
Nonlinear Functional Analysis and Applications
Vol. 20, No. 3 (2015), pp. 381-392

http://nfaa.kyungnam.ac.kr/jour-nfaa.htm
Copyright c© 2015 Kyungnam University Press KUPress

A NEW EXPLICIT ITERATIVE ALGORITHM FOR
SOLVING SPLIT VARIATIONAL INCLUSION PROBLEM

Cuijie Zhang1 and Zhihui Xu2

1College of Science, Civil Aviation University of China
Tianjin, 300300, P.R. China

e-mail: zhang cui jie@126.com

2College of Science, Civil Aviation University of China
Tianjin, 300300, P.R. China

e-mail: zhihui xu007@163.com

Abstract. In this paper, we introduce a new explicit iterative algorithm to approximate

a common solution of split variational inclusion problem and fixed point problem for a

nonexpansive mapping in Hilbert spaces. Further, we proved that the sequence generated

by the iterative method strongly converges to the solution of the split variational inclusion

problem.

1. Introduction

Let H1 and H2 be real Hilbert spaces with inner product 〈·, ·〉 and norm
‖ · ‖. Let S is a nonexpansive operator. The set of fixed points of S is denoted
by Fix(S).

Throughout this paper, we suppose that B1 : H1 → 2H1 and B2 : H2 → 2H2

are two multi-valued maximal monotone operators, A : H1 → H2 is a bounded
linear operator. In 2011, Moudafi [10] introduced the following split monotone
variational inclusion problem (SMVIP) which is to find x∗ ∈ H1 such that

0 ∈ f(x∗) +B1(x∗), (1.1)

and such that

y∗ = Ax∗ ∈ H2 solves 0 ∈ g(y∗) +B2(y∗), (1.2)
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where f : H1 → H1 and g : H2 → H2 are two given single-valued operators.
This formalism is also at the core of modeling of many inverse problems arising
from phase retrieval, data compression, sensor networks and other real-world
problem, see [2, 3]. As Moudafi notes in [10], SMVIP (1.1)-(1.2) includes
as the following special cases, split minimization problem, split saddle-point
problem and split equilibrium problem which have already been studied and
used in practice as a model in some field, see e.g. [4, 5].

If f ≡ 0 and g ≡ 0, then SMVIP(1.1)-(1.2) reduces to the following split
variational inclusion problem (in short, SVIP) which is to find x∗ ∈ H1 such
that

0 ∈ B1(x∗), (1.3)

and such that
y∗ = Ax∗ ∈ H2 solves 0 ∈ B2(y∗). (1.4)

We denote the solution set of SVIP(1.3), SVIP(1.4) by SOLV IP (B1) and
SOLV IP (B2), respectively. The solution set of SVIP (1.3)-(1.4) is denoted
by Γ = {x∗ ∈ H1 : x∗ ∈ SOLV IP (B1) and Ax∗ ∈ SOLV IP (B2)}.

In 2013, Kazmi and Rizvi [9] proposed the following algorithm:{
un = JB1

λ (xn + βA∗(JB2
λ − I)Axn),

xn+1 = αnf(xn) + (1− αn)Sun.
(1.5)

If λ > 0, the sequences {un} and {xn} generated by (1.5) both converge
strongly to x̃ ∈ Fix(S)

⋂
Γ, where x̃ = PFix(S)

⋂
Γf(x̃).

On the other hand, Tian [11] considered the following general viscosity type
iterative method

xn+1 = αnγf(xn) + (I − µαnF )Txn. (1.6)

He proved that {xn} generated by (1.6) converges strongly to a fixed point
x̃ ∈ Fix(T ), which solves the variational inequality

〈(γf − µF )x̃, x− x̃〉 ≤ 0, ∀ x ∈ Fix(T ).

In [12], Tian generalized the iterative method (1.6) replacing the contraction
operator f with an Lipschitzian continuous operator V to solve the following
variational inequality

〈(γV − µF )x̃, x− x̃〉 ≤ 0, ∀ x ∈ Fix(T ).

In this paper, we will combine the iterative method (1.6) with the method
(1.5) and consider the following general iterative method{

un = JB1
λ (xn + βA∗(JB2

λ − I)Axn),

xn+1 = αnγV (xn) + (I − µαnF )Sun.
(1.7)
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We will prove that if the parameters satisfy appropriate conditions, the se-
quence {xn} generated by (1.7) converges strongly to the unique solution x̃ of
the variational inequality

〈(γV − µF )x̃, x− x̃〉 ≤ 0, ∀ x ∈ Fix(S) ∩ Γ. (1.8)

2. Preliminaries

Throughout this paper, we write xn ⇀ x and x → x to indicate that the
sequence {xn} converges weakly to x and converges strongly to x, respectively.
Let H be a real Hilbert space. The following definitions and lemmas are useful
for our paper.

Definition 2.1. A mapping T : H → H is said to be
• nonexpansive if for all x, y ∈ H

‖Tx− Ty‖ ≤ ‖x− y‖,
• firmly nonexpansive if 2T−I is nonexpansive, or equivalently for all x, y ∈ H

〈Tx− Ty, x− y〉 ≥ ‖Tx− Ty‖2,
• monotone if for all x, y ∈ H

〈Tx− Ty, x− y〉 ≥ 0,

• η-strongly monotone if there exists a constant η > 0 such that

〈x− y, Tx− Ty〉 ≥ η‖x− y‖2

for all x, y ∈ H,
• a multi-valued mapping M : H → 2H is called monotone if

〈u− v, x− y〉 ≥ 0 whenever u ∈M(x), v ∈M(y),

• a multi-valued mapping M : H → 2H is maximal if, in addition, its graph,

gph M := {(x, y) ∈ H ×H : y ∈M(x)},
is not properly contained in the graph of any other monotone operator.

It is well known that every nonexpansive operator T : H → H satisfies the
inequality

〈(x− Tx)− (y − Ty), T y − Tx〉 ≤ 1

2
‖(Tx− x)− (Ty − y)‖2, (2.1)

for all (x, y) ∈ H ×H, and therefore, we get, for all (x, y) ∈ H × Fix(T ),

〈x− Tx, y − Tx〉 ≤ 1

2
‖Tx− x‖2, (2.2)

see e.g., ([7], Theorem 3.1) and ([6], Theorem 2.1).
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Definition 2.2. A mapping T is said to be an averaged mapping on a real
Hilbert space H if there exists some number α ∈ (0, 1) such that

T = (1− α)I + αS, (2.3)

where I : H → H is the identity mapping and S : H → H is nonexpansive.
More precisely, when (2.3) holds, we say that T is α-averaged.

Lemma 2.3. ([12]) Let H be a real Hilbert space, let V : H → H be a α-
Lipschitzian operator with α > 0, and let F : H → H be a k-Lipschitzian
continuous operator and η-strongly monotone operator with k > 0, η > 0.
Then, for 0 < γ < µη

α , µF −γV is strongly monotone with coefficient µη−γα.

Lemma 2.4. ([8]) Assume that T is nonexpansive self mapping of a closed
convex subset C of a Hilbert space H. If T has a fixed point, then I − T is
demiclosed, i.e., whenever {xn} is a sequence in C converging weakly to some
x ∈ C and the sequence {(I − T )xn} converges strongly to some y, it follows
that (I − T )x = y. Here I is the identity mapping on H.

Lemma 2.5. ([13]) Assume {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− γn)an + δn, n ≥ 0,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∑∞

n=1 γn =∞,

(ii) lim supn→∞
δn
γn
≤ 0 or

∑∞
n=1 | δn |<∞.

Then limn→∞ an = 0.

Lemma 2.6. ([2]) In a Hilbert space H, there holds the inequality

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, x, y ∈ H.

Lemma 2.7. ([9]) Let M : H → 2H be a multi-valued maximal monotone
mapping. Then the resolvent mapping JMλ : H → H is defined by

JMλ (x) := (I + λM)−1(x), ∀ x ∈ H,
for some λ > 0, the resolvent operator JMλ is single-valued and firmly nonex-

pansive. It is easily deduced that JMλ is nonexpansive and 1
2 -averaged.

Lemma 2.8. ([14]) Assume S is a λ-strictly pseudo-contractive mapping on a
Hilbert space H. Define a mapping T by Tx = αx+(1−α)Sx for all x ∈ H and
α ∈ [λ, 1). Then T is a nonexpansive mapping such that Fix(T ) = Fix(S).
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3. Main results

Now we state and prove our main results in this paper.

Theorem 3.1. Let H1 and H2 be two real Hilbert spaces. Suppose that V is
α-Lipschitzian continuous on H1 with coefficient α > 0 and F : H1 → H1

is a k-Lipschitzian continuous and η-strongly monotone operator with k > 0
and η > 0. Let S is a nonexpansive mapping such that Fix(S) ∩ Γ 6= ∅. Let
0 < µ < 2η/k2, 0 < γ < τ/α with τ = µ(η − µk2/2). Suppose that λ > 0 and
β ∈ (0, 1/L) where L is the spectral radius of the operator A∗A and A∗ is the
adjoint of A. If {αn} is a sequence in (0, 1) satisfying the following conditions:

(i) limn→∞ αn = 0,
(ii)

∑∞
n=0 αn =∞,

(iii)
∑∞

n=1 |αn − αn−1| <∞.

Then for a given x0 ∈ H1 arbitrarily, the sequences {un} and {xn} be generated
by (1.7) both converge strongly to the unique solution x̃ of the variational
inequality (1.8), where x̃ = PFix(S)∩Γ(I − µF + γV )x̃.

Proof. In fact, using Lemma 2.3, we know that µF −γV is strongly monotone.
So, the variational inequality (1.8) has only one solution. We set x̃ to indicate
the unique solution of (1.8). The variational inequality (1.8) can be written
as

〈(I − µF + γV )x̃− x̃, x− x̃〉 ≤ 0, ∀ x ∈ Fix(S) ∩ Γ.

So, it is equivalent to the fixed point equation

PFix(S)∩Γ(I − µF + γV )x̃ = x̃.

Take a p ∈ Fix(S)∩Γ, then we have p = JB1
λ p, Ap = JB2

λ (Ap) and Sp = p.

Using the fact that JB1
λ is nonexpansive, we have

‖un − p‖2

= ‖JB1
λ

(
xn + βA∗(JB2

λ − I)Axn
)
− p‖2

= ‖JB1
λ

(
xn + βA∗(JB2

λ − I)Axn
)
− JB1

λ p‖2

≤ ‖xn + βA∗(JB2
λ − I)Axn − p‖2

= ‖xn − p‖2 + β2‖A∗(JB2
λ − I)Axn‖2 + 2β〈xn − p,A∗(JB2

λ − I)Axn〉.

(3.1)

It follows that

‖un − p‖2 ≤ ‖xn − p‖2 + β2〈(JB2
λ − I)Axn, AA

∗(JB2
λ − I)Axn〉

+ 2β〈xn − p,A∗(JB2
λ − I)Axn〉.

(3.2)

Now, we have

β2〈(JB2
λ − I)Axn, AA

∗(JB2
λ − I)Axn〉 ≤ Lβ2‖(JB2

λ − I)Axn‖2. (3.3)
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Denoting Λ = 2β〈xn − p,A∗(JB2
λ − I)Axn〉 and using (2.2), we have

Λ = 2β〈xn − p,A∗(JB2
λ − I)Axn〉

= 2β〈A(xn − p), (JB2
λ − I)Axn〉

= 2β〈A(xn − p) + (JB2
λ − I)Axn − (JB2

λ − I)Axn, (J
B2
λ − I)Axn〉

= 2β{〈JB2
λ Axn −Ap, (JB2

λ − I)Axn〉 − ‖(JB2
λ − I)Axn‖2}

≤ 2β{1

2
‖(JB2

λ − I)Axn‖2 − ‖(JB2
λ − I)Axn‖2}

≤ −β‖(JB2
λ − I)Axn‖2.

(3.4)

Using (3.2), (3.3) and (3.4), we obtain

‖un − p‖2 ≤ ‖xn + βA∗(JB2
λ − I)Axn − p‖2

≤ ‖xn − p‖2 + β(Lβ − 1)‖(JB2
λ − I)Axn‖2.

(3.5)

Since β ∈ (0, 1
L), we have

‖un − p‖ ≤ ‖xn − p‖. (3.6)

Next, we estimate

‖xn+1 − p‖ = ‖αnγV xn + (I − µαnF )Sun − p‖
= ‖αnγV xn − αnγV p+ αnγV p+ (I − µαnF )Sun

− (I − µαnF )Sp− µαnFp‖
≤ αnγα‖xn − p‖+ (1− αnτ)‖un − p‖+ αn‖γV p− µFp‖
≤
(
1− αn(τ − γα)

)
‖xn − p‖+ αn‖γV p− µFp‖

≤ max

{
‖xn − p‖,

‖γV p− µFp‖
τ − γα

}
...

≤ max

{
‖x0 − p‖,

‖γV p− µFp‖
τ − γα

}
.

(3.7)

Hence {xn} is bounded and consequently, we deduce that {un}, {V xn} and
{Sun} are bounded.

Next, we show that the sequence {xn} is asymptotically regular, i.e., ‖xn+1−
xn‖ → 0 as n→∞. It follows from (1.7) that
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‖xn+1 − xn‖
= ‖αnγV xn + (I − µαnF )Sun − αn−1γV xn−1

− (I − µαn−1F )Sun−1‖
= ‖αnγV xn − αnγV xn−1 + αnγV xn−1 − αn−1γV xn−1

+ (I − µαnF )Sun − (I − µαnF )Sun−1 + (I − µαnF )Sun−1

− (I − µαn−1F )Sun−1‖
≤ αnγα‖xn − xn−1‖+ (1− αnτ)‖un − un−1‖

+ γ|αn − αn−1|‖V xn−1‖+ µ|αn − αn−1|‖FSun−1‖
≤ αnγα‖xn − xn−1‖+ (1− αnτ)‖un − un−1‖+ |αn − αn−1|K,

(3.8)

where K := sup{γ‖V xn−1‖+ µ‖FSun−1‖ : n ∈ N}. Since, for β ∈ (0, 1
L), the

mapping JB1
λ (I + βA∗(JB2

λ − I)A) is nonexpansive, we have

‖un − un−1‖

= ‖JB1
λ (xn+βA∗(JB2

λ −I)Axn)−JB1
λ (xn−1+βA∗(JB2

λ −I)Axn−1)‖

≤ ‖JB1
λ (I + βA∗(JB2

λ − I)A)xn − JB1
λ (I + βA∗(JB2

λ − I)A)xn−1‖
≤ ‖xn − xn−1‖.

(3.9)

It follows from (3.8) and (3.9) that

‖xn+1 − xn‖ ≤ (1− αn(τ − γα))‖xn − xn−1‖+ |αn − αn−1|K.

By Lemma 2.5 with

an := ‖xn − xn−1‖, γn := αn(τ − γα)

and

δn := |αn − αn−1|K,

we obtain

lim
n→∞

‖xn+1 − xn‖ = 0. (3.10)

Next, we show that ‖xn − un‖ → 0 as n→∞. By Lemma 2.6, we obtain

‖xn+1 − p‖2

= ‖αnγV xn + (I − µαnF )Sun − p‖2

= ‖αn(γV xn − µFp) + (I − µαnF )Sun − (I − µαnF )Sp‖2

≤ (1− αnτ)2‖un − p‖2 + 2αn〈γV xn − µFp, xn+1 − p〉.

(3.11)
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By (3.5), we have

‖xn+1 − p‖2 ≤ (1− αnτ)2
(
‖xn − p‖2 + β(Lβ − 1)‖(JB2

λ − I)Axn‖2
)

+ 2αn〈γV xn − µFp, xn+1 − p〉

≤ ‖xn − p‖2 + β(Lβ − 1)‖(JB2
λ − I)Axn‖2

+ 2αn‖γV xn − µFp‖‖xn+1 − p‖.

(3.12)

Then it follows that

β(1− Lβ)‖(JB2
λ − I)Axn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2αn‖γV xn − µFp‖‖xn+1 − p‖
≤ ‖xn+1 − xn‖(‖xn − p‖+ ‖xn+1 − p‖) + 2αn‖γV xn − µFp‖‖xn+1 − p‖.

Since 1− Lβ > 0, αn → 0 and ‖xn+1 − xn‖ → 0 as n→∞, we have

lim
n→∞

‖(JB2
λ − I)Axn‖ = 0. (3.13)

Furthermore, using (3.5) and β ∈ (0, 1
L), we observe that

‖un − p‖2 = ‖JB1
λ

(
xn + βA∗(JB2

λ − I)Axn
)
− p‖2

= ‖JB1
λ

(
xn + βA∗(JB2

λ − I)Axn
)
− JB1

λ p‖2

≤ 〈un − p, xn + βA∗(JB2
λ − I)Axn − p〉

=
1

2
{‖un − p‖2 + ‖xn + βA∗(JB2

λ − I)Axn − p‖2

− ‖(un − p)−
(
xn + βA∗(JB2

λ − I)Axn − p
)
‖2}

≤ 1

2
{‖un − p‖2 + ‖xn − p‖2 + β(Lβ − 1)‖(JB2

λ − I)Axn‖2

− ‖un − xn − βA∗(JB2
λ − I)Axn‖2}

≤ 1

2
{‖un − p‖2 + ‖xn − p‖2 −

(
‖un − xn‖2

+ β2‖A∗(JB2
λ − I)Axn‖2 − 2β〈un − xn, A∗(JB2

λ − I)Axn〉
)
}

≤ 1

2
{‖un − p‖2 + ‖xn − p‖2 − ‖un − xn‖2

+ 2β‖A(un − xn)‖‖(JB2
λ − I)Axn‖}.

Hence, we obtain

‖un − p‖2 ≤ ‖xn − p‖2 − ‖un − xn‖2

+ 2β‖A(un − xn)‖‖(JB2
λ − I)Axn‖.

(3.14)
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It follows from (3.11) and (3.14) that

‖xn+1 − p‖2 ≤ (1− αnτ)2‖un − p‖2 + 2αn〈γV xn − µFp, xn+1 − p〉
≤ (1− αnτ)2{‖xn − p‖2 − ‖un − xn‖2

+ 2β‖A(un − xn)‖‖(JB2
λ − I)Axn‖}

+ 2αn〈γV xn − µFp, xn+1 − p〉

≤ ‖xn − p‖2 − ‖un − xn‖2 + 2β‖A(un − xn)‖‖(JB2
λ − I)Axn‖

+ 2αn‖γV xn − µFp‖‖xn+1 − p‖.
Therefore,

‖un − xn‖2 ≤ ‖xn+1 − xn‖(‖xn − p‖+ ‖xn+1 − p‖)

+ 2β‖A(un − xn)‖‖(JB2
λ − I)Axn‖

+ 2αn‖γV xn − µFp‖‖xn+1 − p‖.

Since αn → 0 as n→∞, from (3.10) and (3.13), we have

lim
n→∞

‖un − xn‖ = 0. (3.15)

Next, we estimate

‖xn+1 − Sun‖ = ‖αnγV xn + (I − µαnF )Sun − Sun‖
= αn‖γV xn − µFSun‖.

Since αn → 0 as n→∞, we get

lim
n→∞

‖xn+1 − Sun‖ = 0. (3.16)

Now, we can write

‖Sun − un‖ ≤ ‖Sun − xn+1‖+ ‖xn+1 − xn‖+ ‖xn − un‖.

By (3.10), (3.15) and (3.16), it follows that

lim
n→∞

‖Sun − un‖ = 0.

Since {un} is bounded, so, there exists a subsequence {unj} of {un} such that

lim sup
n→∞

〈(γV − µF )x̃, un − x̃〉 = lim
j→∞
〈(γV − µF )x̃, unj − x̃〉

and unj ⇀ u∗. Now, S being nonexpansive, by Lemma 2.4, we obtain that
u∗ ∈ Fix(S). On the other hand, by Lemma 2.7,

unj = JB1
λ (xnj + βA∗(JB2

λ − I)Axnj )

can be rewritten as

(xnj − unj ) + βA∗(JB2
λ − I)Axnj )

λ
∈ B1unj .

(3.17)
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By passing to limit j →∞ in (3.17) and by taking into account (3.13), (3.15)
and the fact that the graph of a maximal monotone operator is weakly-strongly
closed, we obtain 0 ∈ B1(u∗), i.e., u∗ ∈ SOLV IP (B1). Furthermore, since
{xn} and {un} have the same asymptotical behavior, {Axnj} weakly converges

to Au∗. Again, using the fact that the resolvent JB2
λ is nonexpansive, from

(3.13) and Lemma 2.4, we obtain that 0 ∈ B2(Au∗), i.e., Au∗ ∈ SOLV IP (B2).
Thus u∗ ∈ Fix(S) ∩ Γ. Hence

lim sup
n→∞

〈(γV − µF )x̃, Sun − x̃〉 = lim sup
n→∞

〈(γV − µF )x̃, un − x̃〉

= lim
j→∞
〈(γV − µF )x̃, unj − x̃〉

= 〈(γV − µF )x̃, u∗ − x̃〉
≤ 0.

(3.18)

Finally, we show that xn → x̃. Since x̃ ∈ Fix(S) ∩ Γ, we have

‖xn+1 − x̃‖2

= ‖αnγV xn + (I − µαnF )Sun − x̃‖2

= ‖αn(γV xn − µF x̃) + (I − µαnF )Sun − (I − µαnF )Sx̃‖2

≤ (1− αnτ)2‖un − x̃‖2 + α2
n‖γV xn − µF x̃‖2

+ 2αn〈γV xn − µF x̃, (I − µαnF )Sun − (I − µαnF )Sx̃〉
≤ (1− αnτ)2‖un − x̃‖2 + α2

n‖γV xn − µF x̃‖2

+ 2αn
(
〈Sun − Sx̃, γV xn − µF x̃〉

− αnµ〈FSun − Fx̃, γV xn − µF x̃〉
)
.

By (3.6), we obtain

‖xn+1 − x̃‖2

≤
(
(1− αnτ)2 + 2αnγα

)
‖xn − x̃‖2 + α2

n‖γV xn − µF x̃‖2

+ 2αn(〈Sun − Sx̃, γV x̃− µF x̃〉
− αnµ〈FSun − Fx̃, γV xn − µF x̃〉)

=
(
1− 2αn(τ − γα)

)
‖xn − x̃‖2 + αn

(
αn‖γV xn − µF x̃‖2

+ 2〈Sun − x̃, γV x̃− µF x̃〉−2αnµ〈FSun − Fx̃, γV xn − µF x̃〉
+ αnτ

2‖xn − x̃‖2
)

= (1− ᾱn)‖xn − x̃‖2 + ᾱnβ̄n,

where ᾱn = 2αn(τ − γα) and
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β̄n =
1

2(τ − γα)

(
2〈Sun − x̃, γV x̃− µF x̃〉

− 2αnµ‖FSun − Fx̃‖‖γV xn − µF x̃‖+ αn‖γV xn − µF x̃‖2

+ αnτ
2‖xn − x̃‖2

)
.

Consequently, according to the condition (i) and (ii), (3.18) and Lemma 2.5,
we conclude that xn → x̃ as n→∞. This completes the proof. �

4. An extension of our result

In this section, we extend our result to the more broad λ-strictly pseudo-
contractive mapping. It is well-known that a mapping S : H1 → H1 is said to
be λ-strictly pseudo-contractive if there exists a constant λ ∈ [0, 1) such that

‖Sx− Sy‖2 ≤ ‖x− y‖2 + λ‖(I − S)x− (I − S)y‖2, ∀ x, y ∈ H1.

Define the operator

T̂ = ωI + (1− ω)S, (4.1)

where 0 ≤ λ ≤ ω < 1. By virtue of Lemma 2.8, we know that T̂ is a
nonexpansive operator and Fix(T ) = Fix(S). Thus we extend theorem 3.1
to a λ-strictly pseudo-contractive mapping.

Theorem 4.1. Let H1 and H2 be two real Hilbert spaces. Suppose that V is
α-Lipschitzian continuous on H1 with coefficient α > 0 and F : H1 → H1

a k-Lipschitzian continuous and η-strongly monotone operator with k > 0,
η > 0. Let S be a λ-strictly pseudo-contractive mapping on H1 such that
Fix(S) ∩ Γ 6= ∅. Let 0 < µ < 2η/k2, 0 < γ < τ/α with τ = µ(η − µk2/2).
Suppose that λ > 0 and β ∈ (0, 1/L) where L is the spectral radius of the
operator A∗A and A∗ is the adjoint of A. If the condition (i)-(iii) of Theorem
3.1 are satisfied, then the sequence {xn}n≥0 and {un}n≥0 defined by (1.7) with

S replaced by T̂ in (4.1), converges strongly to the unique solution x̃ of the
following variational inequality:

〈(γV − µF )x̃, x− x̃〉 ≤ 0, ∀ x ∈ Fix(S) ∩ Γ,

where x̃ = PFix(S)∩Γ(I − µF + γV )x̃.
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