpha_n \gamma V x_n + (I - \mu \alpha_n F) S u_n - \tilde{x}||^2$
= $||\alpha_n (\gamma V x_n - \mu F \tilde{x}) + (I - \mu \alpha_n F) S u_n - (I - \mu \alpha_n F) S \tilde{x}||^2$
 $\leq (1 - \alpha_n \tau)^2 ||u_n - \tilde{x}||^2 + \alpha_n^2 ||\gamma V x_n - \mu F \tilde{x}||^2$
+ $2\alpha_n \langle \gamma V x_n - \mu F \tilde{x}, (I - \mu \alpha_n F) S u_n - (I - \mu \alpha_n F) S \tilde{x} \rangle$
 $\leq (1 - \alpha_n \tau)^2 ||u_n - \tilde{x}||^2 + \alpha_n^2 ||\gamma V x_n - \mu F \tilde{x}||^2$
+ $2\alpha_n (\langle S u_n - S \tilde{x}, \gamma V x_n - \mu F \tilde{x} \rangle - \alpha_n \mu \langle F S u_n - F \tilde{x}, \gamma V x_n - \mu F \tilde{x} \rangle).$

By (3.6) , we obtain

$$
||x_{n+1} - \tilde{x}||^2
$$

\n
$$
\leq ((1 - \alpha_n \tau)^2 + 2\alpha_n \gamma \alpha) ||x_n - \tilde{x}||^2 + \alpha_n^2 ||\gamma V x_n - \mu F \tilde{x}||^2
$$

\n
$$
+ 2\alpha_n (\langle Su_n - S\tilde{x}, \gamma V\tilde{x} - \mu F\tilde{x}\rangle
$$

\n
$$
- \alpha_n \mu \langle FSu_n - F\tilde{x}, \gamma Vx_n - \mu F\tilde{x}\rangle)
$$

\n
$$
= (1 - 2\alpha_n (\tau - \gamma \alpha)) ||x_n - \tilde{x}||^2 + \alpha_n (\alpha_n ||\gamma Vx_n - \mu F\tilde{x}||^2
$$

\n
$$
+ 2\langle Su_n - \tilde{x}, \gamma V\tilde{x} - \mu F\tilde{x}\rangle - 2\alpha_n \mu \langle FSu_n - F\tilde{x}, \gamma Vx_n - \mu F\tilde{x}\rangle
$$

\n
$$
+ \alpha_n \tau^2 ||x_n - \tilde{x}||^2)
$$

\n
$$
= (1 - \bar{\alpha_n}) ||x_n - \tilde{x}||^2 + \bar{\alpha_n} \bar{\beta_n},
$$

where $\bar{\alpha_n} = 2\alpha_n(\tau - \gamma \alpha)$ and

$$
\bar{\beta}_n = \frac{1}{2(\tau - \gamma \alpha)} \Big(2 \langle S u_n - \tilde{x}, \gamma V \tilde{x} - \mu F \tilde{x} \rangle \n- 2 \alpha_n \mu ||F S u_n - F \tilde{x}|| ||\gamma V x_n - \mu F \tilde{x}|| + \alpha_n ||\gamma V x_n - \mu F \tilde{x}||^2 \n+ \alpha_n \tau^2 ||x_n - \tilde{x}||^2 \Big).
$$

Consequently, according to the condition (i) and (ii), (3.18) and Lemma 2.5, we conclude that $x_n \to \tilde{x}$ as $n \to \infty$. This completes the proof.

4. An extension of our result

In this section, we extend our result to the more broad λ -strictly pseudocontractive mapping. It is well-known that a mapping $S : H_1 \to H_1$ is said to be λ -strictly pseudo-contractive if there exists a constant $\lambda \in [0,1)$ such that

$$
||Sx - Sy||2 \le ||x - y||2 + \lambda ||(I - S)x - (I - S)y||2, \quad \forall x, y \in H_1.
$$

Define the operator

$$
\hat{T} = \omega I + (1 - \omega)S,\tag{4.1}
$$

where $0 \leq \lambda \leq \omega < 1$. By virtue of Lemma 2.8, we know that \hat{T} is a nonexpansive operator and $Fix(T) = Fix(S)$. Thus we extend theorem 3.1 to a λ -strictly pseudo-contractive mapping.

Theorem 4.1. Let H_1 and H_2 be two real Hilbert spaces. Suppose that V is α -Lipschitzian continuous on H₁ with coefficient $\alpha > 0$ and F : H₁ \rightarrow H₁ a k-Lipschitzian continuous and η -strongly monotone operator with $k > 0$, $\eta > 0$. Let S be a λ -strictly pseudo-contractive mapping on H_1 such that $Fix(S) \cap \Gamma \neq \emptyset$. Let $0 < \mu < 2\eta/k^2$, $0 < \gamma < \tau/\alpha$ with $\tau = \mu(\eta - \mu k^2/2)$. Suppose that $\lambda > 0$ and $\beta \in (0, 1/L)$ where L is the spectral radius of the operator A^*A and A^* is the adjoint of A. If the condition (i)-(iii) of Theorem 3.1 are satisfied, then the sequence $\{x_n\}_{n\geq 0}$ and $\{u_n\}_{n\geq 0}$ defined by (1.7) with S replaced by \hat{T} in (4.1), converges strongly to the unique solution \tilde{x} of the following variational inequality:

$$
\langle (\gamma V - \mu F)\tilde{x}, x - \tilde{x} \rangle \le 0, \quad \forall x \in Fix(S) \cap \Gamma,
$$

where $\tilde{x} = P_{Fix(S) \cap \Gamma}(I - \mu F + \gamma V)\tilde{x}.$

Acknowledgments: This research is supported by the Fundamental Science Research Funds for the Central Universities (Program No. 3122014k010).

REFERENCES

- [1] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse probl., 18 (2002), 441–453.
- [2] L.C. Ceng, N.C. Wong and J.C. Yao, Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. Meth. Oper. Res., 67 (2008), 375–390.
- [3] Y. Censor, T. Bortfeld, B. Martin and A. Trofimov, A unified approach for inversion problems in intensity modulated radeation therapy, Phys. Med. Biol., 51 (2006), 2353– 2365.
- [4] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projection in product space, Numer. Algorithms, 8 (1994), 221–239.
- [5] P.L. Combettes, The covex feasibility problem in image recovery, Adv. Imaging Electron Phys., 95 (1996), 155–453.
- [6] G. Crombez, A geometrical look at iterative methods for operators with fixed points, Numer. Funct. Anal. Optim., 26 (2005), 157–175.
- [7] G. Crombez, A hierarchical presentation of operators with fixed points on Hilbert spaces, Numer. Funct. Anal. Optim., 27 (2006), 259–277.
- [8] K. Goebel and W.A. Kirk, *Topics in Metric Fixed-Point Theory*, Cambridge University Press, Cambridge (1993).
- [9] K.R. Kazmi and S.H. Rizvi, An iterative method for split variational inclusion problem and fixed point problem for a nonexpansive mapping, Optim. Lett., 8 (2014), 1113–1124.
- [10] A. Moudafi, Split monotone variational includions, J. Optim. Theory Appl., 150 (2011), 275–283.
- [11] M. Tian, A general iterative algorithm for nonexpansive mappings in Hilbert spaces, Nonlinear Anal., 73 (2010), 689–694.
- [12] M. Tian, A general iterative method based on the hybrid steepest descent scheme for nonexpansive mappings in Hilbert spaces, 2010 International Conference on computational intelligence and Software Engineering (Cise), (2010).
- [13] H.K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., 298 (2004), 279–291.
- [14] Y. Zhou, Convergence theorems of fixed points for k-strict pseudo-contractions in Hilbert spaces, Nonlinear Anal., 69 (2008), 456–462.